首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 136 毫秒
1.
选取引江济太工程中长江来水进入太湖第一站的贡湖湾为研究对象,基于2011年11月~2013年8月在贡湖湾的逐月野外调查,同时以湖心水域为参考,探讨引江济太对湖体N2O通量的影响.结果表明,贡湖湾N2O排放通量要显著高于湖心排放量,其N2O通量均值分别为6.9,2.1μmol/(m2·d),但在非引水期间2个湖区的N2O通量无显著差异.贡湖湾和湖心N2O通量呈现明显的季节变化,且均与水温呈显著负相关关系,但因受外源来水的影响,贡湖湾N2O通量的温度依赖程度相对较低.另外,2个湖区的N2O通量还与营养盐等因素有关.总体上,外源引水提高了贡湖湾N2O排放通量,但考虑到湖泊N2O通量受到内部和外部因子的综合协同影响,外源引水对湖泊N2O通量的具体调控机理还需要进一步探讨.  相似文献   

2.
对太湖典型草(包括沉水植物及挺水植物湖区)、藻型湖区水-气界面N2O排放通量、水柱溶存浓度、泥-水界面通量以及3个湖区的水柱及沉积物理化性质进行了原位观测及实验室分析研究,并针对影响N2O生成与排放的主要环境因子进行了室内的微环境模拟试验.研究结果表明:水-气界面N2O释放通量及泥-水界面N2O释放通量为藻型湖区 > 沉水植物湖区 > 挺水植物湖区((123.10±11.43)μg/(m2·h),(79.19±4.90)μg/(m2·h),(53.45±4.22)μg/(m2·h)和(29.60±0.20)μmol/(m2·h),(10.89±1.66)μmol/(m2·h),(3.83±0.30)μmol/(m2·h));水体溶存N2O浓度均为藻型湖区 > 挺水植物湖区 > 沉水植物湖区((0.0247±0.0003)μmol/L,(0.0236±0.0003)μmol/L,(0.0219±0.0001)μmol/L);室内微环境实验结果表明:冬季升高温度能够显著地提高N2O的生成潜力,高盐度对3种生态类型湖区沉积物N2O的生成速率总体表现出抑制作用,藻型湖区及挺水植物湖区沉积物N2O释放潜力在添加Cl-组明显高于控制组,氮盐度过高会抑制沉积物N2O产生,而沉水植物湖区沉积物N2O产生受到抑制;随添加NH+4-N和NO-3-N等营养盐浓度升高,藻型湖区及沉水植物湖区沉积物中N2O生成速率增加,挺水植物湖区N2O生成速率降低,而乙酸盐作为微生物活动的碳源和能源对N2O生成表现出抑制作用.冬季太湖典型草、藻型湖区N2O排放存在显著差异,冬季草/藻型湖区N2O生成主要受冬季低温的限制,另外也受水柱无机氮形态及浓度的影响.  相似文献   

3.
为明确外源硝态氮添加对典型耕作土壤冻结过程N2O排放的影响,应用室内冰柜模拟土壤冻结过程,研究在室温-冻结过程中硝态氮添加(0、80、200和500 mg/kg)对3种典型耕作土壤(黑土、潮土和黄土)N2O排放影响的特征. 结果表明:外源硝态氮的添加促进了黑土和潮土的N2O排放,在200 mg/kg硝态氮添加处理下,黑土和潮土的N2O排放通量比CK(对照)分别增加了849%和676%;但在添加高浓度(500 mg/kg)硝态氮时,黑土和潮土的N2O排放通量分别比200 mg/kg处理降低39.3%和21.2%,表现为显著抑制. 随冻结过程的进行,黑土和潮土的N2O排放通量均逐渐降低并接近零排放. 黄土N2O排放通量在室温-冻结过程中变化范围很小,甚至出现负排放. 多因素方差分析结果表明,土壤类型显著影响N2O累计排放量,而土壤pH和C/N是其中重要的影响因子. 根据室内培养试验结果,为减排N2O,建议在深秋整地施肥时期尽量避免在潮土和黑土中施用硝态氮肥. 黄土的N2O排放似乎对外源硝态氮的添加反应不明显,这有待在大田气候-植物-土壤综合条件下进一步验证.   相似文献   

