首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermodynamic sorption model and a diffusion model based on electric double layer (EDL) theory are integrated to yield a surface chemical model that treats porewater chemistry, surface reactions, and the influence of charged pore walls on diffusing ions in a consistent fashion. The relative contribution of Stern and diffuse layer to the compensation of the permanent surface charge represents a key parameter; it is optimized for the diffusion of Cs in Kunipia-F bentonite, at a dry density of 400 kg/m3. The model is then directly used to predict apparent diffusivities (Da) of Cs, Sr, Cl-, I- and TcO4- and corresponding distribution coefficients (Kd) of Cs and Sr in different bentonites as a function of dry density, without any further adjustment of surface chemical and EDL parameters. Effective diffusivities (De) for Cs, HTO, and TcO4- are also calculated. All calculated values (Da, De, Kd) are fully consistent with each other. A comparison with published, measured data shows that the present model allows a good prediction and consistent explanation of (i) apparent and effective diffusivities for cations, anions, and neutral species in compacted bentonite, and of (ii) Kd values in batch and compacted systems.  相似文献   

2.
Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX (Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.  相似文献   

3.
Porewater chemistry in compacted re-saturated MX-80 bentonite   总被引:2,自引:0,他引:2  
Bentonites of various types are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Being able to understand the chemistry of the porewater in compacted bentonite is very important since it is critical to predicting radionuclide solubilities and to the synthesis of sorption data bases, and hence to repository safety studies. In this paper, porewater compositions in compacted bentonites are calculated, taking into consideration such factors as montmorillonite swelling, semi-permeable membrane effects, very low "free water" volumes, and the highly effective buffering characteristics of the exchangeable cations and the amphoteric edge sites. The former buffer the cation concentrations and the latter fix the pH in the porewater of a re-saturated bentonite. The above considerations are used in conjunction with previously measured physico-chemical characterisation data on MX-80 powder to calculate porewater compositions in compacted bentonites. For the MX-80 material specified, the porewaters calculated for initial dry densities between 1200 and 1600 kg m(-3) had relatively high ionic strengths (I approximately 0.3 M), similar cation concentrations and a pH equal to 8.0. The porewaters changed from being Na(2)SO(4)-rich at 1200 kg m(-3) to a NaCl/Na(2)SO(4) type water at 1600 kg m(-3).  相似文献   

4.
In the context of deep geological storage of high level nuclear waste the repository will be designed as multiple barrier system including bentonite as buffer/backfill material and the host rock formation as geological barrier. The engineered barrier (bentonite) will be in contact with the host rock formation and consequently it can be expected that bentonite porewater will mix with formation groundwater. We simulate in this study the mixing of Grimsel groundwater (glacial melt water) with synthetic Febex porewater (assuming already saturated state) in a batch-type study and investigate the formation of colloids by laser-induced breakdown detection (LIBD) and SEM-EDX as well as the changes in radionuclide (U, Th, Eu) speciation via ultrafiltration or via time-resolved laser fluorescence spectroscopy (TRLFS) analysis in the case of Cm(III). Based on PHREEQC saturation index (SI) calculations a precipitation of calcite might be expected at low Febex porewater (FPW) content (< 20%), fluorite precipitation at FPW contents < 60% and gibbsite precipitation at FPW contents above 10%. The colloids generated in the mixing zone aggregate when the synthetic FPW content exceeds 10%. LIBD analysis of the time-dependent colloid generation/aggregation revealed a low concentration of colloids to be stable with an estimated plateau value around 100–200 ppt and an average colloid diameter around 30 nm after 140 days reaction time at FPW admixture > 10%. SEM/EDX mostly identifies Al/Si containing colloidal phases and some sulfates could be found under certain admixture ratios. TRLFS studies show that the Cm speciation is strongly influenced by colloid formation in all solutions. In the Febex pore water/GGW mixing zone with high groundwater contents (> 80%) colloids are newly formed and Cm is almost quantitatively associated with most likely polysilicilic acid colloids.  相似文献   

