首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: In order to determine appropriate application rates and to ensure low pollutant levels in sewage sludge, knowing the chemical composition of sewage sludge is of great importance in a land application program. The objective of this study is to evaluate the variability of selected chemical characteristics of sewage sludge from New Jersey publicly owned treatment works (POTWs). Measurements of total Kjeldahl nitrogen (TKN), NH4+‐N, P, K+, Cd, Cu, Pb, and Zn reported by 98 facilities in the 1996 and 1997 New Jersey Sludge Quality Assurance Regulations (SQAR) reports were statistically analyzed. Sewage sludge from Category 5 POTWs (greater than 10 percent industrial input) showed higher Cd, Cu, and Pb concentrations than Category 3 and Category 4 facilities (less than 10 percent industrial input). Even though only two years of data were analyzed, there was an indication that Cd and Pb concentrations in sewage sludge are decreasing with time. The yearly mean of only a few facilities exceeded the federal pollution concentration limits (40 CFR Part 503, Table 3). Phosphorus and Cd values showed the highest variability within facilities based on the coefficient of variation. Due to the variability of sewage sludge constituents, the use of the yearly rolling mean of nutrient concentrations to determine application rates was considered inadequate. An actual analysis of the sewage sludge to be applied is more appropriate to determine application rates than historical data.  相似文献   

2.
Metals in soils amended with sewage sludge are typically less available compared with those in soils spiked with soluble metal salts. However, it is unclear if this difference remains in the long term. A survey of copper (Cu) availability was made in soils amended with sewage sludge, manure, and compost, collectively named organic amendments. Paired sets of amended and control soils were collected from 22 field trials where the organic amendments had aged up to 112 yr. Amended soils had higher total Cu concentrations (range, 2-220 mg Cu kg; median, 15 mg Cu kg) and organic C (range, 1-16 g kg; median, 4 g kg) than control soils. All samples were freshly spiked with CuCl, and the toxicity of added Cu to barley was compared between amended and control soils. The toxicity of added Cu was significantly lower in amended soils than in control soil in 15 sets by, on average, a factor of 1.4, suggesting that aged amendments do not largely increase Cu binding sites. The fraction of added Cu that is isotopic exchangeable Cu (labile Cu) was compared between control soils freshly spiked with CuCl and amended soils with both soils at identical total Cu concentrations. Copper derived from amendments was significantly less labile (on average 5.9-fold) than freshly added Cu in 18 sets of soils. This study shows that Cu availability after long-term applications of organic amendments is lower than that of freshly added Cu salts, mainly because of its lower availability in the original matrix and ageing reactions than because of increased metal binding sites in soil.  相似文献   

3.
The optimized BCR sequential extraction procedure (proposed by the Standards, Measurements and Testing Programme (SM&T) of the European Union) was applied to seven topsoil samples from refuse dump sites for the determination of Cu, Zn, Ni, Pb and Cd. The metals were partitioned into four operationally defined chemical fractions: acid extractable, reducible, oxidizable and residual, and analysed using flame atomic absorption spectrophotometry, FAAS. The results were compared with total metal concentrations obtained using HNO3, HClO4 and HF digestion procedures. Results for total metal analysis ranged from - 15.55 to 43.45 for Cu, 37.15 to 222.35 for Zn, 5.15 to 12.10 for Ni, 10.30 to 93.05 for Pb and 0.35 to 3.75 for Cd in μgg−1 dry weight. The results of the partitioning study showed that zinc prevailed in the more soluble fractions and was distributed between the acid-extractable (32.4%) and the reducible (40.3%) fractions, whereas Pb was distributed mainly in the reducible fraction. Copper and nickel were predominantly associated with the reducible and residual fractions - 53.4, 33.3 and 51.1, 24.1% respectively. The ranking of the four fractions for the partitioning of cadmium was: reducible > residual > oxidizable > acid extractable. The percentage recovery for all metals when comparing total metal concentration with the fractional sum of the optimized BCR procedure, were of the order: Zn(93%) > Pb(83%) > Cu(78) > Cd > (68%) > Ni(63%).  相似文献   