4.
农业流域水体氮循环过程与农业活动有着十分紧密联系,会随着农业活动的持续进行而成为大气N2O的重要排放源.小型池塘具有灌溉、蓄水和纳污等多种功能,是农业种植区和农村景观的重要组成部分.以巢湖北岸典型农业流域烔炀河流域为研究对象,选取3种不同类型(村塘、农塘和水塘),共计6个池塘,于2020年9月至2021年9月连续采样观测,探究了农业流域不同景观池塘N2O排放特征及其影响因素.结果表明,用于生活污水承纳的村塘N2O排放最高,其次为用于农业灌溉的农塘,其N2O排放通量分别为流域自然水塘排放量[(1.33±2.50)μmol·(m2·d)-1]的8倍和4倍.连续观测表明不同景观池塘N2O排放表现出明显的时间变化特征,但其N2O排放时间变化的调控因子有所不同.其中,村塘与农塘N2O排放主要受氮负荷和降雨影响,而远离村庄农田的水塘N2O排放变化主要受水温驱动.烔炀河流域池塘是大气...  相似文献   

5.
为了明确曝气灌溉下土壤N2O排放特征及主要影响因子,实验设置了2个灌水量(70%和90%田间持水量)和2个增氧水平(5,40mg/L),采用静态箱法和qPCR技术对土壤N2O通量及土壤关键功能基因进行测定,研究不同灌水量和增氧水平对土壤充水孔隙度、溶解氧、氧化还原电位(Eh)、矿质氮及氨氧化古菌(AOA)、氨氧化细菌(AOB)和反硝化基因(narG和nosZ)的影响.结果表明:培养过程中,各处理N2O排放通量均呈现先增加后降低的趋势,于灌溉后1d达到峰值;曝气量和灌水量的增加可显著增加土壤N2O的排放通量和排放峰值.灌溉造成土壤含水量增加的同时,降低了土壤溶解氧和Eh;曝气可提高土壤溶解氧和Eh,改善土壤通气性(P<0.05),而对土壤充水孔隙度无显著影响.土壤充水孔隙度、Eh、NO3--N含量是曝气灌溉下驱动土壤N2O排放的主要理化因子.曝气显著增加了AOA的基因拷贝数,且N2O排放与AOA的基因拷贝数呈显著正相关关系(P<0.05).研究结果为进一步明确曝气灌溉对土壤N2O排放的影响机制和曝气灌溉模式下农田N2O排放管理提供支撑.  相似文献   

6.
大兴安岭地区岛状林沼泽CH4和N2O排放及其影响因子   总被引:1,自引:0,他引:1  
沼泽湿地CH4、N2O的排放,尤其是高纬度沼泽湿地,对于评估北半球温室气体排放具有重要意义。在2011 年生长季利用野外静态箱-气相色谱法对大兴安岭地区两种典型湿地岛状林沼泽(白桦和兴安落叶松岛状林沼泽)CH4、N2O排放通量进行了研究,分析CH4、N2O排放通量的季节特征,并探讨温度、水位主控因子对CH4、N2O排放通量的影响。结果表明:①生长季白桦(Betula platyphylla)和兴安落叶松(Larix gmelinii)岛状林沼泽CH4通量除春季白桦岛状林沼泽出现排放峰值外,两样地CH4都处于弱吸收现象;N2O排放高峰期分别在初夏、春两季。白桦和兴安落叶松岛状林沼泽CH4、N2O 排放通量依次为-60.61、-93.21 μg·m-2 ·h-1 和82.92、 45.06 μg·m-2 ·h-1。②兴安落叶松岛状林沼泽生长季CH4、N2O 排放通量分别与10~40 cm 和 15~40 cm土壤温度呈显著负相关性;而白桦岛状林沼泽CH4排放通量仅与40 cm土壤温度呈显著负相关,两种类型沼泽均与土壤含水率未呈显著相关性。③白桦和兴安落叶松岛状林沼泽生长季CH4、N2O总通量分别为-2.21、-2.74 kg·hm-2和2.74、0.93 kg·hm-2;表现为大气CH4弱吸收的汇,N2O弱排放的源。  相似文献   

