首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.  相似文献   

2.
Porewater chemistry in compacted re-saturated MX-80 bentonite   总被引:2,自引:0,他引:2  
Bentonites of various types are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Being able to understand the chemistry of the porewater in compacted bentonite is very important since it is critical to predicting radionuclide solubilities and to the synthesis of sorption data bases, and hence to repository safety studies. In this paper, porewater compositions in compacted bentonites are calculated, taking into consideration such factors as montmorillonite swelling, semi-permeable membrane effects, very low "free water" volumes, and the highly effective buffering characteristics of the exchangeable cations and the amphoteric edge sites. The former buffer the cation concentrations and the latter fix the pH in the porewater of a re-saturated bentonite. The above considerations are used in conjunction with previously measured physico-chemical characterisation data on MX-80 powder to calculate porewater compositions in compacted bentonites. For the MX-80 material specified, the porewaters calculated for initial dry densities between 1200 and 1600 kg m(-3) had relatively high ionic strengths (I approximately 0.3 M), similar cation concentrations and a pH equal to 8.0. The porewaters changed from being Na(2)SO(4)-rich at 1200 kg m(-3) to a NaCl/Na(2)SO(4) type water at 1600 kg m(-3).  相似文献   

3.
4.
负载壳聚糖膨润土的制备及其吸附性能的影响   总被引:2,自引:0,他引:2  
邵红  程慧  李佳琳 《环境工程学报》2009,3(9):1597-1601
以天然膨润土和壳聚糖为原料,制得一种新型水处理剂——负载壳聚糖膨润土,研究了制备条件对酸性大红印染废水处理效果的影响。实验表明,当壳聚糖的浓度为30 g/L、膨润土质量与壳聚糖溶液体积之比为0.7、浸泡时间80 min、微烘时间15 min时,壳聚糖改性膨润土对酸性大红印染废水的脱色率可达97%。对改性土进行比表面积测定、电镜扫描及X-射线衍射等结构特性分析,证明壳聚糖的引入改变了膨润土在水中的分散状态,增强了其对污染物的吸附和离子交换能力。  相似文献   

5.
In the context of deep geological storage of high level nuclear waste the repository will be designed as multiple barrier system including bentonite as buffer/backfill material and the host rock formation as geological barrier. The engineered barrier (bentonite) will be in contact with the host rock formation and consequently it can be expected that bentonite porewater will mix with formation groundwater. We simulate in this study the mixing of Grimsel groundwater (glacial melt water) with synthetic Febex porewater (assuming already saturated state) in a batch-type study and investigate the formation of colloids by laser-induced breakdown detection (LIBD) and SEM-EDX as well as the changes in radionuclide (U, Th, Eu) speciation via ultrafiltration or via time-resolved laser fluorescence spectroscopy (TRLFS) analysis in the case of Cm(III). Based on PHREEQC saturation index (SI) calculations a precipitation of calcite might be expected at low Febex porewater (FPW) content (< 20%), fluorite precipitation at FPW contents < 60% and gibbsite precipitation at FPW contents above 10%. The colloids generated in the mixing zone aggregate when the synthetic FPW content exceeds 10%. LIBD analysis of the time-dependent colloid generation/aggregation revealed a low concentration of colloids to be stable with an estimated plateau value around 100–200 ppt and an average colloid diameter around 30 nm after 140 days reaction time at FPW admixture > 10%. SEM/EDX mostly identifies Al/Si containing colloidal phases and some sulfates could be found under certain admixture ratios. TRLFS studies show that the Cm speciation is strongly influenced by colloid formation in all solutions. In the Febex pore water/GGW mixing zone with high groundwater contents (> 80%) colloids are newly formed and Cm is almost quantitatively associated with most likely polysilicilic acid colloids.  相似文献   

6.
Bentonites are preferred materials for use as engineered barriers for high-level nuclear waste repositories. Simulation of geochemical processes in bentonite is therefore important for long-term safety assessment of those repositories. In this work, the porewater chemistry of a bentonite sample subject to simultaneous heating and hydration, as studied by Cuevas et al. [Cuevas, J., Villar, M., Fernández, A., Gómez, P., Martín, P., 1997. Porewaters extracted from compacted bentonite subjected to simultaneous heating and hydration. Applied Geochemistry 12, 473-481.], was assessed with a non-isothermal reactive transport model by coupling the geochemical software PHREEQC2 with the object-oriented FEM simulator GeoSys/RockFlow. Reactive transport modelling includes heat transport, two-phase flow, multicomponent transport and geochemical reactions in the liquid phase, i.e. ion exchange, mineral dissolution/precipitation and equilibrium reactions. Simulations show that the easily soluble minerals in bentonite determine the porewater chemistry. Temperature affects both two-phase flow and geochemical reactions. Porosity change due to dissolution/precipitation is low during the experiment. However, changes of the effective porosity caused by bentonite swelling can be very large. The simulated results agree well with the experimental data.  相似文献   

