首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Biochemical responses and DNA damage of earthworm (Eisenia fetida) exposed to various concentrations of fomesafen (0, 10, 100, and 500 μg kg?1) for 3, 7, 14, 21, and 28 days were investigated in vivo. Glutathione S-transferase (GST) activity was significantly stimulated upon treatment with 500 μg kg?1 fomesafen for 21 days, while the cellulase activity was markedly inhibited after 14 days of treatment. On day 28, the activities of GST and cellulase had recovered to the level similar to that of controls. Low or mild DNA damage in earthworm was induced within 14 days of exposure, and the damage was reduced or disappeared with the extension of exposure.  相似文献   

2.
The aim of this study was to investigate the nephroprotective and antioxidant property of Manasamitra vatakam (MMV) against aluminum (Al)-induced toxicity in rats. The kidney function marker parameters such as serum urea, uric acid, and creatinine were significantly increased in Al-treated rats as compared with controls. Similarly, the antioxidant enzyme activities such as superoxide dismutase, glutathione S-transferase, Na+/K+-ATPase and Mg-ATPase, reduced glutathione were also found significantly increased in Al-treated rats. A significantly decreased level of these parameters was observed in the MMV (orally 100?mg?kg?1 body weight)-treated group along with a reduced level of malonaldehyde, molecular chaperones of an antioxidative stress protein, and mRNA expression of HSP70. The biochemical observations were also supported by histopathological observations. Thus, this study supports the nephroprotective and antioxidant activities of MMV.  相似文献   

3.
In this study, the effects of environmental hypercapnia on hemato-immunological parameters and the activities of respiratory enzymes such as carbonic anhydrase (CA) and Na+, K+-ATPase were investigated in rainbow trout (Oncorhynchus mykiss) tissues (gill, liver and kidney). Batches of 12 fish were exposed to 4.5 mg L?1 (control) and 14 mg L?1 CO2. No mortalities occurred during the 14 days of the experimental period. Red blood cell (RBC), hemoglobin (Hb), and hematocrit (Ht) levels, and innate immune parameters such as nitro blue tetrazolium (NBT), lysozyme, and myeloperoxidase activities, and the melano-macrophage frequency were negatively affected by elevated CO2 levels. Patterns of change in CA activity differed among the gill, liver, and kidney. Compared with the activities of CA in the control group, the CA enzyme was significantly stimulated at day 7 in the gill tissue, whereas it was stimulated at day 14 of the experiment in the liver tissue of fish exposed to 14 mg L?1 CO2 (P < 0.05). In contrast to the pattern of CA enzyme activities, the Na+, K+-ATPase enzymes were stimulated significantly in the liver after day 7 but inhibited in the kidney and gill (P < 0.05). These results suggest that a subchronic exposure to hypercapnia of rainbow trout tissues may lead to adaptive changes in the respiratory enzymes and negatively affects hemato-immunological parameters.  相似文献   

4.
Abstract

In this study, the toxicity of CuO (40?nm), α-Al2O3 (40?nm), and α-Fe2O3 (20–40?nm) nanoparticles was comparatively investigated on Carcinus aestuarii. Crabs were semi-statically exposed to 1?mg/L of each for 14?days and their accumulation and distribution in tissue and hemolymph, potential oxidative stress mechanism, total hemocyte counts and types, and the osmoregulatory and ionoregulatory responses were determined. The tissue distribution of CuO nanoparticles was hepatopancreas?>?hemolymph?≥?gill?> muscle, for α-Fe2O3 gill?>?hepatopancreas?>?muscle?> hemolymph, and for α-Al2O3 gill?>?muscle?≥?hemolymph?> hepatopancreas. While α-Al2O3 and α-Fe2O3 NPs, induced lipid peroxidation and changes in antioxidant enzyme activity in the hepatopancreas tissue, the oxidative damage caused by the CuO nanoparticles was minimal. All three nanoparticles, copper in particular, elicit osmoregulatory and ionoregulatory toxicity at this concentration, due to the inhibition of Na+, K+-ATPase activity in the gill and depletion of hemolymph and carcass ion concentrations.  相似文献   