4.
Phytostabilization may limit the leakage of metals and As from submersed mine tailings, thus treatment of acid mine drainage with lime could be reduced. Tall cottongrass (Eriophorum angustifolium Honckeny) and white cottongrass (E. scheuchzeri Hoppe) were planted in pots with unlimed (pH 5.0) and limed (pH 10.9) tailings (containing sulfides) amended with sewage sludge (SS) or a bioashsewage sludge mixture (ASM). Effects of the amendments on plant growth and plant element uptake were studied. Also, effects of plant growth on elements (Cd, Cu, Pb, Zn, and As), pH, electrical conductivity (EC), and concentrations of SO4(2-), in the drainage water as well as dissolved oxygen in tailings, were measured. Both plant species grew better and the shoot element concentrations of white cottongrass were lower in SS than in ASM. Metal concentrations were lowest in drainage water from limed tailings, and plant establishment had little effect on metal release, except for an increase in Zn levels, even though SO4(2-) levels were increased. In unlimed tailings, plant growth increased SO4(2-) levels slightly; however, pH was increased and metal concentrations were low. Thus, metals were stabilized by plant uptake and high pH. Amendments or plants did not affect As levels in the drainage water from unlimed tailings. Thus, to reduce the use of lime for stabilizing metals, phytostabilization with tall cottongrass and white cottongrass on tailings is a sound possibility.  相似文献   

5.
Use of metal-rich sewage sludge as soil fertilizer may result in trace- metal contamination of soils. This study was conducted to evaluate the effects of long-term sludge application on trace-metal (Zn, Cu, Pb, and Ni) distribution and potential bioavailability in Nigerian soils under a tropical wet-dry climate. Total metal analyses, sequential chemical fractionation, and DTPA extractions were carried out on samples of control and sludge-amended pedons in Nigeria (a Rhodic Kandiustult and two Rhodic Kandiustalfs from Nigeria, respectively). The sewage sludge applied to the soils contained higher levels of Zn and Cu than Pb and Ni. The control pedon contained low levels of all four metals. Soil enrichment factors (EF) were calculated for each metal in the sludge-amended pedons. Compared with the control soil, the sludge-amended pedons showed elevated levels of Zn and Cu, reflecting the trace-metal composition of the sewage sludge. Zinc and Cu in the sludge-amended soils were strongly enriched at all depths in the profile, indicating that they had moved below the zone of sludge application. The sequential extraction and DTPA analyses indicated that the sludge-amended soils contained more readily extractable and bioavailable metal ions than the unamended soil.  相似文献   

6.
An inventory of trace element inputs to agricultural soils in China   总被引:45,自引:0,他引:45  
It is important to understand the status and extent of soil contamination with trace elements to make sustainable management strategies for agricultural soils. The inputs of trace elements to agricultural soils via atmospheric deposition, livestock manures, fertilizers and agrochemicals, sewage irrigation and sewage sludge in China were analyzed and an annual inventory of trace element inputs was developed. The results showed that atmospheric deposition was responsible for 43–85% of the total As, Cr, Hg, Ni and Pb inputs, while livestock manures accounted for approximately 55%, 69% and 51% of the total Cd, Cu and Zn inputs, respectively. Among the elements concerned, Cd was a top priority in agricultural soils in China, with an average input rate of 0.004 mg/kg/yr in the plough layer (0–20 cm). Due to the spatial and temporal heterogeneity of the sources, the inventory as well as the environmental risks of trace elements in soils varies on a regional scale. For example, sewage sludge and fertilizers (mainly organic and phosphate-based inorganic fertilizers) can also be the predominant sources of trace elements where these materials were excessively applied. This work provides baseline information to develop policies to control and reduce toxic element inputs to and accumulation in agricultural soils.  相似文献   

7.
通过评价西安市污水厂污泥理化性质、重金属含量和潜在生态风险,探究污泥再利用的可行性.分析了西安市7个具有代表性的生活污水处理厂污泥的基本理化性质和6种重金属(Cr、Cu、Ni、Pb、Cd和Zn)在不同时期的含量变化,并对污泥再利用做了可行性评价和潜在风险评价.结果 表明,各污水厂污泥除XA3污水厂Cd未达标外,其余污水...  相似文献   