7.
The present Spanish concept of a deep geological high level waste repository includes an engineered clay barrier around the canister. The clay presents a very high sorption capability for radionuclides and a very small hydraulic conductivity, so that the migration process of solutes is limited by sorption and diffusion processes. Therefore, diffusion and distribution coefficients in compacted bentonite (i.e. in "realistic" liquid to solid ratio conditions) are the main parameters that have to be obtained in order to characterise solute transport that could be produced after the canister breakdown. Through-Diffusion (TD) and In-Diffusion (ID) experiments with HTO, Sr, Cs and Se were carried out using compacted FEBEX bentonite, which is the reference material for the Spanish concept of radioactive waste disposal. Experiments were interpreted by means of available analytical solutions that allow the estimation of diffusion coefficients and, in some cases, distribution coefficients. Analytical solutions are simple to use, but rely on hypotheses that do not hold in all the experiments. These experiments were interpreted also using an automatic parameter estimation code that overcomes the limitations of analytical solutions. Numerical interpretation allows the simultaneous estimation of porosity, diffusion and distribution coefficients, accounts for the role of porous sinters and time-varying boundary concentrations, and can use different types of raw concentration data.  相似文献   

8.
Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX (Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.  相似文献   

9.
Diffusion mechanism of chloride ions in sodium montmorillonite   总被引:4,自引:0,他引:4  
For safety assessment of geological disposal of HLW, it is necessary to understand the diffusion mechanism of radionuclides in compacted bentonite. In this study, the diffusion behavior of chloride ions in compacted montmorillonite was studied from the viewpoints of the activation energy for apparent diffusion and the basal spacing of the compacted montmorillonite. A unique change in the activation energy as a function of the dry density of the montmorillonite was found. The activation energy decreased from 17.4 to 13.5 kJ mol-1 as the dry density increased from 0.7 to 1.0 Mg m-3 and increased to 25.1 kJ mol-1 at dry densities above 1.0 Mg m-3. The basal spacing of 1.88 nm, corresponding to the three-water layer hydrate state, was not observed by X-ray diffraction (XRD) until the dry density increased to 1.0 Mg m-3, where the minimum activation energy was obtained. On the other hand, a basal spacing of 1.56 nm, corresponding to the two-water layer hydrate state, was observed at the dry densities of 1.4 Mg m-3 and above, where the activation energies were more than 22 kJ mol-1. These experimental results suggest that there are at least two additional diffusion processes that can raise or reduce the activation energy and are affected by water in the region adjacent to the montmorillonite surfaces. If the "Grahame model" can be introduced to describe the electrical double layer, surface diffusion will be considered the possible predominant diffusion process, even for anions like chloride ions.  相似文献   

10.
It is known that under unsaturated conditions, the transport of solutes can deviate from ideal advective-dispersive behaviour even for macroscopically homogeneous porous materials. Causes may include physical non-equilibrium, sorption kinetics, non-linear sorption, and the irregular distribution of sorption sites. We have performed laboratory experiments designed to identify the processes responsible for the non-ideality of radioactive Sr transport observed under unsaturated flow conditions in an Aeolian sandy deposit from the Chernobyl exclusion zone. Miscible displacement experiments were carried out at various water contents and corresponding flow rates in a laboratory model system. Results of our experiments have shown that breakthrough curves of a conservative tracer exhibit a higher degree of asymmetry when the water content decreases than at saturated water content and same Darcy velocity. It is possible that velocity variations caused by heterogeneities at the macroscopic scale are responsible for this situation. Another explanation is that molecular diffusion drives the solute mass transfer between mobile and immobile water regions, but the surface of contact between these water regions is small. At very low concentrations, representative of a radioactive Sr contamination of the pore water, sorption and physical disequilibrium dominate the radioactive Sr transport under unsaturated flow conditions. A sorption reaction is described by a cation exchange mechanism calibrated under fully saturated conditions. The sorption capacity, as well as the exchange coefficients are not affected by desaturation. The number of accessible exchange sites was calculated on the basis that the solid remained in contact with water and that the fraction of solid phase in contact with mobile water is numerically equal to the proportion of mobile water to total water content. That means that for this type of sandy soil, the nature of mineral phases is the same in advective and non-advective domains. So sorption reaction parameters can be estimated from more easily conducted saturated experiments, but hydrodynamic behaviour must be characterized by conservative tracer experiments under unsaturated flow conditions.  相似文献   

