首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
贵阳市秋、冬季PM_(2.5)中碳组分污染特征及来源分析   总被引:2,自引:0,他引:2  
王珍  郭军  陈卓 《地球与环境》2015,43(3):285-289
为研究贵阳市大气细粒子PM2.5中有机碳(OC)和元素碳(EC)的污染特征,于2013年10月14日至2013年12月25日,采集2个监测点位秋季和冬季的PM2.5样品,检测分析PM2.5中有机碳(OC)、元素碳(EC)的质量浓度。结果表明,秋季PM2.5中OC的平均浓度为14.9μg/m3,EC的平均浓度为2.31μg/m3;冬季PM2.5中OC的平均浓度为26.2μg/m3,EC的平均浓度为7.53μg/m3,呈冬季高、秋季低的季节变化特征。秋、冬季PM2.5中OC/EC的值均大于2,表明存在二次有机碳(SOC)的贡献;秋季SOC的值为6.89μg/m3,冬季SOC的值为8.29μg/m3。通过计算PM2.5中8个碳组分丰度,初步判断PM2.5中秋季碳的主要来源是汽车尾气、道路扬尘和生物质燃烧,冬季碳的主要来源是汽车尾气、燃煤尘和道路扬尘。  相似文献   

2.
北京东北部城区大气细粒子与相关气体污染特征研究   总被引:11,自引:0,他引:11       下载免费PDF全文
于2008年7月~2009年4月的4个季节,在北京市朝阳区北部,利用VAPS通用型大气污染物采样仪(URG3000K)对大气细粒子(PM2.5)和环境空气中相关气体进行了同时采集,并利用IC离子色谱仪(DX-600型)分析了PM2.5中水溶性无机离子成分和环境空气中相关气体的含量.结果表明,PM2.5质量浓度春季>夏季>冬季>秋季;SO42-、NO3-和NH4+是PM2.5中最主要的3种水溶性无机离子,年均质量浓度分别为14.82μg/m3、11.57μg/m3和8.35μg/m3,三者浓度之和占PM2.5中总水溶性无机离子浓度的86.28%.SO42-、NH4+浓度占PM2.5浓度百分比均为夏、秋季高于冬、春季; NO3-浓度占PM2.5浓度的百分比为秋季>春季>夏季>冬季.空气中的SO2、NO2和NH3等气态污染物的含量直接影响PM2.5中二次离子SO42-、NO3-和NH4+的浓度, SO2、NO2浓度的季节特征为冬、春季高于夏、秋季,与SO42-、NO3-的季节变化规律相反; NH3浓度在夏季最高,冬季最低. PM2.5酸度在夏、秋季高于冬、春季,且夏、秋季PM2.5样品全部呈酸性,冬、春季PM2.5样品一部分呈酸性,一部分呈碱性.夏季SOR值和NOR值分别为冬季的4.8倍和3倍,表明夏季SO2和NO2更易转化生成SO42-和NO3-.PM2.5中SO42-、NO3-和NH4+主要以(NH4)2SO4、NH4NO3的形式共存于气溶胶体系中.  相似文献   

3.
利用TEOM 1405-F和TEOM 1405颗粒物实时监测仪,研究了2013年12月至2014年5月临平地区PM2.5和PM10质量浓度实时变化特征,并结合气象五参数观测资料,对影响大气颗粒物分布特征的因素进行了分析,研究结果发现:冬季PM2.5和PM10的日均质量浓度明显大于春季,冬季PM2.5日均质量浓度范围为17.0 ~ 349.1 μg/m3,PM10日均质量浓度范围为18.8~516.9μg/m3,春季PM2.5日均质量浓度范围为20.4~167.6μg/m3,PM10日均质量浓度范围为38.2 ~243.3μg/m3;通过线性回归分析发现PM25和PM10存在较好的线性关系,说明PM10相对固定的受到PM2.5的影响,且污染物来源稳定;冬季PM2.5和PM10日均质量浓度存在三峰值波动状态,而春季PM2.5和PM10日均质量浓度存在双峰值波动状态;较大的风速、较高的气压和降水对于颗粒物的清除效果明显.  相似文献   