8.
Soils in the Mediterranean area are very prone to erosion due to the loss of organic matter and the consequent lack of protective vegetation. In this experiment a Mediterranean degraded soil with a 15% slope was amended at a rate of 250 t ha–1 wet weight with sewage sludge and with a mixture of sewage sludge and barley straw (70% carbon from sewage sludge and 30% from the straw) in order to study their influence on soil structure recovery and hence the soilss resistance to erosion processes. Both types of organic amendment led to an improvement in several soil properties (physical, biological, and microbiological) as a result of the spontaneous growth plant covering that became evident three months after amendment. This vegetation remained throughout the two years of the experiment and prevented the water erosion processes that normally precede soil degradation. Amendment by sewage sludge alone reduced soil loss by 80% compared with the control soil, while the mixture that included both sewage sludge and barley straw reduced losses by 84%, both reducing runoff by 57%. The amended soils showed increases in the percentage of stable aggregates, the levels of the total and water-soluble C fractions, microbial biomass C, basal respiration, and the activity of the different enzymes involved in the biogeochemical cycles of C, N, and P. The results confirm the usefulness of sewage sludge as an organic amendment for recovering damaged soils.  相似文献   

9.
The rise in aluminium demand in the world has significantly increased the generation of bauxite residue which occupies huge areas of land worldwide. Direct revegetation of residue storage areas has been unsuccessful because of the high alkalinity and salinity, and poor nutrient contents of the fine residue (red mud). This paper describes glasshouse and field experiments evaluating the potential use of sewage sludge as an organic ameliorant for gypsum amended red mud. The growth of Agropyron elongatum in red mud receiving gypsum (0 and 38.5 t ha−1) and sewage sludge (0, 38.5 and 77 t ha−1) amendment was assessed in a glasshouse study. Leachate and soil analyses revealed that gypsum was effective in reducing the pH, EC and ESP of red mud, while sewage sludge gave additional reductions in EC, Na and ESP. No evidence of any significant increases in heavy metal contents were observed in the leachates following sewage sludge amendment. However, soil Al contents were more available in red mud receiving only sewage sludge treatment. Sewage sludge amendment significantly increased dry weight yield and provided sufficient nutrients for plant growth except K which was marginal. No heavy metal accumulation was observed in Agropyron. Following that, a field experiment was performed having red mud amended with sewage sludge (38.5, 77 and 154 t ha−1) and gypsum (38.5 and 77 t ha−1) to evaluate their effects on soil physical properties of red mud. Sewage sludge significantly reduced soil bulk density (25%) and particle density (9%) and increased the total porosity of red mud (8%). Hydraulic conductivity also increased from 1.5 to 23 × 10−5 m s−1. Plant cover percentage and dry weight yield of Agropyron increased with an increase in gypsum and sewage sludge amendment. The results confirm that sewage sludge is effective in improving both soil structure and nutrient status of gypsum amended red mud. The use of sewage sludge for red mud revegetation provides not just an option for sludge disposal, but also a cost effective revegetation strategy for bauxite refining industry.  相似文献   

10.
A growth room experiment was conducted to evaluate the bioavailability of Cu, Mn, Zn, Ca, Fe, K, Mg, P, S, As, B, Cd, Co, Cr, Hg, Mo, Na, Ni, Pb, and Se from a sandy loam soil amended with source-separated municipal solid waste (SSMSW) compost. Basil (Ocimum basilicum L.) and Swiss chard (Beta vulgaris L.) were amended with 0, 20, 40, and 60% SSMSW compost to soil (by volume) mixture. Soils and compost were sequentially extracted to fractionate Cu, Pb, and Zn into exchangeable (EXCH), iron- and manganese-oxide-bound (FeMnOX), organic-matter (OM), and structurally bound (SB) forms. Overall, in both species, the proportion of Cu, Pb, and Zn levels in different fractions followed the sequence: SB > OM > FeMnOX > EXCH for Cu; FeMnOX = SB > OM > EXCH for Pb; and FeMnOX > SB = EXCH > OM for Zn. Application of SSMSW compost increased soil pH and electrical conductivity (EC), and increased the concentration of Cu, Pb, and Zn in all fractions, but not EXCH Pb. Basil yields were greatest in the 20% treatment, but Swiss chard yields were greater in all compost-amended soils relative to the unamended soil. Basil plants in 20 or 40% compost treatments reached flowering earlier than plants from other treatments. Additions of SSMSW compost to soil altered basil essential oil, but basil oil was free of metals. The results from this study suggest that mature SSMSW compost with concentrations of Cu, Pb, Mo, and Zn of 311, 223, 17, and 767 mg/kg, respectively, could be used as a soil conditioner without phytotoxic effects on agricultural crops and without increasing the normal range of Cu, Pb, and Zn in crop tissue. However, the long-term effect of the accumulation of heavy metals in soils needs to be carefully considered.  相似文献   