5.
A borehole in the Callovo–Oxfordian clay rock in ANDRA's underground research facility was sampled during 1 year and chemically analyzed. Diffusion between porewater and the borehole solution resulted in concentration changes which were modeled with PHREEQC's multicomponent diffusion module. In the model, the clay rock's pore space is divided in free porewater (electrically neutral) and diffuse double layer water (devoid of anions). Diffusion is calculated separately for the two domains, and individually for all the solute species while a zero-charge flux is maintained. We explain how the finite difference formulas for radial diffusion can be translated into mixing factors for solutions. Operator splitting is used to calculate advective flow and chemical reactions such as ion exchange and calcite dissolution and precipitation. The ion exchange reaction is formulated in the form of surface complexation, which allows distributing charge over the fixed sites and the diffuse double layer. The charge distribution affects pH when calcite dissolves, and modeling of the experimental data shows that about 7% of the cation exchange capacity resides in the diffuse double layer. The model calculates the observed concentration changes very well and provides an estimate of the pristine porewater composition in the clay rock.  相似文献   

6.
7.
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept.In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution–precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.  相似文献   

8.
The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.  相似文献   

9.
Natural colloids in groundwater could facilitate radionuclide transport, provided the colloids are mobile, are present in sufficient concentrations and can adsorb radionuclides. This paper describes the results of a laboratory migration study carried out with combinations of radionuclides and natural colloids within a fracture in a large granite block to experimentally determine the impact of colloids on radionuclide transport. The 85Sr used in this study is an example of a moderately sorbing radionuclide, while the 241Am is typical of a strongly sorbed radionuclide with very low solubility. The natural colloids used in this study were isolated from granite groundwater from Atomic Energy of Canada (AECL) Underground Research Laboratory (URL), and consisted of mostly 1-10 nm organic colloids, along with lesser amounts of 10-450 nm colloids (organics and aluminosilicates). The measured coefficients for radionuclide sorption onto these colloids were between 3 x 10(2) and 1 x 10(3) ml/g for 85Sr, and between 7 x 10(4) and 7 x 10(5) mg/l for 241Am. The 85Sr sorption on the natural colloids appeared to be reversible. Migration experiments in the granite block were carried out by establishing a flow field between two boreholes (out of a total of nine) intersecting a main horizontal fracture. These experiments showed that dissolved 85Sr behaved as a moderately sorbing tracer, while dissolved 241Am was completely adsorbed by the fracture surfaces and showed no evidence of transport. However, when natural colloids were injected together with dissolved 241Am, a small amount of 241Am transport was observed, demonstrating the ability of natural colloids to facilitate the transport of radionuclides with low solubility. Natural colloids had only a minor effect on the transport of 85Sr. In a separate experiment to test the effect of higher colloid concentrations on 85Sr migration, synthetic colloids were produced from Avonlea bentonite. The introduction of a relatively high concentration of bentonite colloids actually reduced 85Sr transport because, compared to natural colloids, the bentonite colloids were less mobile and they sorbed 85Sr more strongly.  相似文献   

10.
Bentonites are preferred materials for use as engineered barriers for high-level nuclear waste repositories. Simulation of geochemical processes in bentonite is therefore important for long-term safety assessment of those repositories. In this work, the porewater chemistry of a bentonite sample subject to simultaneous heating and hydration, as studied by Cuevas et al. [Cuevas, J., Villar, M., Fernández, A., Gómez, P., Martín, P., 1997. Porewaters extracted from compacted bentonite subjected to simultaneous heating and hydration. Applied Geochemistry 12, 473-481.], was assessed with a non-isothermal reactive transport model by coupling the geochemical software PHREEQC2 with the object-oriented FEM simulator GeoSys/RockFlow. Reactive transport modelling includes heat transport, two-phase flow, multicomponent transport and geochemical reactions in the liquid phase, i.e. ion exchange, mineral dissolution/precipitation and equilibrium reactions. Simulations show that the easily soluble minerals in bentonite determine the porewater chemistry. Temperature affects both two-phase flow and geochemical reactions. Porosity change due to dissolution/precipitation is low during the experiment. However, changes of the effective porosity caused by bentonite swelling can be very large. The simulated results agree well with the experimental data.  相似文献   

