首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
McConkey KR  Drake DR 《Ecology》2006,87(2):271-276
Rare species play limited ecological roles, but particular behavioral traits may predispose species to become functionally extinct before becoming rare. Flying foxes (Pteropodid fruit bats) are important dispersers of large seeds, but their effectiveness is hypothesized to depend on high population density that induces aggressive interactions. In a Pacific archipelago, we quantified the proportion of seeds that flying foxes dispersed beyond the fruiting canopy, across a range of sites that differed in flying fox abundance. We found the relationship between ecological function (seed dispersal) and flying fox abundance was nonlinear and consistent with the hypothesis. For most trees in sites below a threshold abundance of flying foxes, flying foxes dispersed < 1% of the seeds they handled. Above the threshold, dispersal away from trees increased to 58% as animal abundance approximately doubled. Hence, flying foxes may cease to be effective seed dispersers long before becoming rare. As many species' populations decline worldwide, identifying those with threshold relationships is an important precursor to preservation of ecologically effective densities.  相似文献   

2.
Abstract: The dependency of highly endemic island floras on few potential pollinators in depauperate island faunas suggests that pollinators and seed dispersers may be crucial in the preservation of biodiversity in isolated oceanic islands. We discuss the hypothesis that flying foxes are "strong interactors" in South Pacific islands where they serve as the principal pollinators and seed dispersers, This suggests that the ongoing decline and ultimate extinction of flying fox species on Pacific islands may lead to a cascade of linked plant extinctions. We propose an empirical test of this hypothesis: comparisons of plant reproductive success in Guam, which has virtually lost its flying fox populations, and Samoa, where significant populations remain.  相似文献   

3.
Abstract: The dependency of highly endemic island floras on few potential pollinators in depauperate island faunas suggests that pollinators and seed dispersers may be crucial in the preservation of biodiversity in isolated oceanic islands. We discuss the hypothesis that flying foxes are "strong interactors" in South Pacific islands where they setwe as the principal pollinators and seed dispersers, This suggests that the ongoing decline and ultimate extinction of flying fox species on Pacific islands may lead to a cascade of linked plant extinctions. We propose an empirical test of this hypothesis: comparisons of plant reproductive success in Guam, which has virtually lost its flying fox populations, and Samoa, where signifcant populations remain.  相似文献   

4.
Abstract:  Climate change is projected to increase stress for many coastal plant communities. Along large portions of the North American coast, habitat degradation from anthropogenic changes to the environment already threaten the community structure of tidal marshes and submerged aquatic grass beds. The potential loss of ecological services historically provided by these communities has been a long-standing rationale for aggressive control of invading plants such as Phragmites australis and Hydrilla verticillata . Increasing evidence of ecological services provided by invasive species such as P. australis and H. verticillata suggest that, in the face of increasing stress, it may be prudent to take a more pragmatic approach regarding the effect of these species on coastal ecosystems. The notable resilience of these species to control efforts and their competitive success and comparative vigor in stressed systems and capacity to provide at least some beneficial services combine to suggest some invasive species may have a useful role in managed coastal ecosystems.  相似文献   

5.
Recent studies of plant-animal mutualistic networks have assumed that interaction frequency between mutualists predicts species impacts (population-level effects), and that field estimates of interaction strength (per-interaction effects) are unnecessary. Although existing evidence supports this assumption for the effect of animals on plants, no studies have evaluated it for the reciprocal effect of plants on animals. We evaluate this assumption using data on the reproductive effects of pollinators on plants and the reciprocal reproductive effects of plants on pollinators. The magnitude of species impacts of plants on pollinators, the reciprocal impacts of pollinators on plants, and their asymmetry were well predicted by interaction frequency. However, interaction strength was a key determinant of the sign of species impacts. These results underscore the importance of quantifying interaction strength in studies of mutualistic networks. We also show that the distributions of interaction strengths and species impacts are highly skewed, with few strong and many weak interactions. This skewed distribution matches the pattern observed in food webs, suggesting that the community-wide organization of species interactions is fundamentally similar between mutualistic and antagonistic interactions. Our results have profound ecological implications, given the key role of interaction strength for community stability.  相似文献   