7.
太湖不同湖区轮虫群落结构季节变化的比较研究   总被引:10,自引:3,他引:7  
2006年7月~2007年6月对太湖不同湖区(河口区、梅梁湾、太湖湖心区和贡湖湾)轮虫的季节变化进行了比较研究.整个研究期间,河口区、梅梁湾、太湖湖心区和贡湖湾轮虫种类数分别为23、15、14和21;河口区轮虫的年平均密度最高,为475个·L-1,梅梁湾最低,为164个·L-1,太湖湖心区为189个·L1-,贡湖湾为338个·L-1.4个湖区优势种不同,河口区轮虫优势种为萼花臂尾轮虫(B.cdyciflorus),梅梁湾为角突臂尾轮虫(B.angularis),太湖湖心区和贡湖湾优势种都是针簇多肢轮虫(P.trigla).食物的不同以及大型浮游甲壳动物的抑制作用,可能是太湖4个湖区轮虫群落结构不同的重要原因.相关分析表明,轮虫数量与枝角类数量、枝角类生物量和桡足类生物量极显著负相关;轮虫数量与透明度显著正相关.结果表明,太湖4个不同湖区轮虫群落结构不同.  相似文献   

8.
为探究弱水动力条件下, 典型滨海地区水体N2O释放通量及其主控因素, 于2019年7月和8月(夏季)和11月(冬季初期)对以大清河-独流减河-北大港湿地为代表的渤海湾弱水动力条件河流开展水样采集与分析工作.结果表明: N2O浓度变化范围为0.4~184.5nmol/L, N2O饱和度的变化范围为7.2%~2740%, 其中近90%的样品处于过饱和状态, 表明该研究区是潜在的N2O释放源.N2O水-气界面释放通量为-0.3~6.7μmol/(m2·h), 夏季水体N2O的释放通量高于冬季.降雨前后N2O浓度出现明显波动, 相同点位降雨前后N2O浓度的变化值为-15.2~63.9nmol/L, 独流减河上游农业区N2O浓度的平均增加量(22.1nmol/L)显著高于下游(1.3nmol/L), 降雨驱动了流域氮素的运移, 促进了水体N2O释放.相关性分析表明, 水体N2O的浓度受反应物浓度、水体盐度共同调控.通过计算得到该滨海地区弱水动力条件下河流N2O的排放因子为0.0073, 表明气候变化委员会(IPCC)默认值0.0026可能低估了该地区间接N2O释放.  相似文献   

9.
崇明东滩芦苇湿地温室气体排放通量及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
通过静态箱-气相色谱法对崇明东滩芦苇群落在生长周期内的3种温室气体——CH4、N2O和CO2的排放、吸收特征进行研究. 结果表明:芦苇群落湿地CH4排放通量受温度影响较大,夏季排放通量明显高于其他季节,年均排放通量为74.46μg/(m2·h);N2O年均排放通量为2.22μg/(m2·h),冬季排放通量最大;CO2的吸收率季节变化明显,年均排放通量为-101.93mg/(m2·h). 温度、芦苇植株光合作用及呼吸作用是影响CH4产生和排放的主要因素;而沉积物氮素不足和限制,则是促使芦苇群落表现出对N2O吸收的原因;芦苇的光合作用及土壤呼吸作用随温度和季节的变化是控制芦苇湿地CO2的排放和吸收的主要因素. 芦苇植株发达的通气组织是CH4和N2O由大气向沉积物扩散的通道,同时分子扩散过程也是沉积物产生的CH4、N2O和CO2扩散到大气中的途径和方式.   相似文献   

10.
富营养化湖区CH4排放特征及其影响因素   总被引:1,自引:0,他引:1  
为明确富营养湖区CH_4排放特征及其影响因素,对太湖梅梁湾湖区和湖心区进行为期1a的观测,分析影响富营养化湖泊CH_4扩散通量时空格局的环境要素.结果表明,太湖不同湖区均表现为大气CH_4的源,但富营养化梅梁湾湖区的CH_4扩散排放量[年均值:0. 140 mmol·(m~2·d)~(-1))]要明显高于中营养化湖心区的排放量[年均值:0. 024 mmol·(m~2·d)~(-1)],并且在富营养化湖区中,湖岸区的CH_4排放量最高. CH_4通量表现出显著的季节变化:夏季排放量最高,冬季排放量最低,并且季节间的差异可达一个数量级大小.太湖CH_4通量的空间变化与水体DOC浓度显著正相关(R~2=0. 62,P 0. 01),富营养化湖区中较高DOC浓度导致其出现高CH_4排放量.太湖CH_4扩散通量的时间变化受风速和水温等气象因素的驱动,部分水质因子对此有间接影响作用.鉴于湖泊CH_4扩散通量强烈的时空变化以及环境因素巨大的影响,湖泊CH_4排放量准确的估算依赖于较大空间和较长时间的观测.  相似文献   