11.
We conducted a laboratory study to assess the efficiency of nonionic and anionic surfactants in combination with a sparing quantity of ethylenediaminetetraacetate (EDTA) to simultaneously extract heavy metals (HMs) and polychlorinated biphenyl (PCB) compounds from a field-contaminated soil. A soil wash that mobilized both HMs and PCBs was combined with back-extraction with hexane to remove PCBs from the aqueous wash. The aqueous washing suspension was then regenerated by precipitation of the HMs induced by corrosion and hydrolysis of zero-valent Mg to provide a cleaned soil and innocuous extract. Finally, the washing suspension was recycled twice to mobilize more contaminants from the soil particulate fraction. After ultrasonic equilibration, EDTA in admixture with a nonionic surfactant did not appreciably change the efficiency of mobilization of most heavy metals (Al, Cd, Cr, Fe Mn, Ni, and Zn), but did increase the recovery of Cu and Pb. The release of EDTA from HM complexes was efficient for most metals (99%) but was influenced by the chemical characteristics of the surfactant. The EDTA recovery (62-65%) after three cycles of soil washing, hexane back-extraction, and Mg(0) treatment was similar for all reagent combinations. In toto, these studies demonstrate that after treatment with ultrasound, selected heavy metals can be coextracted efficiently from soil with a single washing suspension containing EDTA and a nonionic surfactant.  相似文献   

12.
The entry of Cd into the food chain is of concern as it can cause chronic health problems. To investigate the relationship between soil properties and the concentration of Cd in wheat (Triticum aestivum L.) and harley (Hordeum vulgare L.) grain, we analyzed 162 wheat and 215 barley grain samples collected from paired soil and crop surveys in Britain, and wheat and barley samples from two long-term sewage sludge experiments. Cadmium concentrations were much lower in barley grain than in wheat grain under comparable soil conditions. Multiple regression analysis showed that soil total Cd and pH were the significant factors influencing grain Cd concentrations. Significant cultivar differences in Cd uptake were observed for both wheat and barley. Wheat grain Cd concentrations could be predicted reasonably well from soil total Cd and pH using the following model: log(grain Cd) = a + b log(soil Cd) - c(soil pH), with 53% of the variance being accounted for. The coefficients obtained from the data sets of the paired soil and crop surveys and from long-term sewage sludge experiments were similar, suggesting similar controlling factors of Cd bioavailability in sludge-amended or unamended soils. For barley, the model was less satisfactory for predicting grain Cd concentration (22% of variance accounted for). The model can be used to predict the likelihood of wheat grain Cd exceeding the new European Union (EU) foodstuff regulations on the maximum permissible concentration of Cd under different soil conditions, particularly in relation to the existing Directive and the proposed new Directive on land applications of sewage sludge.  相似文献   

13.
Acidic (pH 4.1) and high Cd, Pb, and Zn mine tailings (mean +/- SD: 17 +/- 0.4, 3800 +/- 100, and 3500 +/- 100 mg kg(-1), respectively) from an alluvial tailings deposit in Leadville, Colorado were amended with municipal biosolids (BS) (224 Mg ha(-1)) and different types of lime (calcium carbonate equivalent of 224 Mg ha(-1) CaCO3) in a greenhouse column study to test the ability of the amendments to neutralize surface and subsoil acidity and restore plant growth. The types of lime included coarse, agricultural, and fine-textured lime (CL, AL, and FL), sugar beet lime (SBL), and lime kiln dust (LK). The FL was also added alone. All treatments increased bulk pH in the amended horizon in comparison to the control, with the most significant increases observed in the FL, SBL+BS, and LK+BS treatments (7.33, 7.34, and 7.63, respectively). All treatments, excluding the FL, increased the pH in the horizon directly below the amended layer, with the most significant increases observed in the SBL+BS and LK+BS treatments (6.01 and 5.41, respectively). Significant decreases in 0.01 M Ca(NO3)2-extractable Zn and Cd were observed in the subsoil for all treatments that included BS, with the largest decrease in the SBL+BS treatment (344 and 3.9 versus 4 and 0.1 mg kg(-1) Zn and Cd, respectively). Plant growth of annual rye (Lolium multiflorum L.) was vigorous in all treatments that included BS with plant Zn, Cd, and Pb concentrations reduced over the control.  相似文献   

