首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The caterpillars of the oleander hawk moth, Daphnis nerii (Linnaeus, 1758) (Lepidoptera: Sphingidae) feed primarily on oleander (Nerium oleander). This plant is rich in cardenolides, which specifically inhibit the Na+K+-ATPase. Since some insects feeding on cardenolide plants possess cardenolide-resistant Na+K+-ATPases, we tested whether D. nerii also possesses this strategy for circumventing cardenolide toxicity. To do so, we established a physiological assay, which allowed direct measurement of Na+K+-ATPase cardenolide sensitivity. Using Schistocerca gregaria, as a cardenolide-sensitive reference species, we showed that D. nerii Na+K+-ATPase was extremely sensitive to the cardenolide ouabain. Surprisingly, its sensitivity is even higher than that of the cardenolide-sensitive generalist, S. gregaria. The presence or absence of cardenolides in the diet of D. nerii did not influence the enzyme’s cardenolide sensitivity, indicating that target-site insensitivity is not inducible in this species. However, despite the sensitivity of their Na+K+-ATPase, caterpillars of D. nerii quickly recovered from an injection of an excessive amount of ouabain into their haemocoel. We conclude that D. nerii possesses adaptations, which enable it to feed on a cardenolide-rich diet other than that previously described in cardenolide specialized insects, and discuss other potential resistance mechanisms.  相似文献   

2.
Osmoregulatory ability of mature chum salmon (Oncorhynchus keta) during spawning migration was examined by following the changes in gill Na+, K+-ATPase activity and in the distribution and morphology of chloride cells. Mature chum salmon caught in Otsuchi Bay, northern Honshu Island, Japan, died within 5 d in seawater (SW) in association with a marked increase in plasma osmolality, whereas the fish transferred to fresh water (FW) maintained plasma osmolality efficiently. Gill Na+, K+-ATPase activity decreased in both SW-maintained and FW-transferred fish. Well-developed chloride cells, identified by immunocytochemical staining specific for Na+, K+-ATPase, were present mainly in the filament epithelium of immature fish caught in the ocean. In mature fish caught in the bay, however, additional chloride cells were also found in the lamellar epithelium. The number of filament chloride cells decreased markedly in the mature fish both in SW and in FW, whereas the number of lamellar chloride cells was maintained. These results suggest that the loss of hypoosmoregulatory ability in mature chum salmon may be attributable to the decrease in filament chloride cells and associated decrease in gill Na+, K+-ATPase activity, and also that appearance of lamellar chloride cells may be preparatory to the forthcoming upstream migration. Received: 14 April 1997 / Accepted: 5 May 1997  相似文献   

3.
Ecotoxicity of nanoparticles has received growing attention in recent years. This study investigated the influence of silver nanoparticles (Ag-NP) on earthworm Eisenia fetida. The experiment was performed with five test groups: control (without Ag-NP), 10?nm Ag-NP groups (20, 100 or 500?mg?kg?1) and positive control (787?mg?kg?1 AgNO3). After 14-day acute exposure, activities of various enzymes, including glutathione S-transferase (GST), glutathione reductase (GR), acid phosphatase (AP), and Na+, K+-ATPase were determined. Effects of Ag-NP with different sizes (10 and 80?nm) were also tested. Data showed that the activity of GR was significantly lower at 500?mg?kg?1. The activities of AP and Na+, K+-ATPase were inhibited following the increase of Ag-NP concentration. When treated with Ag-NP with different sizes, activities of AP and Na+, K+-ATPase of the 10?nm group were significantly lower than the control group, but those of the 80?nm group were similar to the control group. Data indicate that Ag-NP may be harmful to the earthworm E. fetida at 500?mg?kg?1, and the toxicity of Ag-NP with 10?nm size is greater than 80?nm. In addition, AP and Na+, K+-ATPase are sensitive biomakers to the effects of Ag-NP.  相似文献   

4.
三甲基氯化锡对斑马鱼(Danio rerio)生理生化特性的影响   总被引:1,自引:1,他引:1  
为初步探讨三甲基氯化锡(trimethyltin chloride,TMT)对鱼类的毒性效应以及评价环境中TMT的安全性,采用静态鱼类急性毒性试验法测定了TMT对斑马鱼(Danio rerio)生理生化指标的影响;参考TMT的96 h-LC50值,设定3个浓度(0.39、0.78和1.17 mg·L-1)处理斑马鱼,测...  相似文献   