5.
Osmoregulatory ability of mature chum salmon (Oncorhynchus keta) during spawning migration was examined by following the changes in gill Na+, K+-ATPase activity and in the distribution and morphology of chloride cells. Mature chum salmon caught in Otsuchi Bay, northern Honshu Island, Japan, died within 5 d in seawater (SW) in association with a marked increase in plasma osmolality, whereas the fish transferred to fresh water (FW) maintained plasma osmolality efficiently. Gill Na+, K+-ATPase activity decreased in both SW-maintained and FW-transferred fish. Well-developed chloride cells, identified by immunocytochemical staining specific for Na+, K+-ATPase, were present mainly in the filament epithelium of immature fish caught in the ocean. In mature fish caught in the bay, however, additional chloride cells were also found in the lamellar epithelium. The number of filament chloride cells decreased markedly in the mature fish both in SW and in FW, whereas the number of lamellar chloride cells was maintained. These results suggest that the loss of hypoosmoregulatory ability in mature chum salmon may be attributable to the decrease in filament chloride cells and associated decrease in gill Na+, K+-ATPase activity, and also that appearance of lamellar chloride cells may be preparatory to the forthcoming upstream migration. Received: 14 April 1997 / Accepted: 5 May 1997  相似文献   

6.
三甲基氯化锡对斑马鱼(Danio rerio)生理生化特性的影响   总被引:1,自引:1,他引:1  
为初步探讨三甲基氯化锡(trimethyltin chloride,TMT)对鱼类的毒性效应以及评价环境中TMT的安全性,采用静态鱼类急性毒性试验法测定了TMT对斑马鱼(Danio rerio)生理生化指标的影响;参考TMT的96 h-LC50值,设定3个浓度(0.39、0.78和1.17 mg·L-1)处理斑马鱼,测...  相似文献   

7.
Inhibition of Na+/K+-ATPase from gill plasma membranes of the shore crab Carcinus maenas by cadmium was investigated and compared with inhibitory effects by known antagonists (ouabain and Ca2+). For comparative considerations the Cd2+-inhibition of the enzyme from dog kidney was also tested. Na+/K+-ATPase from dog kidney and from crab gill differed greatly in sensitivity against ouabain. The inhibition constant K i of the dog enzyme amounted to 9.1 × 10−7 mol l−1, i.e. more than 300-fold smaller than the K i of 2.9 × 10−4 mol l−1 determined for the crab enzyme. Ca2+ inhibited the activity of Na+/K+-ATPase from crab gill plasma membranes with a K i of 4.3 × 10−4 mol l−1. The Na+/K+-ATPase from crab gill was inhibited by Cd2+ with a K i of 9.1 × 10−5 mol l−1. Cd2+ inhibited the Na+/K+-ATPase from dog kidney with a K i (6.4 × 10−5 mol l−1) comparable to that observed in the crab gill enzyme. Under experimental conditions Cd2+-inhibition of Na+/K+-ATPase was irreversible. Repeated washing, centrifugation and homogenization of the plasma membranes (four times) with Cd2+-free buffer did not restore any activity lost in the presence of 1 × 10−3 mol l−1 Cd2+. Since ouabain-insensitive (nonspecific) ATPases in the plasma membrane fraction of crab gills were inhibited by Cd2+ in the same way as Na+/K+-ATPase, the heavy metal is considered as an unspecific ATPase inhibitor. Comparing these results with literature data on Cd2+-binding to electrophoretically separated proteins suggests that Na+/K+-ATPase is a Cd2+-binding enzyme. The results obtained on Na+/K+-ATPase were reflected by Cd2+-inhibition of the branchial ion-transport functions depending on this enzyme. The transepithelial short-circuit current of isolated gill half lamellae, a direct measure of area-specific active ion uptake, and the transepithelial potential difference of isolated, perfused whole gills, also indicative of active ion uptake, were inhibited by the heavy metal in a time- and dose-dependent mode. Remarkably these inhibitions were also irreversible. These findings are ecologically and biomedically significant: even when the actual environmental or tissue concentrations measured are low, biological microstructures such as Na+/K+-ATPase may accumulate the heavy metal by tight binding over prolonged periods until the first inhibitory effects occur. Received: 25 June 1997 / Accepted: 25 August 1997  相似文献   