14.
Grain Cd concentrations were determined in the wheat (Triticum aestivum L.) cultivars Soissons, Brigadier, and Hereward grown in 1994,1996, and 1999, respectively, in soils of a long-term field experiment to which sewage sludges contaminated with Zn, Cu, Ni, or Cr had previously been added. Soil pore water soluble Cd and free Cd2+ increased linearly with increasing total soil Cd (R2=0.82 and 0.84, respectively; P<0.001). Similarly, soil pore water free Cd2+ increased linearly with increasing soil pore water soluble Cd (R2=0.98; P<0.001). There was no evidence of a plateau in soil pore water Cd concentrations with increasing soil Cd concentrations. Grain Cd concentrations were significantly correlated with total soil Cd (P<0.001), soil pore water Cd (P<0.001), and free Cd2+ (P<0.001). A slight curvilinear relationship between grain Cd and soil Cd was apparent, but there was no plateau, even at the maximum soil Cd concentration of about 2.7 mg kg(-1). The relationship between soil pore water Cd and grain Cd was linear for all three cultivars. The slopes were in the order 1994 > 1996 > 1999, with more Cd being taken up into the grain by Soissons grown in 1994, and least by Hereward grown in 1999. For Soissons, Cd concentration in the grain greater than the EU limit (0.24 mg kg(-1) dry wt.) occurred at soil Cd less than the current UK limit of 3 mg kg(-1) for soils receiving sewage sludge. In contrast, for Brigadier and Hereward, grain Cd concentrations were near to and less than the EU limit, respectively, at soil Cd concentrations of 3 mg kg(-1).  相似文献   

15.
川南地区广泛分布无序开采的硫铁矿矿山,早期开采方式导致土壤酸化、重金属含量高等环境问题出现,2012年政府集中治理连片矿山地质环境恢复问题。研究了落卜硫铁矿矿区的土壤使用石灰和零散坡耕地整治对土壤酸化、重金属钝化修复效果。通过野外调查、采样分析测试、对比综合评价等方法证明,向土壤中投放石灰可以有效改善土壤酸化。在治理区76.6%土壤p H由酸性变为中性或者弱碱性土壤;石灰和零散坡耕地整治区土壤重金属As、Hg、Pb、Zn等含量下降率达50.0%~93.8%不等,但对Cd、Cu、Ni修复效果有限。  相似文献   

16.
The application of lime or liming materials to acid-soil grasslands might help mitigate soil acidity, a major constraint to forage productivity in many temperate mountainous grasslands. Nowadays, in these mountainous grasslands, it is essential to promote agricultural practices to increase forage yield and nutritive value while preserving biodiversity and agroecosystem functioning. Two different field experiments were conducted in the Gorbeia Natural Park, northern Spain: (i) one in a calcareous mountainous grassland (Arraba) and (ii) the other in a siliceous mountainous grassland (Kurtzegan) to study the effects of a single application of two liming products, i.e. 2429 kg lime (164.3% CaCO3) ha?1 and 4734 kg calcareous sand (84.3% CaCO3) ha?1, applied one month before the beginning of the sheep grazing season (May–October), on soil chemical (pH, organic C, total N, C/N ratio, %Al saturation, Olsen P, exchangeable K+ and Ca2+) and biological parameters (dehydrogenase, β-glucosidase, urease, acid phosphatase and arylsulphatase activity) as well as on botanical diversity (graminoids, forbs, shrubs) and forage yield and nutritive value (crude protein, modified acid detergent fibre, digestibility). Untreated control plots were also included in the experiment. Soil sampling was carried out at the end of the sheep grazing season (6 months after liming treatment), while botanical composition was determined one year after treatments application. Although no increase in soil pH was observed in Arraba, liming significantly increased dehydrogenase activity (an indicator of soil microbial activity) by 30.4 and 86.7% at Arraba and Kurtzegan site, respectively. Liming treatments significantly improved forage yield and nutritive value in Arraba but not in Kurtzegan. Furthermore, no differences in soil biological quality, evaluated using the “treated-soil quality index” as proposed in this work, were observed between treated and untreated soils, and between the two different lime treatments (lime, calcareous sand). It was concluded that, in acid-soil temperate mountainous grasslands, moderate liming treatments have no negative short-term effects either on soil quality or botanical composition, while resulting in improvements in forage yield and nutritive value under some conditions.  相似文献   