5.
The development of gill chloride cells was examined in premetamorphic larvae (leptocephali) and juveniles (glass eels) of the Japanese eel, Anguilla japonica. Branchial chloride cells were detected by immunocytochemistry using an antiserum specific for Na+,K+-ATPase. The specificity and availability of the antiserum for the detection of Japanese eel chloride cells were confirmed by Western blot analysis. The chloride cells first appeared on the developing gill filaments in a mid larval stage of leptocephalus (32.2 mm). Both immunoreactivity and the number of chloride cells gradually increased as the fish grew to a late stage of leptocephalus over 54 mm. In glass eels just after metamorphosis, gill lamellae developed from the gill filaments, and a rich population of chloride cells was observed in the gill filaments. In glass eels collected at a coastal area, chloride cells were extensively distributed in the gill filaments. The chloride cell size decreased progressively in glass eels transferred from seawater (SW) to freshwater (FW), whereas there was no difference in cell number. In contrast, some Na+,K+-ATPase immunoreaction distinct from typical chloride cells was observed in the gill lamellae throughout FW-transferred fish, but disappeared in control fish maintained in SW for 14 days. These findings indicate that the gill and gill chloride cells developed slowly during the extremely long larval stage, followed by rapid differentiation during a short period of metamorphosis. The excellent euryhalinity of glass eels may be due to the presence of the filament chloride cells and lamellar Na+,K+-ATPase-immunoreaction, presumably being responsible for SW and FW adaptation, respectively.  相似文献   

6.
Inhibition of Na+/K+-ATPase from gill plasma membranes of the shore crab Carcinus maenas by cadmium was investigated and compared with inhibitory effects by known antagonists (ouabain and Ca2+). For comparative considerations the Cd2+-inhibition of the enzyme from dog kidney was also tested. Na+/K+-ATPase from dog kidney and from crab gill differed greatly in sensitivity against ouabain. The inhibition constant K i of the dog enzyme amounted to 9.1 × 10−7 mol l−1, i.e. more than 300-fold smaller than the K i of 2.9 × 10−4 mol l−1 determined for the crab enzyme. Ca2+ inhibited the activity of Na+/K+-ATPase from crab gill plasma membranes with a K i of 4.3 × 10−4 mol l−1. The Na+/K+-ATPase from crab gill was inhibited by Cd2+ with a K i of 9.1 × 10−5 mol l−1. Cd2+ inhibited the Na+/K+-ATPase from dog kidney with a K i (6.4 × 10−5 mol l−1) comparable to that observed in the crab gill enzyme. Under experimental conditions Cd2+-inhibition of Na+/K+-ATPase was irreversible. Repeated washing, centrifugation and homogenization of the plasma membranes (four times) with Cd2+-free buffer did not restore any activity lost in the presence of 1 × 10−3 mol l−1 Cd2+. Since ouabain-insensitive (nonspecific) ATPases in the plasma membrane fraction of crab gills were inhibited by Cd2+ in the same way as Na+/K+-ATPase, the heavy metal is considered as an unspecific ATPase inhibitor. Comparing these results with literature data on Cd2+-binding to electrophoretically separated proteins suggests that Na+/K+-ATPase is a Cd2+-binding enzyme. The results obtained on Na+/K+-ATPase were reflected by Cd2+-inhibition of the branchial ion-transport functions depending on this enzyme. The transepithelial short-circuit current of isolated gill half lamellae, a direct measure of area-specific active ion uptake, and the transepithelial potential difference of isolated, perfused whole gills, also indicative of active ion uptake, were inhibited by the heavy metal in a time- and dose-dependent mode. Remarkably these inhibitions were also irreversible. These findings are ecologically and biomedically significant: even when the actual environmental or tissue concentrations measured are low, biological microstructures such as Na+/K+-ATPase may accumulate the heavy metal by tight binding over prolonged periods until the first inhibitory effects occur. Received: 25 June 1997 / Accepted: 25 August 1997  相似文献   