6.
7.
三江平原湿地植物物种空间分异规律的探讨   总被引:6,自引:0,他引:6  
研究了三江平原典型湿地在地形、水分等因素制约下的植物物种空间分异规律,包括垂直分异规律和水平分异规律。首先,按照地形和水分的分异组合特点,把湿地生境分为较干燥生境、季节积水生境和常年积水生境。然后,在各个生境内采用样方法和样线法调查植物物种。调查分为20世纪70年代、80年代和2003年3个时期,范围包括三江平原的典型湿地植物群落。数据分析时采用了生境组合法。即把3个不同的生境组合成一个水分(或地形)梯度带,根据频度和多度指标筛选出主要物种,然后按照其空间位置,列出主要植物物种沿水分梯度带的分布序列。研究发现:三江平原湿地不同生境的植物物种组合和垂直分异差别明显。较干燥生境的植被类型以岛状林群落为代表,乔木、灌木和草本植物层次分明。季节性积水生境的植被类型以小叶章群落为代表,是典型的湿草甸植物群落,垂直结构不明显。常年积水生境以毛果苔草群落为代表,植物群落层次也比较明显。植物物种水平分异规律,基本上可由植物物种空间分布序列图来代表。随着地势降低,水分增多,乔、灌植物,湿草甸植物,水生草本植物在特定的空间依次出现。  相似文献   

8.
Abstract:  Few demographic models for any species consider the role of multiple, interacting ecological threats. Many forest herbs are heavily browsed by white-tailed deer ( Odocoileus virginianus ) and a number of these are also harvested for the medicinal, floral, or horticultural trades. Previous studies of the viability of American ginseng ( Panax quinquefolius ) have separately examined the effects of harvesting and deer herbivory. We followed individually marked ginseng plants in 6 populations for 8 years and documented deer browse levels, conducted helicopter surveys to estimate the deer herd size, and documented 2 ginseng harvests. We used this long-term data set to develop a stochastic demographic model that quantified the separate and interactive role of these threats to ginseng viability. Although harvesting and deer herbivory negatively affected ginseng population growth, their effects were not additive. Deer herbivory negatively affected population growth in the absence but not in the presence of harvesting. Life table response experiments revealed that in the presence of harvesting, deer herbivory had some positive effects on vital rates because browsed plants were less apparent to harvesters. Ginseng populations that were harvested responsibly (i.e., planting seeds from harvested individuals) had higher growth rates than those that were harvested irresponsibly. We concluded that both deer populations and harvesting must be managed to ensure sustainable populations of American ginseng. Our findings underscore the importance of long-term monitoring to assess threats to viability and the need for a broad ecological understanding of the complexity of ecosystem management.  相似文献   

9.
Ecological Consequences of Recent Climate Change   总被引:47,自引:0,他引:47  
Abstract: Global climate change is frequently considered a major conservation threat. The Earth's climate has already warmed by 0.5° C over the past century, and recent studies show that it is possible to detect the effects of a changing climate on ecological systems. This suggests that global change may be a current and future conservation threat. Changes in recent decades are apparent at all levels of ecological organization: population and life-history changes, shifts in geographic range, changes in species composition of communities, and changes in the structure and functioning of ecosystems. These ecological effects can be linked to recent population declines and to both local and global extinctions of species. Although it is impossible to prove that climate change is the cause of these ecological effects, these findings have important implications for conservation biology. It is no longer safe to assume that all of a species' historic range remains suitable. In drawing attention to the importance of climate change as a current threat to species, these studies emphasize the need for current conservation efforts to consider climate change in both in situ conservation and reintroduction efforts. Additional threats will emerge as climate continues to change, especially as climate interacts with other stressors such as habitat fragmentation. These studies can contribute to preparations for future challenges by providing valuable input to models and direct examples of how species respond to climate change.  相似文献   

