首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Hydrated bentonite is a very plastic material and it is expected to enter in the rock microfractures at the granite/bentonite boundary of a deep geological high-level waste repository. This process is enhanced by the high swelling pressure of the clay. Since bentonite has a very good sorption capability for many radionuclides, the displacement of the clay might lead to a "clay-mediated" contaminant transport into the rock. The aim of this work is to study the contaminant transport into granite microfractures using nuclear ion beam techniques, and to determine to what extent the clay can favour it. To do so, bentonite previously doped with uranium, cesium and europium was put in contact with the surface of granite sheets. Granite sheets contacted with non-doped bentonite and with radionuclide solutions were also prepared as references. This allowed analysing the differences in the diffusion behaviour of the three systems: clay, radionuclides and clay plus radionuclides. A combination of Rutherford backscattering spectrometry (RBS) and other nuclear ion-beam techniques such as particle-induced X-ray emission (PIXE) and microPIXE was used to study the depth and lateral distribution of clay and contaminants inside granite. It was also tried to evaluate not only the diffusion depth and diffusion coefficients but also the different areas of the granite where the diffusants have a preferential access.  相似文献   

2.
Diffusion is considered the principal transport mechanism of radio-nuclides and other low-molecular-weight pollutants in compacted clays used as barriers at various disposal and storage sites, for example, at projected deep repositories for radioactive waste. Porous filters are routinely used to confine swelling clays in diffusion studies of radio-tracers. The presence of the filter gives rise to considerable mass-transfer limitations at the clay boundary that result in erroneous diffusion parameters. We have solved the problem of in-diffusion with due account for this phenomenon by means of Fourier transforms. By using literature data on the in-diffusion of traces of radioactive cesium in an argillaceous rock (Opalinus clay) and a compacted bentonite (FEBEX bentonite), we have demonstrated that taking into account the mass-transfer limitations considerably improves the quality of the theoretical fit of the time evolution of radio-tracer concentration in the reservoir. Besides that, we have shown that ignoring the mass-transfer limitations leads to a noticeable underestimation of both the effective diffusion coefficient and the specific sorption capacity of the clay.  相似文献   

3.
The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.  相似文献   

4.
Mechanistic model calculations for the migration of Cs, Ra, Am and Pb in compacted bentonite have been carried out to evaluate sensitivities with respect to different parameter variations. A surface chemical speciation/electric double layer model is used to calculate: (i) porewater composition and radionuclide speciation in solution and at the bentonite surface, yielding the distribution of mobile and sorbed species and (ii) interaction of diffusing species with negatively charged pore walls to obtain diffusion parameters. The basic scenario considers the interaction of compacted bentonite with a fresh-type groundwater; variations include the presence of bentonite impurities and saline groundwater. It is shown that these scenarios result in significant variations of porewater composition that affect migration via three mechanisms that can partly compensate each other: (1) effects on sorption through radionuclide complexation in solution, and competition of major cations for surface sites; (2) changes in radionuclide solution speciation leading to different diffusing species under different conditions; (3) effects on diffusion through changes in the electric double layer properties of the clay pores as a function of ionic strength.  相似文献   

5.
Diffusion experiments in compacted bentonite have been carried out in situ using the borehole laboratory CHEMLAB. The "ordinary" anion iodide and the redox-sensitive pertechnetate ion have been investigated. In spite of strongly reducing groundwater conditions, technetium was found to diffuse mostly unreduced as TcO4-, although in some spots in the compacted clay, the activity was significantly higher, which may be explained by reduction of some TcO4- by iron-containing minerals in the bentonite. The measured concentration profiles in the clay cannot be accommodated by assuming one single diffusion process. The experimental data are modeled assuming two diffusion paths, intralamellar diffusion and diffusion in external water. The apparent diffusivity for the intralamellar diffusion was found to be 8.6 x 10(-11) m2 s(-1) for iodide with a capacity factor of 0.1, while the apparent diffusivity for the diffusion in external water was found to be 5 x 10(-14) m2 s(-1) with alpha=2.26. The corresponding values for Tc were found to be Da= 6 x 10(-11) m2 s(-1), alpha=0.1 and Da= 1 x 10(-13) m2 s(-1), alpha=0.46, respectively. The diffusion constants and capacity factors obtained in this study are in accordance with data from laboratory experiments.  相似文献   