8.
四溴双酚A对赤子爱胜蚓的生长和基因表达的影响   总被引:1,自引:0,他引:1  
试验采用人工土壤法,通过14 d急性毒性试验,研究了不同剂量TBBPA对赤子爱胜蚓(Eisenia fetida)生长、基因表达的影响。在14 d急性毒性试验中,随着暴露时间和浓度的增加,蚯蚓生长受到了显著抑制,未出现死亡现象。超氧化物歧化酶(SOD)的基因表达量在低浓度(50 mg·kg-1)时受到诱导上调;谷胱甘肽转移酶(GST)的基因表达量在400 mg·kg-1染毒组受到明显诱导,是对照组的8.73倍;热休克蛋白(Hsp70)的基因表达量在50、100和200 mg·kg-1染毒组被诱导上调。基因表达量的变化显示,在50、100、200 mg·kg-1浓度条件下,蚯蚓可以利用自身的抗氧化能力维持体内的动态平衡稳定,使得机体免受损伤。但是在超过400 mg·kg-1浓度后,TBBPA的毒性效应超过了机体的应对能力,使机体遭受损伤,外在特征主要表现为蚯蚓身体蜷缩、变细变硬。从生物标志物角度,基因表达量的变化对TBBPA毒性效应的指示作用较生长抑制率更为敏感。  相似文献   

9.
With juvenile fish as the subject, the effects of low concentration ammonia on antioxidant system were studied using Mugil cephalus. Samples of gill and liver tissue were obtained from 0.35, 0.70, 1.5 and 3?mg/L ammonia groups at 0, 5, 10, 15 and 20 days of exposure, at which times the biomarkers were measured. Results showed that gill malondialdehyde (MDA) content exhibited an initial significant increase (p?≤?0.05) at unionised ammonia concentrations of 0.70, 1.5 and 3.0?mg/L on day 5, followed by subsequent declines, while liver MDA levels exhibited significant increases (p?≤?0.05) at unionised ammonia concentrations of 1.5?mg/L starting on day 10 and at 3.0?mg/L starting on day 5. With exposure to ammonia at different concentrations, Na+-K+-ATPase activity in liver and gill decreased over time. The Na+-K+-ATPase activity was negatively related to ammonia concentration from 0.70 to 3.0?mg/L. Overall, our results show that MDA and Na+-K+-ATPase, evaluated here as potential biomarkers of ammonia exposure, exhibited responses to sublethal concentrations of ammonia that were concentration dependent.  相似文献   

10.
Quality of groundwater in the Yarmouk basin, Jordan has been assessed through the study of hydrogeochemical characteristics and the water chemistry as it is considered the main source for drinking and agriculture activities in the region. The results of the relationship between Ca2+ + Mg2+ versus HCO3? + CO32?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO42? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3? + CO32?, Na+ versus Ca2+, and Na+: Cl? versus EC describe the mineral dissolution mechanism through the strong relationship between water with rocks in alkaline conditions with the release of Ca2+, Mg2+, Na+, K+, HCO3?, CO32?, SO42?, and F? ions in the groundwater for enrichment. Furthermore, evaporation processes, groundwater depletion, and ion exchange contribute to the increased concentration of Na+ and Cl? ions in groundwater. Anthropogenic sources are one of the main reasons for contamination of groundwater in the study area and for increasing the concentration of Mg2+, Na+, Cl?, SO42?, and NO3? ions. Results show the quality of groundwater in the study area is categorized as follows: HCO3? + CO32? > Cl? > SO42? > NO3? > F? and Na+ > Ca2+ > Mg2+ > K+. In conclusion, the results of TDS, TH, and chemical composition showed that 26% of the groundwater samples were unsuitable for drinking. About 28% of groundwater samples in the study area have a high concentration of Mg2+, Na+, and NO3? above the acceptable limit. Also, based on high SAR, 10% of the groundwater samples were not suitable for irrigation purposes.  相似文献   