4.
利用2013年北京市PM2.5监测数据及气象资料,系统分析了北京市重污染日逐月分布及其对应的地面天气类型、气象要素特征。数据显示2013年北京市重污染日累计有58 d,占到全年天数的15.9%;北京市重污染日地面天气形势场可分为高压类、低压类、均压类3种类型,各占38%、41%、21%,重污染日PM2.524 h平均浓度为218μg/m3,均压类PM2.524 h平均浓度233.12μg/m3,高压类PM2.524 h平均浓度215.06μg/m3,低压类PM2.524 h平均浓度212.61μg/m3;重污染日地面气象要素主要表现为小风(1.69 m/s),湿度较大(68.6%),变压小(-2.86~0.85 h Pa),逆温(1.59~4.17℃/100 m);数值预报模式与统计模式相结合是北京市重污染日空气质量预警预报的方法体系。  相似文献   

5.
为了了解北京城区大气细颗粒物(PM2.5)中有机碳(OC)和元素碳(EC)的浓度水平与季节变化特征,2013年5月、8月、10月和2014年1月分季节在北京城区进行了PM2.5和PM2.5中OC、EC的连续监测。在监测期间,PM2.5质量浓度平均值为86.8μg/m3,PM2.5中OC的平均浓度为15.46μg/m3,占PM2.5的17.8%;EC的平均浓度为2.88μg/m3,占PM2.5的3.3%。北京城区的PM2.5和OC、EC随季节变化明显,冬季最高,秋季大于春季,夏季最低。其中秋、冬季的OC、EC浓度的日变化有着明显的白天低、傍晚前后逐渐升高、在午夜出现峰值的特点。通过一次重污染过程分析发现,静稳、高湿的气象条件使PM2.5、OC、EC的浓度都有着显著地增加。对OC、EC相关分析显示,冬季两者的相关性最高。而且OC/EC的比值都大于2.0,说明北京存在着一定的二次污染。  相似文献   

6.
对2013年北京市58 d重污染日PM_(2.5)浓度水平进行了分析,并用克里格插值法统计了重污染期间不同风向PM_(2.5)不同浓度区间的国土面积。结果显示2013年北京市重污染日主要集中在冬季,占到全年天数的15.9%,且重污染日PM_(2.5)平均浓度为218μg/m3;重污染日PM_(2.5)空间分布较为均匀且统计的平均浓度在150μg/m3以上的国土面积约占总面积的82%;重污染期间重度污染(150μg/m3)以上面积占比分别为南风(87%)、东风(81%)、西风(70%)、北风(66%);重污染日不同风向下ρ(NO_3~-)、ρ(NH_4~+)、ρ(SO_4~(2-))之和约占ρ(PM~(2.5))的60%~65%,且各组分浓度相差不大。  相似文献   

7.
2014年泉州市区PM2.5浓度的时空变化特征分析研究   总被引:1,自引:0,他引:1  
基于2014年泉州市区环境空气自动监测站的PM2.5、PM10等监测数据,讨论市区PM2.5的时空分布特征.结果表明,泉州市区PM2.5浓度存在较为明显的时空分布特征.(1)时间分布特征:PM2.5的年均值为34μg/m3,月均值最大值出现在1月,最小值出现在7月;PM2.5浓度冬季最高,夏季最低,春冬两季明显高于夏秋;PM2.5/PM10最高值出现在2月,最低值出现在7月;PM2.5/PM10冬季最高,夏季最低.(2)空间分布特征:3个监测点位中,PM2.5浓度涂山街最高,津头埔略低,万安最低;PM2.5/PM10万安最高,涂山街略低,津头埔最低.时间分布特征与气象条件有一定关系,而空间分布特征与建成区的建成时间先后、地理位置差异等有一定关系.  相似文献   

8.
北京PM2.5浓度的变化特征及其与PM10、TSP的关系   总被引:46,自引:4,他引:46       下载免费PDF全文
在连续2年进行累积1周同步采样的基础上,对北京市城区和居住区2个采样点环境空气中PM2.5的浓度及其时间变化特征进行了分析.PM2.5周平均浓度的变化范围为37~346靏/m3,年均浓度接近或超过PM10的二级年均标准.PM2.5浓度具有明显的季节变化特征,即冬季最高,夏季最低.2个采样点PM2.5浓度的周变化与季节变化均相似.PM2.5与PM10、TSP的比值均在冬季最高,春季最低,反映采暖燃烧源对细颗粒物的贡献较大,而沙尘天气对粗颗粒物的贡献较大;其年均值分别为55%和29%.  相似文献   