7.
The Anguillid juvenile glass eel must deal with the osmoregulatory consequences of highly variable environmental salinities on its recruitment migration from coastal to fresh waters. Changes in ionoregulatory parameters and branchial ion transport protein [Na+/K+-ATPase, Na+:K+:2Cl cotransporter (NKCC), cystic fibrosis transmembrane regulator (CFTR) anion channel, V-type proton ATPase] expression (activities, protein and/or mRNA level expression and/or cellular localization) in response to acclimation to a broad range of ionic strengths [distilled water (DW) to hypersaline water (HSW; 150%) sea water (SW 32‰)] was studied. The estuarine glass eels were very euryhaline and successfully acclimated to acute changes in environmental ionic strength from 50% SW, with high mortality only observed in HSW (51%) and sublethal osmoregulatory indicators (whole body water content and sodium levels) disturbed at the extremes (DW and HSW). Central to a high salinity acclimation were elevated branchial Na+/K+-ATPase, NKCC and CFTR expression. At lower salinity, Na+/K+-ATPase expression was maintained and NKCC and CFTR expressions were reduced. Branchial chloride cells increased in size up to SW but decreased in HSW. During hypotonic disturbance (DW), no compensatory elevation in V-ATPase or Na+/K+-ATPase expression was observed.  相似文献   

8.
Sodium- and potassium-activated ATPase (Na+–K+-ATPase) has been demonstrated in excretory organs of Sepia officinalis, using a cytochemical procedure. In the renal appendages, both epithelia of the pancreatic appendages, the folded epithelium of the branchial heart appendage and the transport-active epithelium of the gill, the enzyme is localized exclusively in the basolateral cell membranes, i.e., the membranes of the basal labyrinth and the lateral plasma membranes. In addition, Na+–K+-ATPase is also located in the sarcolemma of the muscle fibres of the branchial heart. Distribution and localization of the enzyme is further substantiated by [3H]-ouabain autoradiography. The possible involvement of Na+–K+-ATPase in the excretion of ammonia and in ionic regulation in dibranchiate cephalopods is discussed.This study was supported by the Deutsche Forschungsgemeinschaft and is part of a doctoral dissertation  相似文献   

9.
Rhabdophis tigrinus is an Asian natricine snake that possesses unusual defensive glands on the dorsal surface of its neck. These nuchal glands typically contain cardiotonic steroidal toxins known as bufadienolides, which are also abundant in the skin of toads. Feeding experiments demonstrated that toads consumed as prey are the ultimate sources of the bufadienolides in nuchal glands of R. tigrinus. Indeed, snakes on a toad-free Japanese island (Kinkasan, Miyagi Prefecture) lack these compounds in their nuchal glands, confirming that these snakes are unable to synthesize defensive bufadienolides. However, when snakes from Kinkasan are fed toads in the laboratory, they accumulate bufadienolides in their nuchal glands, indicating that they have not lost the ability to sequester defensive compounds from prey. In contrast, R. tigrinus from a toad-rich island (Ishima, Tokushima Prefecture) possess large quantities of bufadienolides, reflecting the abundance of toads from which these compounds can be sequestered. Feeding experiments involving gravid R. tigrinus demonstrated that bufadienolides can be provisioned to offspring so that hatchlings are chemically defended before their first toad meal. Maternal provisioning of bufadienolides can take place through two routes: by deposition in yolk and by diffusion in utero, even late in gestation. We applied bufadienolides to the surface of eggs from Kinkasan and found that the embryos are able to take up these compounds into their nuchal glands, demonstrating the feasibility of uptake across the eggshell. Female R. tigrinus provision bufadienolides to their offspring in direct proportion to their own level of chemical defense. By feeding toad-derived bufotoxins to R. tigrinus hatchlings, we determined that the sequestration of these compounds involves at least three types of modification: hydrolytic cleavage of suberylarginine side chains, hydroxylation, and epimerization.  相似文献   