11.
This study determined the heavy metal concentration in soil and plants at a bone char site in Umuahia, Nigeria. Soil and plant samples collected in a randomized complete block design (RCBD) were analyzed for zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), and arsenic (As). The concentration of metals in soil and plants in the vicinity of the bone char site are as follows: Zn (172?mg?kg?1) and Ni (0.62?mg?kg?1) in soil were highest at site P3, Pb (2.37?mg?kg?1) and As (0.08?mg?kg?1) at site P1, and Cd (18.30?mg?kg?1) at site P2. In plants, the concentrations of Zn (41.17?mg?kg?1) and Cd (3?mg?kg?1) were highest in Albizia ferruginea, Ni in Dialium guineense (0.09?mg?kg?1), while Pb was in D. guineense (0.08?mg?kg?1) and Spathodea companulata (0.06?mg?kg?1). The levels of Zn, Cd, Pb, Ni, and As in soil ranged from 11.2 to 172, 2.68 to 18.2, 0.026 to 2.37, 0.33 to 0.62, and 0.02 to 0.08?mg?kg?1, respectively. In plants, the concentration of Zn, Cd, Pb, and Ni ranged from 2.01 to 41.17, 0.12 to 3, 0.02 to 0.08, and 0.03 to 0.09?mg?kg?1, respectively. There were significant correlations between Zn and Cd, and Pb and As in soil. The high concentration of Cd in soil might affect soil productivity.  相似文献   

12.
ABSTRACT

In order to evaluate the ecological risk reductions of copper (Cu) and cadmium (Cd) and the change of nutrient contents and stoichiometry in a smelter-impacted farmland in Guixi, Jiangxi Province, China, with ~ 800?mg Cu kg?1 soil and 0.8?mg Cd kg?1 soil, an three years in situ experiment was conducted. The field trial consisted of 4 ×?5?m plots in a completely randomised block design. Hydroxyapatite was added at 10?g kg?1 soil and Sedum plumbizincicola, Elsholtzia splendens, and Pennisetum sp. were planted. Post-treatment soil and plant samples were collected annually and analysed for Cu and Cd bioaccessibility, soil carbon: nitrogen: phosphorus (C:N:P), and the stoichiometries of soil β-glucosidase (BG), N-acetylglucosaminidase (NAG), and acid phosphatase (AP) activity levels. The results indicated that the hydroxyapatite treatments significantly reduced Cu and Cd bioaccessibility as well as the ratio of C:P and N:P. Moreover, BG, NAG, and AP activity levels all increased relative to those in untreated soil. Plants may also influence soil BG, NAG, and AP activity. This study demonstrated that in situ Cu and Cd stabilisation by hydroxyapatite and phytoextraction is ecologically safe and can alter soil mineral nutrient ecological stoichiometry and enzyme activity.  相似文献   