9.
北京大气气溶胶中有机碳及可萃取有机卤素污染物   总被引:5,自引:0,他引:5       下载免费PDF全文
研究了2002年5月~2003年4月北京城区大气中PM2.5和PM10中有机碳(OC)及可萃取有机卤素污染物(EOX)的浓度.结果表明,PM10和PM2.5的年均值分别为172.8μg/m3和110.9μg/m3,分别是美国年均值标准(PM10, 50μg/m3; PM2.5, 15μg/m3)的3.5倍和7.4倍,说明污染相当严重;PM2.5与PM10中OC的月均浓度分别为9.1~33.9μg/m3和13.1~46.2μg/m3,冬季大气中OC的浓度最高,夏季最低; PM2.5中OC和EOX的百分含量高于PM10,细粒子更易于富集有机污染物; PM2.5和PM10中EOX的含量顺序为EOCl>> EOBr(EOI),约有73%~88%和69%~91%的EOX为EOCl,大气中的有机卤素污染物主要为有机氯污染物;PM2.5中OC与EOX的含量变化趋势一致,细颗粒物中OC对EOX的含量起到了控制作用,PM10中OC对EOX的含量影响有限.  相似文献   

10.
于2013年6月至2014年5月在贵阳市城区设置采样点,利用国产武汉天虹智能采样器连续一年采集大气颗粒物(PM2.5)样品共357个,采用HOBO U30气象仪同步记录气象数据。气象数据分析表明贵阳市春、秋和冬季均为东北风,夏季多南风且风速较大,全年以东北风为主。结合气象数据分析了贵阳市市区PM2.5污染特征并初步讨论其来源。结果表明:PM2.5日浓度范围为4~193μg/m3,平均值为70±33μg/m3,日超标率为46%。以季节来看,夏季PM2.5浓度最低,冬季最高,秋、春季次之。PM2.5主要来源于工业排放与燃煤污染。与国内其它城市研究相比,处于轻度污染水平。  相似文献   

11.
于2013年夏季,对西安城区10个大气监测点进行了地面大气中O3及其前体物(NOx、CO)连续在线观测,观测结果分析表明:夏季O3小时浓度平均值范围为39.03~93.06μg/m3,且其浓度呈现由东北至西南方向逐渐升高的空间分布特征。O3小时浓度分布呈明显的单峰形式,15:00左右达到峰值;NOx、CO浓度呈较明显的双峰分布,CO较NOx的浓度波动较为平缓。O3日均浓度与温度、太阳辐射呈正相关,而与相对湿度呈负相关关系,且受温度、太阳辐射的影响更加显著。  相似文献   

12.
衡阳城区PM_(2.5)中重金属污染水平及健康风险   总被引:1,自引:1,他引:0       下载免费PDF全文
田蓉  刘迎云  陈攀  张辉  姜雨 《环境工程》2017,35(9):127-130
为了解重化工业城市PM_(2.5)中重金属污染特征,2015年12月—2016年9月采集了衡阳城区3个点位的84个PM_(2.5)样品,检测了PM_(2.5)中9种重金属元素(Pb、Cd、Cu、Cr、Ni、Zn、Mn、Hg、As),并对其展开健康风险评价。结果发现:采样期间,衡阳城区PM_(2.5)质量浓度范围为18.10~325.72μg/m~3,平均质量浓度为89.65μg/m3。9种重金属平均质量浓度排序为:Zn>Cu>Pb>Mn>Cr>Ni>Cd>As>Hg,84个样品中Pb超标率为14.29%,Cd超标率为61.90%,As超标率为54.76%。9种重金属经呼吸暴露途径对人群的健康风险指数均低于风险阈值,不会对人体构成明显健康风险,但重金属Cr的风险指数趋近安全阈值,各风险指数均排序为成年男性>成年女性>儿童青少年。  相似文献   