11.
太湖典型湖区中胶体有机碳浓度的时空变化   总被引:3,自引:0,他引:3  
利用切向流超滤技术研究了太湖梅梁湾与贡湖湾2个不同生态类型的典型湖区在不同季节胶体有机碳(COC)的浓度变化,并同步观测了浮游植物、叶绿素(Chla)、悬浮物(SS)等背景指标.结果表明,作为藻型湖区的梅梁湾,其COC浓度夏季最高,秋季最低;作为草型湖区的贡湖湾.其COC浓度在秋季最高,冬季最低;太湖梅梁湾和贡湖湾COC浓度的差异和季节变化有关,夏季梅梁湾COC浓度高于贡湖湾,差异为一年中最大;太湖水体COC浓度和Chla浓度显著正相关(r=0.81,P=0.015),表明浮游植物的生命活动址太湖水体COC的一个重要来源.  相似文献   

12.
为了研究太湖的沼泽化现状,在考虑太湖生态类型空间分布多样性特征的基础上,遵循以水生植物为主、促淤效应为辅的沼泽化评价原则,选取水生植物类型、水生植物生物量、沉积速率、平均水深为指标,构建了沼泽化定量评价体系,并对太湖沼泽化综合指数进行分湖区计算.结果表明,太湖沼泽化程度可分3个水平:处于沼泽化盛期的东太湖,其沼泽化综合指数为2.81,为全湖最高;处于沼泽化前期的东部滨岸区、贡湖和南部沿岸区,其沼泽化综合指数分别为1.36、1.19、1.18;不存在沼泽化问题的梅梁湾、西部沿岸区及湖心区,其沼泽化综合指数分别为0.90、0.79、0.05.对沼泽化程度严重的东太湖有必要采取人工生物量控制、生态清淤、围网养殖规划等减缓沼泽化进程的治理措施.  相似文献   

13.
太湖春季水体中的胶体有机碳含量及影响因素分析   总被引:14,自引:6,他引:8  
在太湖梅梁湾及贡湖湾2个不同生态类型的湖区采集表层水样,利用切向流超滤技术(CFF)分离出所采水样中的胶体有机碳(COC,1kD~1μm),并对其进行定量分析.结果表明,所采水样中的COC浓度为1.79~2.05mg/L,占总溶解有机碳(DOC)的8.11%~22.13%.与其它有关水体相比,太湖水体COC的含量比河流低,但比海洋、海湾及河口等水体高.太湖表层水体COC含量随风浪的增大而减少,其原因可能是风浪增大后表层水中浮游生物减少所致.两湖区COC含量目前尚无显著差异.  相似文献   

14.
宋晓娜  于涛  张远  张彦  尹秀英 《环境科学学报》2010,30(11):2321-2320
利用三维荧光光谱法研究了太湖125个样点表层(0.5m)和底层(1.5m)水体溶解性有机质(DOM)的组成和分布特征,并对不同湖区DOM的来源进行了分析.结果表明,太湖大部分湖区水体DOM以类蛋白物质为主,其中,竺山湾DOM中的腐殖质和类蛋白物质含量均较其它湖区高.太湖水体DOM的分布存在区域差异性,即:竺山湾湖区西部湖区梅梁湾湖心区贡湖湾南部湖区.分析认为,太湖DOM的来源具有陆源输入与内源微生物降解的双重特征,但竺山湾和西部湖区以陆源输入为主,而梅梁湾、贡湖、南部湖区及湖心区以内源微生物降解为主.分析各类荧光峰强度与水质参数的相关性发现,太湖水体DOM4类荧光峰之间呈显著正相关关系,DOM的4类荧光峰均与总氮(TN)、总磷(TP)、硝酸根离子(NO3-)、铵根离子(NH4+)呈显著正相关关系(p0.01),DOM的各类荧光峰强度和溶解氧呈显著负相关(p0.01),这可能是由于水体DOM含量升高后,微生物比较活跃,消耗大量的溶解氧所致;DOM的各类荧光峰强度和溶解性有机碳(DOC)之间的相关性不显著,可能与不同湖区样品中一些非荧光物质在DOM中的比例不同有关.  相似文献   