10.
11.
Bostrychus sinensis is a facultative air breather that inhabits waters of a wide range of salinities. This study aimed to elucidate whether branchial and intestinal osmoregulatory acclimation occurred in B. sinensis transferred from 5‰ water through a progressive increase in salinities to seawater. Our results indicate that B. sinensis acted as a hyperosmotic regulator in 5‰ water, but exhibited hypoosmotic hypoionic regulation in seawater. During short- (1 day) and medium- (10 days) term acclimation to seawater, there were only minor perturbations in plasma osmolality and [Na+], which returned to control levels after 45 days of exposure to seawater. Branchial Na+/K+-ATPase activity was unaffected by 1, 10 or 45 days of exposure to seawater. However, prolonged (45 days) acclimation to seawater led to a significant increase in Na+/K+-ATPase α-subunit protein abundance. Taken together, these results indicate that there could be changes in the expression of Na+/K+-ATPase isoforms and/or post-translational modification of Na+/K+-ATPase in the gills of fish exposed to seawater. Immunofluorescence microscopy revealed that acclimation to seawater for 10 days only resulted in no change in branchial Na+/K+-ATPase protein expression, but there were increases in protein expression of cystic fibrosis transmembrane regulator (CFTR)-like chloride channel and Na+:K+:2Cl cotransporter (NKCC; probably NKCC1). Indeed, NKCC was undetectable in gills of fish kept in 5‰ water by Western blotting, but it became weakly detectable in fish exposed to seawater for 10 days and prominently expressed in fish exposed to seawater for 45 days. Therefore, our results indicate that branchial CFTR-like chloride channel and NKCC1 were the determining factors in the transition between hyperosmotic regulation and hypoosmotic hypoionic regulation in B. sinensis. Furthermore, the intestine of B. sinensis also served as an important osmoregulatory organ, since there were significant increases in both the activity and protein abundance of intestinal Na+/K+-ATPase in fish acclimated to seawater for 45 days. The effectiveness of branchial and intestinal osmoregulatory acclimation in B. sinensis during seawater acclimation led to only a minor increase in plasma osmolality, and thus resulted in relatively unchanged free amino acid contents in muscle and liver.  相似文献   

12.
The osmoregulatory abilities of one freshwater and two brackish water (Baltic Sea) populations of the euryhaline teleost fish Gasterosteus aculeatus were studied with respect to evolutionary physiology. Plasma osmolality, activities of Na+K+-ATPase, citrate synthase, creatine kinase in the gill and free amino acids in liver, axial muscle and pectoral fin muscle were measured. After transfer from 10 to 35 ppt at 15 °C, time-course changes of plasma osmolality and gill Na+K+-ATPase showed no significant fundamental differences between the freshwater and one of the Baltic Sea populations. In a multi-factorial experiment, each population was exposed to four different abiotic regimes. Both brackish water populations had high mortality in freshwater at 4 °C, which is discussed as a failure of osmotic regulation (reduced taurine concentrations). Freshwater specimens had higher levels of glycine in the axial and pectoral fin muscles compared to the brackish water populations. This is interpreted as a genetically based effect. In brackish (20 ppt) water of 15 °C, the freshwater population had high activities of Na+K+-ATPase, but low activities of creatine kinase, whereas both brackish water populations behaved in the opposite way. A fundamental difference between the freshwater and brackish water populations on the level of the osmoregulatory machinery was not observed. Received: 10 December 1998 / Accepted: 22 September 1999  相似文献   

13.
In this study, the effects of environmental hypercapnia on hemato-immunological parameters and the activities of respiratory enzymes such as carbonic anhydrase (CA) and Na+, K+-ATPase were investigated in rainbow trout (Oncorhynchus mykiss) tissues (gill, liver and kidney). Batches of 12 fish were exposed to 4.5 mg L?1 (control) and 14 mg L?1 CO2. No mortalities occurred during the 14 days of the experimental period. Red blood cell (RBC), hemoglobin (Hb), and hematocrit (Ht) levels, and innate immune parameters such as nitro blue tetrazolium (NBT), lysozyme, and myeloperoxidase activities, and the melano-macrophage frequency were negatively affected by elevated CO2 levels. Patterns of change in CA activity differed among the gill, liver, and kidney. Compared with the activities of CA in the control group, the CA enzyme was significantly stimulated at day 7 in the gill tissue, whereas it was stimulated at day 14 of the experiment in the liver tissue of fish exposed to 14 mg L?1 CO2 (P < 0.05). In contrast to the pattern of CA enzyme activities, the Na+, K+-ATPase enzymes were stimulated significantly in the liver after day 7 but inhibited in the kidney and gill (P < 0.05). These results suggest that a subchronic exposure to hypercapnia of rainbow trout tissues may lead to adaptive changes in the respiratory enzymes and negatively affects hemato-immunological parameters.  相似文献   