13.
根据2015年1—12月深圳市城区11站点PM_(2.5)小时浓度监测数据,探讨了深圳市PM_(2.5)浓度的时空分布特征。结果显示:监测期间深圳市城区PM_(2.5)平均浓度为29.8μg/m~3,PM_(2.5)平均浓度整体呈现出:冬季>秋季>春季>夏季的特征,PM_(2.5)质量浓度日变化整体呈现出双峰型分布,午后12:00—16:00浓度较低。空间分布上,年均浓度从东南至西北方向依次升高,梯度特征明显。PM_(2.5)浓度与PM_(10)呈高度相关,与SO_2、NO_2、CO呈显著正相关,与O_3呈实相关。相邻城市间空气污染物浓度呈现出一定的相关性,区域污染突出。建立的PM_(2.5)回归统计模型对深圳市2015年PM_(2.5)临近预报的级别准确率在70%以上,能较好地反映PM_(2.5)浓度变化趋势。  相似文献   

14.
我国典型城市PM_(2.5)空间分布均匀性分析   总被引:1,自引:1,他引:0  
潘本锋  汪巍  李莉娜 《环境工程》2015,33(5):109-113
随着空气质量新标准的实施,从2013年开始我国部分城市先期开展了PM2.5的例行监测,从中选取不同区域的典型城市,分析了PM2.5在环境中的分布情况。分析结果表明:典型城市PM2.5日均值相对标准偏差(RSD)范围为13%~26%,平均值为18%;我国南方城市PM2.5空间分布均匀性优于北方城市,北方城市冬、春季节PM2.5分布的均匀性较差,南方城市夏季PM2.5分布的均匀性较差;PM2.5的空间分布均匀程度与PM10接近,但明显优于其他气态污染物。综合分析认为,目前我国国家监测网内PM2.5监测点位的代表性能够满足城市空气质量监测与评价工作需要。  相似文献   

15.
2015年12月北京市一次重污染过程中PM_(2.5)特征分析   总被引:1,自引:1,他引:0       下载免费PDF全文
2015年入冬以来京津冀区域重污染频发,综合分析了2015年12月19—26日京津冀及周边地区发生的一次重污染过程中PM_(2.5)分布特征及成因。监测数据显示,2015年12月北京市重污染日共计13 d,累计月均值为151.8μg/m3。在12月19—26日一次重污染过程中,区域污染面积均超过40万km2,北京市单站PM_(2.5)小时均值超过800μg/m3。污染初期北京市南部地区PM_(2.5)浓度明显偏高,且PM_(2.5)极端高值出现在南部站点。污染输送阶段,北京市PM_(2.5)小时浓度在短时内呈爆发式增长,浓度增值是年均值的2~5倍。污染缓解阶段,偏北风作用,浓度明显下降。除了极端不利的天气形势外,区域散煤排放是造成重污染的重要原因;河北省唐山、保定、廊坊、石家庄等城市区域输送加重了污染程度。  相似文献   

16.
从乌鲁木齐工业区、交通区、生活区、风景对照区4个典型区域入手,利用崂应2050型大气自动采样器及TSP/PM10/PM5/PM2.5/切割头对大气中TSP、PM10、PM5、PM2.5进行同步采集,并采用火焰原子吸收分光光度法及石墨炉原子吸收分光光度法对TSP、PM10、PM5、PM2.5中的6种重金属Cd、Pb、Cu、Ni、Zn、Mn的含量进行了测定。测定结果为:Cd的浓度为0.52~10.72 ng/m3;Pb的浓度为25.66~356.87 ng/m3;Cu的浓度为12.57~173.93 ng/m3;Ni的浓度为1.85~78.22 ng/m3;Zn的浓度为67.58~431.49 ng/m3;Mn的浓度为18.87~310.20 ng/m3。大气颗粒物中各重金属之间存在一定的相关性,重金属的分布与风力也有一定的关系。  相似文献   