11.
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A stoichiometrically balanced increase in magnesium concentration with decreasing ammonium and potassium concentrations indicated that cation exchange was the sorption mechanism in the slough porewater. Only a partial mass balance could be determined for cations exchanged for ammonium and potassium in the aquifer, indicating that some irreversible sorption may be occurring.Although wetlands commonly are expected to decrease fluxes of contaminants in riparian environments, enhanced attenuation of the leachate contaminants in the slough sediment porewater compared to the aquifer was not observed in this study. The lack of enhanced attenuation can be attributed to the fact that the anoxic plume, comprised largely of recalcitrant DOC and reduced inorganic constituents, interacted with anoxic slough sediments and porewaters, rather than encountering a change in redox conditions that could cause transformation reactions. Nevertheless, the attenuation processes in the narrow zone of groundwater/surface-water interaction were effective in reducing ammonium concentrations by a factor of about 3 during lateral transport across the slough and by a factor of 2 to 10 before release to the surface water. Slough porewater geochemistry also indicated that the slough could be a source of sulfate in dry conditions, potentially providing a terminal electron acceptor for natural attenuation of organic compounds in the leachate plume.  相似文献   

12.
Many countries intend to use compacted bentonite as a barrier in their deep geological repositories for nuclear waste. In order to describe and predict hydraulic conductivity or radionuclide transport through the bentonite barrier, fundamental understanding of the microstructure of compacted bentonite is needed. This study examined the interlayer swelling and overall microstructure of Wyoming Bentonite MX-80 and the corresponding homo-ionic Na(+) and Ca(2+) forms, using XRD with samples saturated under confined swelling conditions and free swelling conditions. For the samples saturated under confined conditions, the interparticle, or so-called free or external porosity was estimated by comparing the experimental interlayer distances obtained from one-dimensional XRD profile fitting against the maximum interlayer distances possible for the corresponding water content. The results showed that interlayer porosity dominated total porosity, irrespective of water content, and that the interparticle porosity was lower than previously reported in the literature. At compactions relevant for the saturated bentonite barrier (1.4-1.8 g/cm(3)), the interparticle porosity was estimated to ≤3%.  相似文献   

13.
Uranium is being actively transported from uraniferous sedimentary rocks into a peat bog at the Broubster natural analogue site in Caithness, Scotland. Massive calcareous sandstone within the Caithness Flags sequence is the main source of uranium which resides primarily within diagenetic apatite and dispersed U---Si---Ti phases. Supergene weathering processes have decalcified the sandstone and are effective in mobilising uranium by groundwater leaching, primarily along a fault zone. Uranium transport in solution by means of groundwater and surface flows is effectively terminated by retardation within 4-kyr-old peat deposits laid down on boulder clay. This process of secondary fixation has resulted in a young uranium anomaly in the peat which comprises in excess of 0.1 wt% U. The site has been investigated comprehensively to define the geometry of the anomaly together with the hydrogeology, hydrochemistry, petrology, mineralogy and the nature of the peat sink-term. The main physical and geochemical properties of the system, including the uranium decay series radionuclide distributions in water and solid samples, are documented in this paper. From these data, the processes governing the distribution of uranium have been quantified using a three-dimensional groundwater flow package and an equilibrium speciation model incorporating a recently developed electrostatic surface complexation model to account for cation-organic interactions. The results described form part of a coordinated project on natural radionuclide migration undertaken to improve confidence in predictive methods used for radiological assessment.  相似文献   

14.
Diffusion mechanism of chloride ions in sodium montmorillonite   总被引:4,自引:0,他引:4  
For safety assessment of geological disposal of HLW, it is necessary to understand the diffusion mechanism of radionuclides in compacted bentonite. In this study, the diffusion behavior of chloride ions in compacted montmorillonite was studied from the viewpoints of the activation energy for apparent diffusion and the basal spacing of the compacted montmorillonite. A unique change in the activation energy as a function of the dry density of the montmorillonite was found. The activation energy decreased from 17.4 to 13.5 kJ mol-1 as the dry density increased from 0.7 to 1.0 Mg m-3 and increased to 25.1 kJ mol-1 at dry densities above 1.0 Mg m-3. The basal spacing of 1.88 nm, corresponding to the three-water layer hydrate state, was not observed by X-ray diffraction (XRD) until the dry density increased to 1.0 Mg m-3, where the minimum activation energy was obtained. On the other hand, a basal spacing of 1.56 nm, corresponding to the two-water layer hydrate state, was observed at the dry densities of 1.4 Mg m-3 and above, where the activation energies were more than 22 kJ mol-1. These experimental results suggest that there are at least two additional diffusion processes that can raise or reduce the activation energy and are affected by water in the region adjacent to the montmorillonite surfaces. If the "Grahame model" can be introduced to describe the electrical double layer, surface diffusion will be considered the possible predominant diffusion process, even for anions like chloride ions.  相似文献   