13.
A study on the toxicokinetic behavior, metabolism of chlorpropham, and its effect on cytochrome P450 from liver microsomes was carried out in albino rats after a single and consecutive oral administration at 500?mg?kg?1 body weight for 10 and 20 days. Chlorpropham was detected in the blood at 0.08?h (11.43?±?1.72?µg?mL?1) reaching a maximum concentration at 2?h (30.90?±?2.55?µg?mL?1) and a minimum at 48?h (1.95?±?0.20?µg?mL?1) after a single oral administration of 500?mg?kg?1. The absorption rate constant (K a) was 0.66?±?0.48?h?1. The Vd area (18.01?±?2.78?L?kg?1) and t 1/2 β (12.23?±?1.96?h) values suggested a wide distribution and long persistence of the compound in the body, respectively. The higher ClR (0.82?±?0.00?L?kg?1?h?1) compared to ClH (0.18?±?0.02?L?kg?1?h?1) value indicated that a major portion of chlorpropham was excreted through the urine (30%) compared to the faeces (2.81%). Chlorpropham residue was detected in all tissues of rat at 0.25?h while its metabolite, meta-chloroaniline was detected in liver, kidney, heart, lung, and spleen tissue at 0.25?h. Meta-chloroaniline was not detected in skeletal muscle, brain, fat, and stomach tissue at any time of the observation period. Maximum concentrations of chlorpropham and meta-chloroaniline were detected at 2?h (except in the spleen), and minimum concentrations of chlorpropham at 24 (heart, lung, spleen, skeletal muscle, and stomach) and 48?h (liver, kidney, brain, and fat tissue) respectively; and meta-chloroaniline at 24?h (except heart and spleen). The tissue half-life of chlorpropham in rat varied from 3.80 to 11.60?h. Repeated oral administration of chlorpropham at 500?mg?kg?1 for 10 and 20 days caused an induction of the liver microsomal pellet of rat.  相似文献   

14.
Bostrychus sinensis is a facultative air breather that inhabits waters of a wide range of salinities. This study aimed to elucidate whether branchial and intestinal osmoregulatory acclimation occurred in B. sinensis transferred from 5‰ water through a progressive increase in salinities to seawater. Our results indicate that B. sinensis acted as a hyperosmotic regulator in 5‰ water, but exhibited hypoosmotic hypoionic regulation in seawater. During short- (1 day) and medium- (10 days) term acclimation to seawater, there were only minor perturbations in plasma osmolality and [Na+], which returned to control levels after 45 days of exposure to seawater. Branchial Na+/K+-ATPase activity was unaffected by 1, 10 or 45 days of exposure to seawater. However, prolonged (45 days) acclimation to seawater led to a significant increase in Na+/K+-ATPase α-subunit protein abundance. Taken together, these results indicate that there could be changes in the expression of Na+/K+-ATPase isoforms and/or post-translational modification of Na+/K+-ATPase in the gills of fish exposed to seawater. Immunofluorescence microscopy revealed that acclimation to seawater for 10 days only resulted in no change in branchial Na+/K+-ATPase protein expression, but there were increases in protein expression of cystic fibrosis transmembrane regulator (CFTR)-like chloride channel and Na+:K+:2Cl cotransporter (NKCC; probably NKCC1). Indeed, NKCC was undetectable in gills of fish kept in 5‰ water by Western blotting, but it became weakly detectable in fish exposed to seawater for 10 days and prominently expressed in fish exposed to seawater for 45 days. Therefore, our results indicate that branchial CFTR-like chloride channel and NKCC1 were the determining factors in the transition between hyperosmotic regulation and hypoosmotic hypoionic regulation in B. sinensis. Furthermore, the intestine of B. sinensis also served as an important osmoregulatory organ, since there were significant increases in both the activity and protein abundance of intestinal Na+/K+-ATPase in fish acclimated to seawater for 45 days. The effectiveness of branchial and intestinal osmoregulatory acclimation in B. sinensis during seawater acclimation led to only a minor increase in plasma osmolality, and thus resulted in relatively unchanged free amino acid contents in muscle and liver.  相似文献   

15.
Summary. The Na+, K+-ATPase of the Monarch butterfly (Danaus plexippus) is insensitive to the inhibition by cardiac glycosides due to an amino acid replacement: histidine instead of asparagine at position 122 of the α-subunit representing the ouabain binding site. By PCR amplification of the DNA sequence of this site, a PCR product of 270 bp was obtained from DNA extracted from Danainae species (Danaus plexippus, D. chrysippus, D. gillipus, D. philene, D. genutia, Tirumala hamata, Euploea spp., Parantica weiskei, P. melusine), Sphingidae (Daphnis nerii) and mimics of milkweed butterflies (Hypolimnas missipus, Limenitis archippus and L. arthemis, Nymphalidae). Analysis of the nucleotide sequences revealed that the single point mutation in the ouabain binding domain (AAC-Asn for CAC-His) was present only in Danaus plexippus, but not in the other species investigated. Since these milkweed butterflies also store cardenolides, other structural modifications of the Na+, K+-ATPase may have occurred or other strategies of cardenolide tolerance have been developed. Received 15 May 2000; accepted 29 June 2000  相似文献   