10.
We built a trophic network based on a matrix of interspecific trophic relationships to assess the role of elasmobranch fishes in shaping community structure of the Gulf of Tortugas in the Colombian Pacific Ocean. We analyzed diet similarities to define trophic components (nodes) - rather than taxonomical groups - in the network. We evaluated the ecological function of species or trophic entities through topological analysis of their structural importance in trophic networks by applying one local and several mesoscale network indices. We found that top predatory elasmobranchs play an important ecological role in top-down control and in propagating indirect effects through the system owing to high values of the node degree, centrality and topological importance indices. However, invertebrates and teleost fishes had higher connectivity and topological importance than other elasmobranchs in the network before and after removal of top predators from the system. Results from our study thus suggest that elasmobranchs at intermediate trophic levels - commonly referred to as “mesopredators” - are not so important in all complex coastal ecosystems as previously reported.  相似文献   

11.
Planting State-Listed Endangered and Threatened Plants   总被引:1,自引:0,他引:1  
The distribution and planting of state-listed endangered and threatened plants is outlawed in most states of the United States, yet listed species are commonly used in landscaping and restorations. There is a need to re-examine policy regarding planting and propagation of endangered and threatened plants outside of planned recovery efforts. Potential advantages associated with increased outplanting of rare species include (1) improved public education and relations; (2) demographic security derived from creation of new populations; (3) provision of new, appropriate gene-flow opportunities; (4) applied research opportunities; and (5) ability to regulate a currently uncontrolled activity. Potential disadvantages are (1) confusion of natural and planted populations; (2) bureaucratic problems with protection of planted populations; (3) potential far inappropriate gene flow between natural and planted populations causing outbreeding depression and loss of genetic purity of natural populations; and (4) extension of the natural geographic and ecological range of the species. Policies, regulations, and nursery practices exist that would maximize the potential advantages and minimize the risks associated with the distribution of endangered and threatened plants. Policy considerations discussed include selection of appropriate species, production of appropriate and high-quality genetic stock, and regulation of outplanting programs. I weigh the risks and benefits of a program that would allow the general public access to some state-listed plants for natural landscaping. I conclude that a less restrictive but enforceable set of policies and regulations may be preferable to the status quo.  相似文献   

12.
Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics.  相似文献   

13.
Darwin's Fox: A Distinct Endangered Species in a Vanishing Habitat   总被引:2,自引:0,他引:2  
The temperate rain forest of Chiloé Island, Chile, is inhabited by an endemic fox ( Dusicyon fulvipes ) first described by Charles Darwin and now designated Darwin's fox. Despite morphological differences, Darwin's fox has been considered only an insular subspecies of the mainland chilla fox ( D. griseus ). This follows the assumption that the island population, with an estimated population of less than 500, has been separated from the mainland chilla fox for only about 15,000 years and may have received occasional immigrants from the mainland. Consequently, this island population has not been protected as endangered or bred in captivity. Recently, a population of Darwin's fox was discovered on the Chilean mainland 600 km north of Chiloé Island. This population exists in sympatry with chilla and possibly culpeo ( D. culpaeus ) foxes, which suggests that Darwin's fox may be reproductively isolated. To clarify the phylogenetic position of Darwin's fox, we analyzed 344 bp of mitochondrial DNA control-region sequence of the three species of Chilean foxes. Darwin's foxes from the island and mainland populations compose a monophyletic group distinct from the two other Chilean fox species. This indicates that Darwin's fox was probably an early inhabitant of central Chile, and that its present distribution on the mainland may be a relict of a once much wider distribution. Our results highlight the ability of molecular genetic techniques to uncover historical relationships masked by recent events, such as local extinctions. The "rediscovery" of Darwin's fox as a distinct species implies that greater significance should be given to the protection of this species and its unique habitat and to documenting the extent of its mainland distribution.  相似文献   

14.
青海湖几种主要湿地植物的种群分布格局及动态   总被引:25,自引:2,他引:23  
应用种群生态空间分布的分析方法,研究了青海湖四种主要湿地植物:杉叶藻(Hippuris vulgaris)、槽杆荸荠(Eleocharis valleculosa)、华扁穗莞(Blysmus sinocompresus)、碱蓬(Suaeda glauca)的空间分布格局及其动态,研究表明:杉叶藻、槽杆荸荠、华扁穗莞三种群由侵入期、定期初期到种群发育盛期的过程中,其集群程度先增大后减小,总体呈扩散的趋势;碱蓬种群,从幼苗到繁殖期,集群程度增大,呈聚集的趋势,说明前三种植物的克隆繁殖方式于滨湖湿地生境具有更好的生态适应性,图2表3参11  相似文献   

