首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为预防叔丁醇氧化制甲基丙烯酸甲酯工艺过程中燃爆危险的发生,利用11L爆轰管测定不同工况温度、压力条件下,叔丁醇在不同氧含量的氧氮混合气中的爆炸极限,得到不同工况条〖JP2〗件下“叔丁醇-氧气-氮气”混合体系的燃爆区域;针对工艺过程中存在水蒸汽的条件,研究了水蒸汽含量对叔丁醇燃爆的影响。结果表明:叔丁醇在80℃、015MPa,170℃、015MPa,280℃、01MPa条件下的极限氧含量分别为159%、153%和135%;随着水蒸汽含量的升高,叔丁醇爆炸极限范围变小,在80℃、015MPa,170℃、015MPa条件下当水蒸汽含量增加到27%和34%时无燃爆现象发生。  相似文献   

2.
丙烯直接氨氧化制丙烯腈工艺由于反应温度高,且反应器内的气相空间存在丙烯、丙烷、丙烯腈、乙腈、氧气、氮气等可燃性气体混合物,极易发生燃爆危险。为研究和评估该工艺装置反应器尾气的燃爆特性,采用11 L爆轰管测试在400℃、40 k Pa (G)工艺条件下,装置开车进料及反应过程中不同进料配比时反应器尾气组成的爆炸极限,并以此绘制爆炸极限三元相图,最终得到爆炸极限和极限氧体积分数。结果表明:反应器内可燃尾气的爆炸上限随氧气体积分数增加而升高,爆炸下限没有明显变化;在开车进料及反应过程中,反应器可燃尾气的极限氧体积分数LOC范围在8. 0%~8. 5%。因此,为避免反应器气相空间在开车过程中发生燃爆危险,需监测反应器内氧气体积分数,并设置氧体积分数报警值小于8. 0%。  相似文献   

3.
为了探究高初始压力条件下空气泡沫驱井筒伴生气的燃爆特性,设计并搭建了高温高压可燃气体燃爆特性测试系统,对井筒伴生气的爆炸上限、下限以及临界氧体积分数等燃爆特性进行了测试。测量结果表明,随着初始温度和压力的升高,爆炸下限和临界氧体积分数降低,爆炸上限增加,伴生气的危险性增加。在0.5 MPa和10℃条件下伴生气的爆炸极限为2.01%~19.97%,而在15 MPa和80℃时爆炸极限迅速扩大至1.14%~56.67%。临界氧体积分数的测试结果从11.85%(0.5 MPa, 10℃)下降到8.91%(15 MPa, 80℃),最大差值为2.94%。根据试验结果拟合了临界氧体积分数的经验式,可快速评定不同初始条件下伴生气的安全氧含量。  相似文献   

4.
在对甲烷爆炸极限理论分析的基础上,建立了一套温度压力耦合条件下的气体爆炸极限测试系统,并对甲烷在50~200℃和0.2~1.0 MPa环境条件下的爆炸极限进行了试验研究。结果表明:随环境温度升高和环境压力增大,甲烷爆炸上限升高,爆炸下限下降,爆炸范围变大;在200℃和1.0 MPa条件下,试验测得的甲烷爆炸下限为4.05%,爆炸上限为25.6%,相对于常温常压条件爆炸下限下降了0.95%,而爆炸上限上升了9.6%,这表明初始温度和压力对甲烷爆炸上限的影响较大,而对爆炸下限的影响较小。  相似文献   

5.
为了选择安全的丙烯分离工艺,利用爆炸极限测试仪对两级闪蒸和单级闪蒸两种丙烯分离方案气相典型组成的燃爆特性进行了研究,根据爆炸极限测试数据绘制了"可燃气-氧气-氮气"体系爆炸极限三元图,获得了相应的极限氧气体积分数(LOC)和氧气体积分数安全控制值。结果表明,两级闪蒸方案中一级闪蒸罐气相氧气体积分数偏高,不能满足气相燃爆危险的安全控制要求,因此丙烯分离工艺要选择单级闪蒸方案。针对单级闪蒸方案制定了气相氧气体积分数安全控制指标,提出了必要的安全控制建议。  相似文献   