17.
超声波去除农用污泥中重金属的试验研究   总被引:1,自引:0,他引:1  
污水处理厂污泥中的重金属浓度高是污泥农用的主要障碍。为了降低农用污泥中的重金属含量,以Cu、Zn、Ni、Pb为对象,研究了超声波对其的影响。结果表明:超声对污泥中重金属有一定的溶出作用。当超声时间为30min时,溶解状态Cu、Zn、Ni、Pb的析出率分别为42.1%、37.5%、12.7%、14.7%;总的析出率分别为52.7%、44.7%、23.6%、71%。其中析出的Pb大部分以胶体状态存在,而溶解状态只占很少一部分。其他几种金属则以溶解状态为主。  相似文献   

18.
低含油污泥固化处理技术研究*   总被引:3,自引:0,他引:3  
针对辽河油田欢采水厂低含油污泥,采用固化处理方法,测定了固化剂用量对抗压强度的影响和促凝剂用量对固化时间的影响,得到含油污泥:固化剂:促凝剂最佳配比为100:12:1.5。对含油污泥固化块进行浸出液毒性监测,分析结果表明:含油污泥固化块浸出液中重金属Cu、Pb、Cr、As、Zn、Ni、Cd的含量明显降低,远低于GB5085.3-2007《危险废物鉴别标准浸出毒性鉴别》;浸出液中COD降低了77%。  相似文献   

19.
The modified three-step sequential extraction procedure proposed by the Community Bureau of Reference (or Bureau Communautaire de Reference, BCR) was used to predict trace element mobility in soils affected by an accidental spill comprising arsenopyrite- and heavy metal-enriched sludge particles and acid waste waters. The procedure was used to obtain the distribution of both the major (Al, Ca, Fe, Mg, and Mn) and trace elements (As, Bi, Cd, Cu, Pb, Tl, and Zn) in 13 soils of contrasting properties with various levels of contamination and in the sludge itself. The distributions of the major elements enabled us to confirm the main soil fractions solubilized in each of the three steps, and, in turn, to detect the presence of pyritic sludge particles by the high Fe extractability obtained in the third step. Cadmium was identified as being the most mobile of the elements, having the highest extractability in the first step, followed by Zn and Cu, Lead, Tl, Bi, and As were shown to be poorly mobile or nonmobile. In the case of some of the trace elements, the residual fractions decreased at higher levels of contamination, which was attributed to the anthropogenic contributions to the polluted samples. Comparison with soil-plant transfer factors, calculated in plants growing in the affected area, indicated that a relative sequence of trace element mobility was well predicted from data of the first step.  相似文献   

20.
To determine whether sludge applications to soil would lead in the short term to toxicity to plants and trace metal leaching to ground water, we studied the fate of some trace and major elements in a brown soil-meadow system just after repeated sewage sludge applications. The main pathways were quantified over a 37-mo period with undisturbed monolith lysimeters including two controls, four lysimeters treated with 3 x 100 m3 ha-1, and four with 3 x 400 m3 ha-1 of sewage sludge. In drainage waters the effect was limited in time and, in the case of NO3-N and Cl, delayed by 1 to 4 mo and lasted several months before returning to background conditions. Nickel and Cu concentrations in solution increased also after sludge application and had not return to background conditions after 20 mo. Trace metal concentrations did not reach toxic levels in herbage and N, Cu, Cd, and Zn concentrations were correlated with the first sludge input only. Calculated over a 37-mo period, total element output was significantly increased for Ca, NO3-N, and Ni only, because of the time-dependent response to sludge application and high variability between replicates. Output was maximal for Cd, with 1.5% of total input for the 100 m3 ha-1 treatment. Particulate matter in drainage water accounted for an average of 20% of trace metal leaching. The main long-term risk was the rapid increase in trace metal concentrations in the topsoil, which may eventually lead to toxic levels in herbage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号