14.
Summary. The Na+, K+-ATPase of the Monarch butterfly (Danaus plexippus) is insensitive to the inhibition by cardiac glycosides due to an amino acid replacement: histidine instead of asparagine at position 122 of the α-subunit representing the ouabain binding site. By PCR amplification of the DNA sequence of this site, a PCR product of 270 bp was obtained from DNA extracted from Danainae species (Danaus plexippus, D. chrysippus, D. gillipus, D. philene, D. genutia, Tirumala hamata, Euploea spp., Parantica weiskei, P. melusine), Sphingidae (Daphnis nerii) and mimics of milkweed butterflies (Hypolimnas missipus, Limenitis archippus and L. arthemis, Nymphalidae). Analysis of the nucleotide sequences revealed that the single point mutation in the ouabain binding domain (AAC-Asn for CAC-His) was present only in Danaus plexippus, but not in the other species investigated. Since these milkweed butterflies also store cardenolides, other structural modifications of the Na+, K+-ATPase may have occurred or other strategies of cardenolide tolerance have been developed. Received 15 May 2000; accepted 29 June 2000  相似文献   

15.
Previous studies have demonstrated that cadmium can induce biochemical and physiological changes in yeast Saccharomyces cerevisiae. However, studies on the influence of cadmium on the ion balance in the cell and the interaction between cadmium and other ions are still relatively few in number. By using inductively coupled plasma-atomic emission spectrometry, the contents of some cations, including Zn2+, Ca2+, Fe3+, Cu2+, Mg2+, K+, and Na+ were measured. The data showed that the levels of Zn2+ and Fe3+ were increased, while those of Cu2+, K+, and Na+ were decreased after cadmium treatment. Afterwards, using the drop test assay, the interactions between cadmium and the selected ions were investigated. The results suggested that the cytotoxicity of cadmium could be attributable to the interference of cadmium with the intracellular cation homoeostasis. Calcium channel transporter Cch1 participates in the intracellular uptake of cadmium. Additionally, Zn2+, Ca2+, Fe3+, Mg2+, and K+ can rescue the toxic effect of cadmium in yeast.  相似文献   

16.
Attention is being focused on the coastline from Doha to Ras Laffan in Qatar since higher activities in the development of land and establishment of roads, highways and new buildings and houses is not coupled by serious studies on habitat destruction, fragmentation or disturbances. Ecophysiological study was carried out to investigate the adaptation of two halophytes (Limonium axillare and Avicennia marina) in this area, with special emphasis on the ultrastructure of salt glands found in the leaves. Soils in these locations accumulated much Na+ and Cl? as compared to other cations like K+, Ca2+ and Mg2+. Both plants accumulated higher concentrations of Na+ , Cl?, and Ca2+ and lower concentrations of K+ and Mg2+. Organic compounds found in leaves of these plants under their natural habitats including proline, soluble sugars and nitrogen, and photosynthetic pigments were determined. Scanning electron micrographs of the surface of leaves showed that salt glands of these plants are well developed. It is urgently required that exact vegetation maps, and monitoring exercises will be conducted, in order to document exactly the state of the vegetation in Qatar. Only this will allow the environment authorities to bring forward suggestions for vegetation and ecosystem management to the decision makers.  相似文献   

17.
To assess the interaction between testosterone (T) treatment and acclimation to different salinities, seawater-acclimated gilthead sea bream (Sparus auratus) were implanted with slow-release coconut oil implants alone (control) or containing T (5 μg/g body mass). After 5 days, eight fish of control and T-treated groups were sampled. The same day, eight fish of each group were transferred to low salinity water (LSW, 6 ppt, hypoosmotic test), seawater (SW, 38 ppt, control test) and high salinity water (HSW, 55 ppt, hyperosmotic test) and sampled 9 days later. Gill Na+, K+-ATPase activity increased in HSW-acclimated fish with respect to SW- and LSW-acclimated fish in both control and T-treated groups. Kidney Na+, K+-ATPase activity was also enhanced in HSW-acclimated fish, but only in T-treated group. From a metabolic point of view, most of the changes observed can be attributed to the action of salinity and T treatment alone, since few interactions between T treatment and osmotic acclimation to different salinities were observed. Those interactions included in treated fish: in the liver, decreased capacity in using glucose in fish acclimated to extreme salinities; in the gills, decreased capacity in using amino acids in HSW; in the kidneys increased capacity in using amino acids in extreme salinities; and in the brain, decreased glycogen and acetoacetate levels of fish in LSW.  相似文献   