11.
Diffusion experiments in compacted bentonite have been carried out in situ using the borehole laboratory CHEMLAB. The "ordinary" anion iodide and the redox-sensitive pertechnetate ion have been investigated. In spite of strongly reducing groundwater conditions, technetium was found to diffuse mostly unreduced as TcO4-, although in some spots in the compacted clay, the activity was significantly higher, which may be explained by reduction of some TcO4- by iron-containing minerals in the bentonite. The measured concentration profiles in the clay cannot be accommodated by assuming one single diffusion process. The experimental data are modeled assuming two diffusion paths, intralamellar diffusion and diffusion in external water. The apparent diffusivity for the intralamellar diffusion was found to be 8.6 x 10(-11) m2 s(-1) for iodide with a capacity factor of 0.1, while the apparent diffusivity for the diffusion in external water was found to be 5 x 10(-14) m2 s(-1) with alpha=2.26. The corresponding values for Tc were found to be Da= 6 x 10(-11) m2 s(-1), alpha=0.1 and Da= 1 x 10(-13) m2 s(-1), alpha=0.46, respectively. The diffusion constants and capacity factors obtained in this study are in accordance with data from laboratory experiments.  相似文献   

12.
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept.In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution–precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.  相似文献   

13.
The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (approximately 1 x 10(-3) M) and alkaline (pH > or = 8) waters.  相似文献   

14.
In the Hesbaye region in Belgium, tracer tests performed in variably saturated fissured chalk rocks presented very contrasting results in terms of transit times, according to artificially controlled water recharge conditions prevailing during the experiments. Under intense recharge conditions, tracers migrated across the partially or fully saturated fissure network, at high velocity in accordance with the high hydraulic conductivity and low effective porosity (fracture porosity). At the same time, a portion of the tracer was temporarily retarded in the almost immobile water located in the matrix. Under natural infiltration conditions, the fissure network remained inactive. Tracers migrated downward through the matrix, at low velocity in relation with the low hydraulic conductivity and the large porosity of the matrix. Based on these observations, Brouyère et al. (2004a) [Brouyère, S., Dassargues, A., Hallet, V., 2004a. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation, J. Contam. Hydrol., 72 (1-4), 135-164, doi: 10.1016/j.conhyd.2003.10.009] proposed a conceptual model in order to explain the migration of solutes in variably saturated, dual-porosity, dual-permeability chalk. Here, mathematical and numerical modelling of tracer and contaminant migration in variably saturated fissured chalk is presented, considering the aforementioned conceptual model. A new mathematical formulation is proposed to represent the unsaturated properties of the fissured chalk in a more dynamic and appropriate way. At the same time, the rock water content is partitioned between mobile and immobile water phases, as a function of the water saturation of the chalk rock. The groundwater flow and contaminant transport in the variably saturated chalk is solved using the control volume finite element method. Modelling the field tracer experiments performed in the variably saturated chalk shows the adequacy and usefulness of the new conceptual, mathematical and numerical model.  相似文献   

15.
Various construction materials are under consideration for nuclear waste repositories. Two important materials are concrete and bentonite clay, which will act as mechanical barriers and prevent convective water flow. These barriers will also retard transport (diffusion controlled) of dissolved radionuclides by a combination of mechanical constraints and chemical interactions with the solid.An important issue is the possible change of the initial sodium bentonite into the calcium form due to interaction with calcium from the concrete. The initial leaching of concrete was studied using radioactive spiked concrete in contact with compacted bentonite.Measurement were made of the diffusion of Cs, Am and Pu into 5 different types of concrete in contact with pore water. The diffusivity measured for Cs agrees reasonably well with data found in the literature. No movement could be measured for Am and Pu (< 0.2 mm), even though the contact times were extremely long (2.5 and 5 yr, respectively). The diffusion of Na, Ca and Cs from concrete into bentonite was also measured.  相似文献   

16.
Mechanistic model calculations for the migration of Cs, Ra, Am and Pb in compacted bentonite have been carried out to evaluate sensitivities with respect to different parameter variations. A surface chemical speciation/electric double layer model is used to calculate: (i) porewater composition and radionuclide speciation in solution and at the bentonite surface, yielding the distribution of mobile and sorbed species and (ii) interaction of diffusing species with negatively charged pore walls to obtain diffusion parameters. The basic scenario considers the interaction of compacted bentonite with a fresh-type groundwater; variations include the presence of bentonite impurities and saline groundwater. It is shown that these scenarios result in significant variations of porewater composition that affect migration via three mechanisms that can partly compensate each other: (1) effects on sorption through radionuclide complexation in solution, and competition of major cations for surface sites; (2) changes in radionuclide solution speciation leading to different diffusing species under different conditions; (3) effects on diffusion through changes in the electric double layer properties of the clay pores as a function of ionic strength.  相似文献   