16.
The impact of acidification (Low pH 5.0) on plasma electrolytes (Na+, K+, Cl?, Ca2+, and Mg2+) in a freshwater fish Cyprinus carpio was studied for a 35 day (long term) exposure period, while control groups were maintained at neutral pH (7.3). During long-term (35 days) exposure periods, plasma K+ and Mg2+ levels were increased (77.8% and 16.0%) in the low pH (5.0) treated fish. On the other hand, plasma Na+, Cl?, and Ca2+ levels were decreased (12.4%, 18.4% and 31.3%, respectively). The loss of plasma Na+, Cl?, and Ca2+ indicates the displacement of Ca2+ from tight junctions. The increased plasma K+ ion might have resulted from acidosis, because intracellular K+ is released from muscle as H+ enters. The elevated level of plasma Mg2+ might be due to inhibition of active transport of magnesium across the kidneys resulting in the accumulation of this ion in the plasma. Ionic alteration takes place upon exposure to acidic pH and can be considered as a potential tool for detecting environmental stresses caused by acidification.  相似文献   

17.
The caterpillars of the oleander hawk moth, Daphnis nerii (Linnaeus, 1758) (Lepidoptera: Sphingidae) feed primarily on oleander (Nerium oleander). This plant is rich in cardenolides, which specifically inhibit the Na+K+-ATPase. Since some insects feeding on cardenolide plants possess cardenolide-resistant Na+K+-ATPases, we tested whether D. nerii also possesses this strategy for circumventing cardenolide toxicity. To do so, we established a physiological assay, which allowed direct measurement of Na+K+-ATPase cardenolide sensitivity. Using Schistocerca gregaria, as a cardenolide-sensitive reference species, we showed that D. nerii Na+K+-ATPase was extremely sensitive to the cardenolide ouabain. Surprisingly, its sensitivity is even higher than that of the cardenolide-sensitive generalist, S. gregaria. The presence or absence of cardenolides in the diet of D. nerii did not influence the enzyme’s cardenolide sensitivity, indicating that target-site insensitivity is not inducible in this species. However, despite the sensitivity of their Na+K+-ATPase, caterpillars of D. nerii quickly recovered from an injection of an excessive amount of ouabain into their haemocoel. We conclude that D. nerii possesses adaptations, which enable it to feed on a cardenolide-rich diet other than that previously described in cardenolide specialized insects, and discuss other potential resistance mechanisms.  相似文献   

18.
Present study aimed to investigate the bio-monitoring study of particulate matter (PM) pollutants of 12 roadside plant species, in Aizawl, Mizoram, India (an Indo-Burma hot spot region). While, the second part was ascribed to the bio-magnetic monitoring stidies. Pertaining to first part of study, highest dust deposition was noted for Ramrikawn (RKN-Med) site on Ficus bengalensis (1.2?mg?cm?2) and lowest in Bauhinia variegate (0.8?mg?cm?2). Further, increased concentration of heavy metals (Fe, Cu and Zn) was recorded at RKN-Med site. Roadside plant leaves of F. bengalensis recorded maximum accumulation of Fe (26.1?mg?kg?1) and Cu (19.5?mg?kg?1) while Cassia auriculata (12.1?mg?kg?1) showed lowest accumulation of Fe. B. variegate (1.88?mg?kg?1) recorded lowest accumulation of Cu. Zn was recorded maximum (48.2?mg?kg?1) in Mangifera indica while B. variegate showed lowest accumulation of 11.3?mg?kg?1 Cu at Ramrikawn site. In relation to second part of the study, M. indica, Ficus benghalensis, Psidium guajava and Artocarpus heterophyllus were found to be efficient in bio-magnetic monitoring because all the magnetic properties (magnetic susceptibility, anhysteretic remanent magnetisation and isothermal remanent magnetisation) were high and significantly correlated with ambient PM (R2?=?0.424 to R2?=?0.998) thus may act as proxy for ambient PM.  相似文献   