6.
Effective diffusion coefficients (D(e)) are usually measured by means of "through-diffusion" experiments in which steady state is reached, and the "time-lag" methods are used to estimate the apparent diffusion coefficient (D(a)). For sorbing radionuclides (as caesium), the time needed to reach steady-state conditions is very large, and the precision in D(a) determinations is not satisfactory. In this paper, a method that allows determining simultaneously effective and apparent diffusion coefficients in compacted bentonite without reaching steady-state conditions is described. Basically, this method consists of an "in-diffusion" experiment in which the concentration profile in the bentonite sample is used to estimate D(a), and the temporal evolution of the solute concentration in the reservoir is used to estimate D(e). This method has several advantages over the typical "through-diffusion" experiments, in particular: (a) experiment duration is significantly shorter, (b) D(a) values are measured with greater precision and (c) it is not necessary to maintain a constant solute concentration in the reservoir. This new method has been used to estimate the effective and apparent diffusion coefficients for caesium in FEBEX bentonite and in order to validate it, the results have been compared with results previously obtained with standard methods. Experimental results have been satisfactorily modelled using a simple model of diffusion in porewater and the measured value of D(e)(Cs) is very similar to D(e)(HTO) in the same bentonite. There is no evidence of "surface diffusion" in FEBEX bentonite for caesium.  相似文献   

7.
A thermodynamic sorption model and a diffusion model based on electric double layer (EDL) theory are integrated to yield a surface chemical model that treats porewater chemistry, surface reactions, and the influence of charged pore walls on diffusing ions in a consistent fashion. The relative contribution of Stern and diffuse layer to the compensation of the permanent surface charge represents a key parameter; it is optimized for the diffusion of Cs in Kunipia-F bentonite, at a dry density of 400 kg/m3. The model is then directly used to predict apparent diffusivities (Da) of Cs, Sr, Cl-, I- and TcO4- and corresponding distribution coefficients (Kd) of Cs and Sr in different bentonites as a function of dry density, without any further adjustment of surface chemical and EDL parameters. Effective diffusivities (De) for Cs, HTO, and TcO4- are also calculated. All calculated values (Da, De, Kd) are fully consistent with each other. A comparison with published, measured data shows that the present model allows a good prediction and consistent explanation of (i) apparent and effective diffusivities for cations, anions, and neutral species in compacted bentonite, and of (ii) Kd values in batch and compacted systems.  相似文献   

8.
Porewater chemistry in compacted re-saturated MX-80 bentonite   总被引:2,自引:0,他引:2  
Bentonites of various types are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Being able to understand the chemistry of the porewater in compacted bentonite is very important since it is critical to predicting radionuclide solubilities and to the synthesis of sorption data bases, and hence to repository safety studies. In this paper, porewater compositions in compacted bentonites are calculated, taking into consideration such factors as montmorillonite swelling, semi-permeable membrane effects, very low "free water" volumes, and the highly effective buffering characteristics of the exchangeable cations and the amphoteric edge sites. The former buffer the cation concentrations and the latter fix the pH in the porewater of a re-saturated bentonite. The above considerations are used in conjunction with previously measured physico-chemical characterisation data on MX-80 powder to calculate porewater compositions in compacted bentonites. For the MX-80 material specified, the porewaters calculated for initial dry densities between 1200 and 1600 kg m(-3) had relatively high ionic strengths (I approximately 0.3 M), similar cation concentrations and a pH equal to 8.0. The porewaters changed from being Na(2)SO(4)-rich at 1200 kg m(-3) to a NaCl/Na(2)SO(4) type water at 1600 kg m(-3).  相似文献   

9.
Various construction materials are under consideration for nuclear waste repositories. Two important materials are concrete and bentonite clay, which will act as mechanical barriers and prevent convective water flow. These barriers will also retard transport (diffusion controlled) of dissolved radionuclides by a combination of mechanical constraints and chemical interactions with the solid.An important issue is the possible change of the initial sodium bentonite into the calcium form due to interaction with calcium from the concrete. The initial leaching of concrete was studied using radioactive spiked concrete in contact with compacted bentonite.Measurement were made of the diffusion of Cs, Am and Pu into 5 different types of concrete in contact with pore water. The diffusivity measured for Cs agrees reasonably well with data found in the literature. No movement could be measured for Am and Pu (< 0.2 mm), even though the contact times were extremely long (2.5 and 5 yr, respectively). The diffusion of Na, Ca and Cs from concrete into bentonite was also measured.  相似文献   