17.
The effect of exchangeable cation — Na+ and Ca 2+ — on the diffusive transport of I, Sr 2+ and 3H (as HTO) in compacted bentonite was examined using a through-diffusion method. Total intrinsic diffusion coefficients, Di, were determined from the steady-state flux of the diffusants through the clays, and apparent diffusion coefficients, Da, were obtained from the time lag technique. The clays were compacted to a dry bulk density of 1.3 Mg/m3, and Na-bentonite was saturated with a solution of 100 mol NaCl/m3 and Ca-bentonite with one of 50 mol CaCl2/m3. The Di values for all diffusants are 2 to 6 times higher in the Ca- than Na-clay. We attribute this to the larger quasicrystal, or particle, size of Ca- compared to Na-bentonite. Hence, Ca-bentonite has a greater proportion of relatively large pores; this was confirmed by Hg intrusion porosimetry. This means the diffusion pathways in Ca-bentonite are less tortuous than those in Na-bentonite. Moreover, in some cases the effective porosity, or the porosity available for diffusive transport, may be greater in Ca-bentonite. The Da values are inversely proportional to the distribution coefficients of the diffusants with the clays.  相似文献   

18.
Diffusion is considered the principal transport mechanism of radio-nuclides and other low-molecular-weight pollutants in compacted clays used as barriers at various disposal and storage sites, for example, at projected deep repositories for radioactive waste. Porous filters are routinely used to confine swelling clays in diffusion studies of radio-tracers. The presence of the filter gives rise to considerable mass-transfer limitations at the clay boundary that result in erroneous diffusion parameters. We have solved the problem of in-diffusion with due account for this phenomenon by means of Fourier transforms. By using literature data on the in-diffusion of traces of radioactive cesium in an argillaceous rock (Opalinus clay) and a compacted bentonite (FEBEX bentonite), we have demonstrated that taking into account the mass-transfer limitations considerably improves the quality of the theoretical fit of the time evolution of radio-tracer concentration in the reservoir. Besides that, we have shown that ignoring the mass-transfer limitations leads to a noticeable underestimation of both the effective diffusion coefficient and the specific sorption capacity of the clay.  相似文献   

19.
Literature data for anion diffusion in compacted swelling clays contain systematic inconsistencies when the results of through-diffusion tests are compared with those of out-diffusion or tracer profile analysis. In the present work we investigated whether these inconsistencies can be explained by taking into account heterogeneities in the compacted samples; in particular increased porosities at the clay boundaries. Based on the combined results of out-diffusion, tracer profile analysis and the spatial distribution of the electrolyte anion in the clay, we conclude that the inconsistencies can indeed be resolved by taking into account a heterogeneous distribution of the total and the anion-accessible porosity. This, by definition, leads to a position dependence of the effective diffusion coefficient. Neglecting these effects results in a rather subordinate systematic error in the determination of effective diffusion coefficients of anions from through-diffusion tests with clay thicknesses in the centimetre range. However, stronger errors in terms of absolute values and conceptual interpretation may be introduced in out-diffusion tests and profile analyses of the diffused tracer. We recommend that anion diffusion tests should be accompanied by measurements of the total and anion-accessible porosity as a function of position in the direction of diffusion.  相似文献   

20.
Preparations of organobentonite using nonionic surfactants   总被引:12,自引:0,他引:12  
Shen YH 《Chemosphere》2001,44(5):989-995
Due to hydrophilic environment at its surface, natural bentonite is an ineffective sorbent for nonpolar nonionic organic compounds in water even though it has high surface area. The surface properties of natural bentonite can be greatly modified by simple ion-exchange reactions with large organic cations (cationic surfactants) and this organobentonite is highly effective in removing nonionic organic compounds from water. Cationic surfactant derived organobentonites have been investigated extensively for a wide variety of environmental applications. In this study, the preparation of organobentonite using nonionic surfactants has been investigated for the first time. Results indicate that nonionic surfactants intercalates into the interlamellar space of bentonite and may demonstrate higher sorption capacity than cationic surfactant. It is possible to create large interlayer spacing and high organic carbon content organobentonite by use of nonionic surfactants with suitable balance between the hydrocarbon and ethylene oxide chain lengths. In addition, nonionic surfactant derived organobentonites are more chemically stable than cationic surfactant derived organobentonites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号