15.
太湖不同湖区蓝藻细胞裂解速率的空间差异   总被引:2,自引:0,他引:2  
2009年在太湖蓝藻水华形成初期(五月)、盛发期(九月)和衰亡期(十月和十一月),运用基于颗粒态酯酶,溶解性酯酶以及酯酶衰变常数测定的酯酶活性方法对不同湖区(藻型和草型湖区)蓝藻的细胞裂解速率进行了计算,在测定颗粒态酯酶、溶解性酯酶活性时,同步分析了太湖优势种群中蓝藻叶绿素a的含量.统计分析结果表明,叶绿素a的浓度与颗粒态酯酶、溶解性酯酶活性有很好的相关性,说明以酯酶活性为指标来计算太湖蓝藻细胞裂解速率是可行的.对不同湖区的细胞裂解速率进行比较,可见湖心和西太湖在蓝藻水华形成初期细胞裂解速率分别为0.072,0.048d-1.水华盛发期以及水华衰亡期,湖心和西太湖的细胞裂解速率分别为0.074~0.770d-1,0.014~0.110d-1.太湖湖心磷酸盐浓度比西太湖低,所以蓝藻生长速率慢,导致细胞裂解速率比西太湖高.但是,在梅梁湾和贡湖,衰亡末期磷酸盐浓度比其它月份高,细胞裂解速率也高.4个采样点在衰亡末期的细胞裂解速率比水华形成初期,暴发期和衰亡初期要高,可能的原因是气温和水体温度下降导致蓝藻生长速度减慢.本研究结果表明,太湖蓝藻细胞裂解速率有明显的空间差异,其具体的影响因素很多,营养盐只是其中一个.  相似文献   

16.
冒泡是甲烷排放的主要途径之一,为量化太湖藻型湖区CH4冒泡通量及其占总通量的比例,本研究采用静态箱-便携式温室气体自动分析仪方法对春、夏季太湖梅梁湾进行了多日连续观测.结果表明,太湖藻型湖区春、夏季CH4冒泡通量均存在白天高于夜间的日变化特征.春、夏季CH4冒泡通量分别为1.843、104.497nmol/(m2·s),占总通量的比例分别为31.2%和68.6%,即冒泡是夏季CH4排放的主要方式,而春季CH4排放则以扩散为主.在小时及日尺度上,CH4冒泡通量与温度(气温、表面水温和底泥温度)和气压显著相关,且随着温度升高、气压降低,CH4冒泡排放分别呈指数增加和线性增加趋势.本研究可为准确估算太湖流域CH4总排放量及明确我国湖泊对全球碳循环的贡献提供重要的基础数据.  相似文献   

17.
太湖北部不同湖区春、夏季溶解性酸性多糖分布   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究太湖dAPS(dissolved acidic polysaccharides,溶解性酸性多糖)的时空变化,探讨湖泊水体中dAPS对有机碳的贡献和重要性,于2012年春、夏季调查了太湖北部不同湖区(竺山湾、梅梁湾、贡湖湾、湖心区)水体中ρ(dAPS),分析了其时空变化特征及其与ρ(Chla)之间的关系,并探讨了不同湖湾中dAPS对DOC(溶解性有机碳)的贡献率. 结果表明,太湖北部水体中ρ(dAPS)春、夏季变化范围为3.02~9.93mg/L,平均值为(6.10±1.59) mg/L. 夏季太湖北部各湖区之间ρ(dAPS)没有显著性差异,春季梅梁湾中ρ(dAPS)显著高于湖心区(P<0.05),其他湖区并没有显著性差异. 春、夏两季ρ(dAPS)的最低值均出现在湖心区. 除贡湖湾外,夏季太湖北部各湖区ρ(dAPS)与ρ(Chla)都存在显著线性正相关,而春季各湖区则无显著线性关系. 这说明春、夏季dAPS的受控因素不一样,夏季ρ(dAPS)受藻类影响较大. 夏季各湖区dAPS对DOC的贡献率以贡湖湾最高,平均值高达46.7%±7.7%,春季则以梅梁湾的贡献率较高,平均值为68.6%±5.9%,这意味着dAPS在太湖水体有机碳循环中起着重要的作用.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号