6.
对不同初始压力和温度条件下的甲烷/空气混合气的爆炸极限进行实验研究,利用最大-最小准则来确定爆炸极限.分析了温度和压力对甲烷/空气混合气燃爆特性的影响.采用氮气作为惰性气体,对其防爆抑爆效果进行了实验研究.  相似文献   

7.
为了研究R290制冷剂惰化燃爆特性,采用带搅拌功能和氧浓度在线测定的20L球试验装置,对R290制冷剂进行了极限氧浓度测定。实验测定了丙烷在CO2和N2惰化气氛中的爆炸极限及极限空气浓度LAC,确定丙烷的极限氧浓度LOC;采用三元图爆炸区、丙烷-O2二维图爆炸区和ASTM标准分布图分析了混合气体爆炸区边界的燃爆特征,给出了极限氧浓度的确定方法和边界爆炸压力分布规律。实验结果表明:常温常压下R290的爆炸极限为2.1%~9.6%,CO2惰化气氛中的极限氧浓度为13.3%,对应的丙烷浓度为3.3%;N2惰化气氛中的极限氧浓度为10.8%,对应的丙烷浓度为2.7%。通过对比分析不同CO2和N2浓度下的爆炸区分布特征,表明CO2对丙烷的惰化效果要优于N2,以氮气和二氧化氮体积分数比为1∶2测试惰化气氛保护能力,惰化效果介于同浓度单种惰性气体之间。  相似文献   

8.
为了确定地层高温高压环境下油气混合气的安全氧含量,避免在采油过程中形成可燃性混合气体引发燃烧或者爆炸事故,保证注空气采油工艺过程的安全性,设计了1种测试地层高温高压环境下油气混合气体安全氧含量的实验装置;通过对采油现场井筒内的气体进行取样分析,选取一定组分的混合气体,在理论分析的基础上,对混合气体分别在1,5,10 MPa和40,120℃条件下的安全氧含量进行了实验研究,并将实验结果与理论分析结果进行了比较分析。研究结果表明:随着温度和压力的升高,安全氧含量逐渐降低;在地层高温高压环境下所测得的安全氧含量要远低于常温常压下的理论估算值;在10 MPa,120℃时达到8.27%,很大程度上增加了采油工艺过程的危险性。  相似文献   

9.
为减少乙炔火灾爆炸事故的发生,采用20 L爆炸罐为试验仪器,对常温、初始压力0.1 MPa条件下,不同体积配比乙炔-空气混合气的燃爆特性及氮气对乙炔分解爆炸的影响进行了试验研究,并结合碰撞理论和燃烧反应方程对试验结果进行了理论分析。结果表明:乙炔-空气混合气体随乙炔体积分数增大,最大爆炸压力逐渐升高;在乙炔体积分数为10%~55%范围内,乙炔与空气混合气的最大爆炸压力恒定在1.7 MPa,乙炔体积分数为10%时取得最大爆炸指数(78.14MPa.m/s);乙炔体积分数为55%~100%范围内,混合气体爆炸与初始压力有关,并且初始压力随乙炔体积分数增大而升高;纯乙炔分解爆炸的初始压力为0.18 MPa。氮气对乙炔分解爆炸有一定的抑制作用,并随氮气体积分数增加,抑制作用逐渐增大。  相似文献   

10.
焊(割)炬是气焊(割)工的基本工具。焊(割)工在作业过程中,借助焊(割)炬的气阀调节乙炔和氧气的合适比例,以便焊(割)金属工件。氧气本身不燃烧,它是一种活泼的助燃气体。乙炔具有可燃性和爆炸性,自燃点温度为480℃,在空气中的着火温度为428℃,爆炸危险度为53.7,最大爆炸压力为10.01MPa,与氧气、空气混合物的爆炸极限分别为2.8%~93%和 2.2%~81%,遇火星即会爆炸,是一种非常危险的气体。焊(割)工在作业过程中,若不遵守安全技术操作规程,就会发生事故。例如:  相似文献   