10.
11.
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept.In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution–precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.  相似文献   

12.
In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM. The overall soil-water distribution coefficient (K*) of naphthalene and phenanthrene onto CPC-coated sand decreased with increasing DOM concentration, whereas the K* of the compounds onto HDTMA-coated bentonite slightly increased with increasing DOM concentration. To describe the overall distribution of polycyclic aromatic hydrocarbons (PAHs) in the systems, a competitive multiphase sorption (CMS) model was developed and compared with an overall mechanistic sorption (OMS) model. The modeling studies showed that while the OMS model did not explain the CPC-coated sand experimental results, a model that included competitive sorption between DOM and PAH did. The experimental results and the modeling study indicated that there was no apparent competition between DOM and PAH in the HDTMA-coated bentonite system, and indicated that in groundwater systems with high DOM, a barrier using HDTMA-coated bentonite might be more effective.  相似文献   

13.
Literature data for anion diffusion in compacted swelling clays contain systematic inconsistencies when the results of through-diffusion tests are compared with those of out-diffusion or tracer profile analysis. In the present work we investigated whether these inconsistencies can be explained by taking into account heterogeneities in the compacted samples; in particular increased porosities at the clay boundaries. Based on the combined results of out-diffusion, tracer profile analysis and the spatial distribution of the electrolyte anion in the clay, we conclude that the inconsistencies can indeed be resolved by taking into account a heterogeneous distribution of the total and the anion-accessible porosity. This, by definition, leads to a position dependence of the effective diffusion coefficient. Neglecting these effects results in a rather subordinate systematic error in the determination of effective diffusion coefficients of anions from through-diffusion tests with clay thicknesses in the centimetre range. However, stronger errors in terms of absolute values and conceptual interpretation may be introduced in out-diffusion tests and profile analyses of the diffused tracer. We recommend that anion diffusion tests should be accompanied by measurements of the total and anion-accessible porosity as a function of position in the direction of diffusion.  相似文献   

14.
Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX (Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.  相似文献   

15.
A new reactive transport modelling approach and examples of its application are presented, dealing with the impact of sorption/desorption kinetics on the spreading of solutes, e.g. organic contaminants, in groundwater. Slow sorption/desorption is known from the literature to be strongly responsible for the retardation of organic contaminants. The modelling concept applied in this paper quantifies sorption/desorption kinetics by an intra-particle diffusion approach. According to this idea, solute uptake by or release from the aquifer material is modelled at small scale by a "slow" diffusion process where the diffusion coefficient is reduced as compared to the aqueous diffusion coefficient due to (i) the size and shape of intra-particle pores and (ii) retarded transport of solutes within intra-particle pores governed by a nonlinear sorption isotherm. This process-based concept has the advantage of requiring only measurable model parameters, thus avoiding fitting parameters like first-order rate coefficients.In addition, the approach presented here allows for modelling of slow sorption/desorption in lithologically nonuniform media. Therefore, it accounts for well-known experimental findings indicating that sorptive properties depend on (i) the grain size distribution of the aquifer material and (ii) the lithological composition (e.g. percentage of quartz, sandstone, limestone, etc.) of each grain size fraction. The small-scale physico-chemical model describing sorption/desorption is coupled to a large-scale model of groundwater flow and solute transport. Consequently, hydraulic heterogeneities may also be considered by the overall model. This coupling is regarded as an essential prerequisite for simulating field-scale scenarios which will be addressed by a forthcoming publication.This paper focuses on mathematical model formulation, implementation of the numerical code and lab-scale model applications highlighting the sorption and desorption behavior of an organic contaminant (Phenanthrene) with regard to three lithocomponents exhibiting different sorptive properties. In particular, it is shown that breakthrough curves (BTCs) for lithologically nonuniform media cannot be obtained via simple arithmetic averaging of breakthrough curves for lithologically uniform media. In addition, as no analytical solutions are available for model validation purposes, simulation results are compared to measurements from lab-scale column experiments. The model results indicate that the new code can be regarded as a valuable tool for predicting long-term contaminant uptake or release, which may last for several hundreds of years for some lithocomponents. In particular, breakthrough curves simulated by pure forward modelling reproduce experimental data much better than a calibrated standard first-order kinetics reactive transport model, thus indicating that the new approach is of high quality and may be advantageously used for supporting the design of remediation strategies at contaminated sites where some lithocomponents and/or grain size classes may provide a long-term pollutant source.  相似文献   