17.
广州城区夏季大气颗粒物数浓度谱分布特征   总被引:7,自引:1,他引:6       下载免费PDF全文
于2013年6月2日—7月15日,利用扫描迁移性粒谱仪(SMPS)对广州城区大气17~800 nm的粒子谱进行了连续观测,同时结合在线小时ρ(PM2.5)及气象数据,对颗粒物污染特征进行了分析. 结果表明:观测期间,凝结核模态粒子、爱根核模态粒子、积聚模态粒子的数浓度范围分别为68~7 687、1 009~47 724、238~14 781 cm-3.平均数浓度谱及体积谱均呈单峰分布,峰值分别出现在50和300 nm左右. 根据双模态对数正态分布模型对平均数浓度谱拟合的结果可知,爱根核模态粒子和积聚核模态粒子的几何平均粒径分别为48和144 nm. 颗粒物数浓度及其谱分布日变化特征明显,在交通高峰及太阳辐射较强的时间段均出现峰值. 在观测阶段,粒子增长现象频繁发生,推测大气光化学反应引起的气-粒转化是广州城区夏季大气颗粒物的重要来源. 7月12—13日广州城区发生了一次典型的大气污染过程,ρ(PM2.5)由18 μg/m3增至112 μg/m3,能见度降至8 km. 在该时间段,积聚模态粒子体积分数与ρ(PM2.5)变化一致,R2(相关系数)达到了0.85. 后向轨迹分析表明,污染气团主要来自于西南方向,在陆地停留时间较长.   相似文献   

18.
Quantitative information on mass concentrations and other characteristics, such as spatial distribution, seasonal variation, indoor/outdoor (I/O) ratio, correlations and sources, of indoor and outdoor PM2.5 and elemental components in Guangzhou City were provided. Mass concentration of PM2.5 and elemental components were determined by standard weight method and proton-induced X-ray emission (PIXE) method. 18 elements were detected, the results showed positive results. Average indoor and outdoor PM2.5 concentrations in nine sites were in the range of 67.7-74.5μg/m^3 for summer period, and 109.9-123.7 μg/m^3 for winter period, respectively. The sum of 18 elements average concentrations were 5362.6-5533.4 ng/m^3 for summer period, and 8416.8-8900.6 ng/m^3 for winter period, respectively. Average concentrations of PM2.5 and element components showed obvious spatial characteristic, that the concentrations in roadside area and in industrial plant area were higher than those in generic urban area. An obvious seasonal variation characteristic was found for PM2.5 and elemental components, that the concentrations in winter were higher than that in summer. The I/O ratio of PM2.5 and some elemental components presented larger than 1 sometimes. According to indoor/outdoor correlation of PM2.5 and element concentrations, it was found that there were often good relationships between indoor and outdoor concentrations. Enrichment factors were calculated to evaluate anthropogenic versus natural elements sources.  相似文献   

19.
邯郸市大气PM_(2.5)成分空间分布研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘卫  马笑  王丽涛  马思萌  魏哲  张城瑜 《环境工程》2017,35(10):105-109
为研究邯郸市2015年PM_(2.5)的污染状况,采用河北工程大学监测站全年PM_(2.5)浓度和气象在线监测数据以及4个代表月4个站点离线采样成分数据,分析了PM_(2.5)的浓度水平与气象要素的关系以及其化学组分特征。结果表明:PM_(2.5)的年均浓度为91.14μg/m~3,最高达到706.56μg/m~3;不同相对湿度条件下,PM_(2.5)浓度对邯郸地区能见度有较大影响。此外,邯郸静风频率较大,全年东南风风速较小,PM_(2.5)污染相对更加严重;PM_(2.5)中主要化学成分为SO_4~(2-)、NO_3~-和NH_4~+、OC和EC,4个站点采样无显著差异性。  相似文献   

20.
为了解西安市高新区采暖期大气颗粒物(包括PM1 0和PM2.5)污染状况,于2013年1月1日到2013年3月15日在高新区进行了为期74 d的连续自动采样。结果表明:采样期间高新区PM1 0的小时浓度范围28~1744μg/m3,平均浓度为332μg/m3;PM2.5的小时浓度范围13~946μg/m3,平均浓度为207μg/m3。PM2.5占PM1 0的平均比例为63.8%。颗粒物浓度日变化呈现弱双峰特征,分别在凌晨2:00和上午7:00~8:00左右达到浓度最高值,但是上午的峰值并不明显。颗粒物在15:00~1 6:00之间浓度达到最低值,由于受采暖影响,18:00之后颗粒物浓度明显上升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号