11.
The explosion characteristics of propane–diluent–air mixtures under various temperatures and pressures were investigated using a 20-L apparatus. The explosion limits of propane diluted with nitrogen or carbon dioxide were measured at high temperatures from 25 to 120 °C. The results showed that the upper explosion limit (UEL) increased, and the lower explosion limit (LEL) decreased with the rising temperature. The explosion limits of propane diluted with nitrogen or carbon dioxide were also measured at high pressures from 0.10 to 0.16 MPa. The results showed that the UEL increased, and the LEL almost remainedunchanged along with increased pressure. Under the same initial operating conditions, the concentration of nitrogen required to reach the minimum inerting concentration (MIC) point was higher than the concentration of carbon dioxide. Finally, the study investigated the limiting oxygen concentration (LOC) of propane under various initial temperatures, initial pressures, and inert gases. The LOC of propane decreased approximately linearly with increased temperature or pressure, and the LOC of propane dilution with carbon dioxide was greater than dilution with nitrogen from 25 to 120 °C or from 0.10 to 0.16 MPa, which indicated that the dilution effect of carbon dioxide was better than that of nitrogen.  相似文献   

12.
为研究玉米淀粉粉尘爆炸危险性,采用哈特曼管式爆炸测试装置和20 L球爆炸测试装置对200目(<75μm)以下的玉米淀粉粉尘爆炸危险性进行评估,基于静电火花和粉尘质量浓度对粉尘爆炸的影响,对玉米淀粉的静电火花最小点火能量、爆炸下限质量浓度、最大爆炸压力和爆炸指数进行了研究,根据试验结果对玉米淀粉爆炸危险性进行分级。试验结果表明:温度在25℃,喷粉压力为0.80 MPa,粉尘质量浓度在250~750 g/m3范围内,粉尘的最小点火能量随着粉尘质量浓度增加而降低,其最小点火能量在40~80 mJ之间;在点火能量为10 kJ时,粉尘爆炸下限质量浓度在50~60 g/m3之间;在粉尘质量浓度为750 g/m3时,爆炸压力达到最大,为0.66 MPa;在粉尘质量浓度为500 g/m3时,爆炸指数达到最大,为17.21 MPa.m/s,其粉尘爆炸危险性分级为Ⅰ级。  相似文献   

13.
The flammability of refrigerants is a major cause of refrigerant explosion incidents. Studying the explosion characteristics of refrigerants at different initial temperatures can provide significant benefits for solving the safety problems of refrigerants under actual working conditions. This paper studied the effects of the initial temperature and refrigerant concentration on the explosion characteristics of refrigerant 2, 3, 3, 3-tetrafluoropropene (R1234yf) at 0.1 MPa. The curves of explosion characteristics with different initial temperature revealed the same variation trend ranged from 25 °C to 115 °C. Specifically, as the refrigerant concentration was raised, the peak overpressure, the maximum rate of pressure rise, and laminar burning velocity increased initially and decreased afterwards, along with maximum values at the refrigerant concentration of 7.6%. When the refrigerant concentration was 7.6%, the peak overpressure declined exponentially with the initial temperature rise, while the maximum rate of pressure rise increased linearly. The laminar burning velocity calculated from the spherical expansion method indicated that the flame propagation was gradually accelerated by the increase of initial temperature, which coincided with the change of the maximum rate of pressure rise. Meanwhile, experiments and CHEMKIN simulation results demonstrated the effects of elevated temperature from 20 °C to 50 °C on the explosion limits of R1234yf. The lower explosion limit reduced and the upper explosion limit increased with rising initial temperature. In general, R1234yf exhibited moderate combustion and lower explosion risk, compared with traditional refrigerants.  相似文献   