18.
Food availability is highly variable in the ocean. Many species of marine invertebrates have a larval form that depends upon exogenous nutrients for growth, yet there are few biochemical and physiological indices for determining changes in the nutritional status of larvae. In this study, the effects of food availability on biochemical compositions and metabolic processes of larvae of the sea urchin, Strongylocentrotus purpuratus, were determined. Larvae were cultured under different food concentrations (fed-to-excess and unfed) and a suite of biological processes assayed, ranging from measurements at the level of the whole organism to that of specific molecules. These data were normalized to DNA content (an index of cell number) to allow comparisons of physiological rates in larvae of different sizes. Changes in the following were measured during larval growth: free amino acid pool, protein, lipid classes (cholesterol, free fatty acids, hydrocarbons, phospholipids, triacylglycerol), enzyme activities (Na+, K+-ATPase and citrate synthase), and respiration rates. In growing larvae, the two key components that showed differential cell-specific content relative to unfed larvae were glycine in the free amino acid pool and phospholipids. Additionally, several lipid classes were detectable only in fed larvae (cholesterols, free fatty acids, and hydrocarbons). While triacylglycerols were present in eggs and utilized during pre-feeding development, they were not re-accumulated at detectable levels in feeding larvae. Respiration rates, protein content, and enzyme activities were all similar on a cell-specific basis, showing that these variables did not provide useful indices of differences in physiological state between fed and unfed larvae. In contrast, measurements of the cell-specific content of glycine and certain lipid classes did provide useful indices of physiological state of larvae. Application of these indices could potentially allow for determinations of nutritional state of larvae in the ocean.  相似文献   

19.
水体中稳定存在的富勒烯纳米晶体(nC_(60))可被浮游动物滤食,并通过食物链传递到更高营养级生物。为探究食物源nC_(60)的生物效应,本试验选取携带nC_(60)的大型溞喂养斑马鱼21 d,考察了食物源nC_(60)对斑马鱼脑、鳃、肾和肝胰腺4个器官中ROS、Na~+K~+-ATPase、Ca2+-ATPase、酸性磷酸酶(ACP)、碱性磷酸酶(AKP)、谷丙转氨酶(GPT)和谷草转氨酶(GOT)活性等指标,用以评价食物源nC_(60)对斑马鱼的机能影响。暴露于食物源nC_(60)下的结果表明:斑马鱼脑ROS随时间增加而增加,暴露21 d后增加了79.17%。鳃、肾Na~+K~+-ATPase活性随暴露时间增加而降低,暴露21 d后分别降低了47.09%和51.07%;鳃、肾Ca2+-ATPase活性随暴露时间增加而减少,暴露21 d后分别降低了28.28%和35.13%。鳃、肾、肝胰腺AKP活性随时间增加而增加,暴露21 d后分别增加45.97%、26.68%和83.01%;鳃、肾、肝胰腺ACP活性随时间增加而增加,暴露21 d后分别增加38.85%、84.12%和55.77%。肝胰腺GPT和GOT活性随时间增加而降低,暴露21 d后各降低了50.05%和76.50%。本研究不但阐述了食物源nC_(60)降低高一级水生动物(斑马鱼)脑、鳃、肾和肝胰腺的正常机能,而且为进一步研究食物源nC_(60)对水生生物的生态毒理提供了部分基础数据。  相似文献   

20.
The effects of exposure to sediment-associated tri-n-butyltin chloride (TBTCl) were examined in the euryhaline European flounder, Platichthys flesus (L.). The effects were quantified by measuring the changes in sodium efflux; Na+/K+-ATPase activity; and the numbers, areas, and distribution of chloride cells in the gills of freshwater-adapted fish, following a rapid transfer to seawater. Following the transfer to seawater, the Na+/K+-ATPase activity and the sodium efflux were significantly increased in the control group but remained unchanged in the TBTCl-exposed group. The normal morphological changes to the gill epithelium associated with seawater adaptation, which involve chloride cell distribution, took place in the control group but were significantly inhibited or delayed in the TBTCl group. The results presented in this study lead to the conclusion that environmental concentrations of tri-n-butyltin chloride in sediments are capable of significantly disrupting both the physiological and the morphological components of iono-regulatory functions of an estuarine flatfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号