16.
The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (approximately 1 x 10(-3) M) and alkaline (pH > or = 8) waters.  相似文献   

17.
Retardation capacity of organophilic bentonite for anionic fission products   总被引:7,自引:0,他引:7  
Sorption and diffusivity of iodide and pertechnetate (I- and TcO4-) on MX-80 bentonite with different hexadecylpyridinium (HDPy+) loadings were studied using equilibrium solutions of different ionic strengths. In HDPy(+)-modified bentonite, iodide and pertechnetate ions exhibited increasing sorption (characterized by the distribution ratio, Rd), while Cs+ and Sr2+ showed decreasing sorption with increasing organophilicity. In case of medium-loading levels, the simultaneous sorption of anions (I- and TcO4-) and cations (Cs+ and Sr2+) was observed. Sorption of ions was influenced by the composition of the electrolytes employed. It decreased gradually with increasing ionic strength of the electrolyte solutions. The experiments revealed the general tendency that the diffusivity (Da [cm2.s-1]) for iodide and pertechnetate decreases with increasing organophilicity and increases with increasing ionic strength of the equilibrium solutions, confirming the results of the sorption experiments. Additionally, some mineralogical and chemical investigations, like IR spectral analysis of the organo-bentonite samples and exchange behavior of HDPy+, were performed. On the basis of these analyses, it was concluded that the alkylammonium ions are sorbed as (1) HDPy+ cations, (2) HDPyCl molecules and (3) micelles with decreasing binding intensities in this order.  相似文献   

18.
Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Asp? underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.  相似文献   

19.
Rahman MM  Worch E 《Chemosphere》2005,61(10):1419-1426
While the pH effect on sorption equilibrium of weak acids on natural sorbents was investigated in a number of studies, less is known about the pH dependence of sorption kinetics. This paper investigates the impact of pH on sorption kinetics during the transport of some selected phenols through a sandy aquifer material. Breakthrough curves measured in column experiments were analyzed using a mass transfer based nonequilibrium model designated as dispersed flow, film and particle diffusion model (DF-FPDM). In this model, the rate limiting intraparticle diffusion is characterized by the mass transfer coefficient, kSaV, which can be determined from breakthrough curves by curve fitting. The experimental results indicate that the kSaV is pH-dependent and inversely correlated with the pH-dependent distribution coefficient, K(d,app). Regression equations are presented that may be used to estimate approximate values of intraparticle mass transfer coefficients on the basis of experimentally determined or LFER predicted distribution coefficients.  相似文献   

20.
Reliable predictions of the fate and behaviour of pesticides in soils is dependent on the use of accurate ‘equilibrium’ sorption constants and/or rate coefficients. However, the sensitivity of these parameters to changes in the physicochemical characteristics of soil solids and interstitial solutions remains poorly understood. Here, we investigate the effects of soil organic matter content, particle size distribution, dissolved organic matter and the presence of crop residues (wheat straw and ash) on the sorption of the herbicides atrazine and isoproturon by a clay soil. Sorption Kd's derived from batch ‘equilibrium’ studies for both atrazine and isoproturon by <2 mm clay soil were approximately 3.5 L/kg. The similarity of Koc's for isoproturon sorption by the <2 mm clay soil and <2 mm clay soil oxidised with hydrogen peroxide suggested that the sorption of this herbicide was strongly influenced by soil organic matter. By contrast, Koc's for atrazine sorption by oxidised soil were three times greater than those for <2 mm soil, indicating that the soil mineral components might have affected sorption of this herbicide. No significant differences between the sorption of either herbicide by <2 mm clay soil and (i) <250 μm clay soil, (ii) clay soil mixed with wheat straw or ash at ratios similar to those observed under field conditions, (iii) <2 mm clay soil in the presence of dissolved organic matter as opposed to organic free water, were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号