14.
为研究抛光铝粉的爆炸危险和ABC粉体的抑爆特性,在对实验粉体粒径分布进行分析的基础上,采用20 L粉尘爆炸特性实验装置,分别对不同铝粉尘浓度、不同抑爆剂浓度条件下的爆炸特性参数进行测试。研究结果表明:在实验条件下,铝粉的爆炸下限为45 g/m3<C<60 g/m3;随铝粉浓度增加,爆炸烈度呈现出先增强后减弱的变化趋势,在浓度为400 g/m3时爆炸烈度最大。ABC抑爆剂能够有效抑制铝粉爆炸超压和爆炸反应进程,随着惰性粉体浓度的增加,抑制效果愈加明显,爆炸逐渐减弱。当ABC惰性粉体的质量占比增加到50%时,相较单一铝粉爆炸,反应过程时间由72 ms增加至785 ms,爆炸最大压力、最大压力上升速率分别下降了61.7%,89.5%;当ABC粉体质量占比为53%时,铝粉被完全惰化,未发生爆炸。  相似文献   

15.
杨春丽 《安全》2020,(2):48-54
N2和CO2是常用的惰性抑爆气体,为研究两种气体的抑爆特性,采用20L球形爆炸试验装置,分析了不同浓度配比条件下N2/CH4/空气以及CO2/CH4/空气混合气体的爆炸压力,同时采集爆炸后的气体样品,对比分析爆炸后残留气体的主要成分。结果显示:随CH4浓度从5%增加至12.5%时,完全抑制CH4爆炸需要的惰性气体最小量先增大后降低,CH4浓度在6.5%~7.5%之间时,抑爆需要的惰性气体的量最大;在同一CH4浓度条件下,抑爆需要N2的量大于CO2,并且CH4浓度在5%~6.5%时,抑爆需要两种惰性气体的量值差别最大;当CH4浓度一定时,随着加入惰性气体量的增大,爆炸最大超压逐渐降低,惰性气体浓度和爆炸超压之间基本呈线性关系;在同样条件下,相对于N2,CO2为抑爆气体时,爆炸后腔体内残留的CH4浓度较高。研究成果为惰性气体抑爆技术提供技术支撑,同时为揭示惰性气体抑爆机理有一定作用。  相似文献   

16.
The flammability characteristics of refrigerants are affected by environmental factors, making them prone to flammability and explosion accidents in cooling systems. In this paper, the flammability characteristics of R1234yf–air mixtures with N2 and CO2 were investigated comparatively at temperatures between 20 and 50 °C at 80% relative humidity. The lower and upper flammability limits of R1234yf were measured. The limiting oxygen concentration (LOC), critical flammable ratio (CFR), and critical flammable concentration (CFC) of the R1234yf–air mixtures with inert gases were investigated. The paper developed a linear formula between the flammability limit of R1234yf and the temperature. The changes in CFC with different temperatures were negligible for R1234yf. Furthermore, the mixed refrigerant had both non-flammability and the lowest vapor pressure when the CFR of the R1234yf/CO2 mixture was 2.9. The experimental results were used to propose a new prediction model to estimate the flammability limits of R1234yf. Finally, molecular simulation explained the effect of inert gases on the flammability of R1234yf from a microscopic point of view. The research aimed to provide valid evidence and data for preventing flammable and explosive refrigerant incidents.  相似文献   

17.
抑爆粉剂的参数指标是影响隔抑爆装置抑制瓦斯爆炸效果的重要因素之一。通过20 L球形爆炸特性实验装置对多种不同抑爆粉剂浓度及粒度条件下的瓦斯爆炸特性参数进行了测试。研究表明:随着抑爆剂浓度的逐渐增加,瓦斯爆炸最大压力降低,最大压力上升速率降低,压力到达峰值时间延迟;在20 L密闭环境,粉剂粒度<15 μm的条件下,当抑爆粉剂浓度增加到225 g/m3时,瓦斯混合气体被完全惰化,失去爆炸性;在15~80 μm抑爆粉剂粒度范围内,随着粒度的减小,抑爆性能先减弱后增强,在抑爆粉剂浓度为200 g/m3时,15 μm 与70~80 μm粉剂粒度最大爆炸压力分别下降了19.8%,17.8%,而40~50 μm粒度爆炸压力下降了6.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号