15.
皂土对CuCl2的吸附性能   总被引:1,自引:0,他引:1  
研究了CuCl2在荷结构负电荷皂土上的吸附性能,考察了pH、无机以及有机添加剂等因素的影响,并结合IR和XRD实验结果探讨了吸附机理。研究表明,皂土对CuCl2有很强的吸附能力,其吸附动力学和吸附等温线分别符合准二级速率方程和Langmuir方程。初始pH增大,吸附量增加。无机以及有机添加剂均能能明显抑制吸附。Cu2+在皂土上的吸附层在微观上可分为因化学键合作用而形成的内络合层和因静电作用而形成的外络合层。  相似文献   

16.
研究了CuCl2在荷结构负电荷皂土上的吸附性能,考察了pH、无机以及有机添加剂等因素的影响,并结合IR和XRD实验结果探讨了吸附机理。研究表明,皂土对CuCl2有很强的吸附能力,其吸附动力学和吸附等温线分别符合准二级速率方程和Langmuir方程。初始pH增大,吸附量增加。无机以及有机添加剂均能能明显抑制吸附。Cu2+在皂土上的吸附层在微观上可分为因化学键合作用而形成的内络合层和因静电作用而形成的外络合层。  相似文献   

17.
The geochemical suitability of a deep bedrock repository for radioactive waste disposal is determined by the composition of geomatrix and groundwater. Both influence radionuclide solubility, chemical buffer capacity and radionuclide retention. They also determine the chemical compatibility of waste forms, containers and backfill materials. Evaluation of different groundwater-host rock systems is performed by modeling the geochemical environments and the resulting radionuclide concentrations. In order to demonstrate the evaluation method, model calculations are applied to data sets available for various geological formations such as granite, clay and rocksalt. The saturation state of the groundwater-geomatrix system is found to be fundamental for the evaluation process. Hence, calculations are performed to determine if groundwater is in equilibrium with mineral phases of the geological formation. In addition, corrosion of waste forms in different groundwater is examined by means of reaction path modeling. The corrosion reactions change the solution compositions and pH, resulting in significant changes of radionuclide solubilities. The results demonstrate that geochemical modeling of saturation state and compatibility of the host formation environment with the radioactive waste proves to be a feasible tool for evaluation of various sites considered as deep underground repositories.  相似文献   

18.
The geochemical suitability of a deep bedrock repository for radioactive waste disposal is determined by the composition of geomatrix and groundwater. Both influence radionuclide solubility, chemical buffer capacity and radionuclide retention. They also determine the chemical compatibility of waste forms, containers and backfill materials. Evaluation of different groundwater–host rock systems is performed by modeling the geochemical environments and the resulting radionuclide concentrations. In order to demonstrate the evaluation method, model calculations are applied to data sets available for various geological formations such as granite, clay and rocksalt.The saturation state of the groundwater–geomatrix system is found to be fundamental for the evaluation process. Hence, calculations are performed to determine if groundwater is in equilibrium with mineral phases of the geological formation. In addition, corrosion of waste forms in different groundwater is examined by means of reaction path modeling. The corrosion reactions change the solution compositions and pH, resulting in significant changes of radionuclide solubilities. The results demonstrate that geochemical modeling of saturation state and compatibility of the host formation environment with the radioactive waste proves to be a feasible tool for evaluation of various sites considered as deep underground repositories.  相似文献   

19.
The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (approximately 1 x 10(-3) M) and alkaline (pH > or = 8) waters.  相似文献   

20.
The humic colloid borne Am(III) transport was investigated in column experiments for Gorleben groundwater/sand systems. It was found that the interaction of Am with humic colloids is kinetically controlled, which strongly influences the migration behavior of Am(III). These kinetic effects have to be taken into account for transport/speciation modeling. The kinetically controlled availability model (KICAM) was developed to describe actinide sorption and transport in laboratory batch and column experiments. Application of the KICAM requires a chemical transport/speciation code, which simultaneously models both kinetically controlled processes and equilibrium reactions. Therefore, the code K1D was developed as a flexible research code that allows the inclusion of kinetic data in addition to transport features and chemical equilibrium. This paper presents the verification of K1D and its application to model column experiments investigating unimpeded humic colloid borne Am migration. Parmeters for reactive transport simulations were determined for a Gorleben groundwater system of high humic colloid concentration (GoHy 2227). A single set of parameters was used to model a series of column experiments. Model results correspond well to experimental data for the unretarded humic borne Am breakthrough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号