19.
The level of accumulation of selected essential and non-essential metals, namely; Ca, Cu, Fe, Zn, Mn, Cd, Pb, and Cr have been investigated in the seeds, fruits, and flowers of some medicinal plants utilized for tapeworm treatment in Ethiopia and their respective soil samples. These include seed of Cucurbita maxima (Duba), fruit of Embelia abyssinica (Ankoko), flowers of Hagenia abyssinica (Kosso), and fruits of Rosa abyssinica (Kega) and their respective soil samples. A wet digestion procedure with a mixture of conc. HNO3 and HClO4 for the plant samples and a mixture of conc. HNO3, HCl, and H2O2 for soil samples were used to solubilize the metals. Ca (1280–12,670?mg?kg?1) was the predominant metal followed by Fe (104–420?mg?kg?1), and Zn (18–185?mg?kg?1) in all the plant materials except for Hagenia abyssinica flower from Hirna in which Mn (16–42?mg?kg?1) followed by Fe. Among the non-essential toxic metals, Pb was not detected in Cucurbita maxima of Boji, Gedo and Hirna origins and in Rosa abyssinica of Hirna site. Similarly, Cr was not detected in Rosa abyssinica fruits of Boji and Gedo sites. The sampled soils were found to be between strongly acidic to weakly basic (pH: 4.7–7.1). In the soil samples, Ca (8528–18,900?mg?kg?1) was the most abundant metal followed by Fe (417–912?mg?kg?1), Zn (155–588?mg?kg?1), Mn (54–220?mg?kg?1), Cr (21–105. mg?kg?1), Cu (11–58?mg?kg?1), Pb (13–32?mg?kg?1) and Cd (2.8–4.8?mg?kg?1). The levels of most of the metals determined in the medicinal plants and the respective soil samples are in good agreement with those reported in the literature and the standards set for the soil by various legislative authorities.  相似文献   

20.
In the present study, an attempt has been made to quantify the fenvalerate accumulated in different tissues (gill, muscle and liver) and observe changes involved in the levels of sodium, potassium and calcium ions and Na+–K+, Mg2+ and Ca2+ adenosine triphosphatase (ATPase) activities in the freshwater fish, Cirrhinus mrigala on short-term and long-term exposure to the median lethal and sublethal concentration of fenvalerate. Residue analysis using gas–liquid chromatography (GLC) technique revealed that fenvalerate accumulated in highest quantity in gill followed by liver and muscle under median lethal concentration (6?µg?L?1). Whereas in sublethal concentration (0.6?µg?L?1), muscle accumulated highest quantity followed by gill and liver, which might be due to the fact that fenvalerate is highly lyphophilic. The ion concentration and ATPase activity were found effected in fish exposed to lethal and sublethal concentrations of fenvalerate. Concentration of Na+, K+ and Ca2+ ions decreased in gill, muscle and liver on being exposed to median lethal concentration to a significant level. Whereas the changes were not highly pronounced at sub lethal level indicating low concentration of fenvalerate and its non-toxic effect at chronic exposure. Na+–K+, Mg2+ and Ca2+ ATPases activity were also found decreased in correspondence to the ionic change under median lethal and sub lethal concentrations in target tissues. This might have lead to behavioural changes and create wide-spread disturbance in the normal physiology, ultimately causing the death of the fish. The results suggest that in biomonitoring programmes, ions and associated ATPases can be a good diagnostic tool for fenvalerate toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号