15.
The evolution of female social relationships in nonhuman primates   总被引:38,自引:14,他引:38  
Considerable interspecific variation in female social relationships occurs in gregarious primates, particularly with regard to agonism and cooperation between females and to the quality of female relationships with males. This variation exists alongside variation in female philopatry and dispersal. Socioecological theories have tried to explain variation in female-female social relationships from an evolutionary perspective focused on ecological factors, notably predation and food distribution. According to the current “ecological model”, predation risk forces females of most diurnal primate species to live in groups; the strength of the contest component of competition for resources within and between groups then largely determines social relationships between females. Social relationships among gregarious females are here characterized as Dispersal-Egalitarian, Resident-Nepotistic, Resident-Nepotistic-Tolerant, or Resident-Egalitarian. This ecological model has successfully explained differences in the occurrence of formal submission signals, decided dominance relationships, coalitions and female philopatry. Group size and female rank generally affect female reproduction success as the model predicts, and studies of closely related species in different ecological circumstances underscore the importance of the model. Some cases, however, can only be explained when we extend the model to incorporate the effects of infanticide risk and habitat saturation. We review evidence in support of the ecological model and test the power of alternative models that invoke between-group competition, forced female philopatry, demographic female recruitment, male interventions into female aggression, and male harassment. Not one of these models can replace the ecological model, which already encompasses the between-group competition. Currently the best model, which explains several phenomena that the ecological model does not, is a “socioecological model” based on the combined importance of ecological factors, habitat saturation and infanticide avoidance. We note some points of similarity and divergence with other mammalian taxa; these remain to be explored in detail. Received: 30 September 1996 / Accepted after revision: 20 July 1997  相似文献   

16.
Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high‐priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators’ relatively small functional requirements—habitat range, life cycle, and nesting behavior—relative to larger mammals, we argue that pollinators put high‐priority and high‐impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization.  相似文献   

17.
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.  相似文献   

18.
Given the speed at which humans are changing the climate, species with high degrees of endemism may not have time to avoid extinction through adaptation. We investigated through teleconnection analysis the origin of rainfall that determines the phylogenetic diversity of rainforest frogs and the effects of microclimate differences in shaping the morphological traits of isolated populations (which contribute to greater phylogenetic diversity and speciation). We also investigated through teleconnection analysis how deforestation in Amazonia can affect ecosystem services that are fundamental to maintaining the climate of the Atlantic rainforest biodiversity hotspot. Seasonal winds known as flying rivers carry water vapor from Amazonia to the Atlantic Forest, and the breaking of this ecosystem service could lead Atlantic Forest species to population decline and extinction in the short term. Our results suggest that the selection of morphological traits that shape Atlantic Forest frog diversity and their population dynamics are influenced by the Amazonian flying rivers. Our results also suggest that the increases of temperature anomalies in the Atlantic Ocean due to global warming and in the Amazon forest due to deforestation are already breaking this cycle and threaten the biodiversity of the Atlantic Forest hotspot.  相似文献   

19.
Global and regional numerical models for terrestrial ecosystem dynamics require fine spatial resolution and temporally complete historical climate fields as input variables. However, because climate observations are unevenly spaced and have incomplete records, such fields need to be estimated. In addition, uncertainty in these fields associated with their estimation are rarely assessed. Ecological models are usually driven with a geostatistical model's mean estimate (kriging) of these fields without accounting for this uncertainty, much less evaluating such errors in terms of their propagation in ecological simulations. We introduce a Bayesian statistical framework to model climate observations to create spatially uniform and temporally complete fields, taking into account correlation in time and space, spatial heterogeneity, lack of normality, and uncertainty about all these factors. A key benefit of the Bayesian model is that it generates uncertainty measures for the generated fields. To demonstrate this method, we reconstruct historical monthly precipitation fields (a driver for ecological models) on a fine resolution grid for a climatically heterogeneous region in the western United States. The main goal of this work is to evaluate the sensitivity of ecological models to the uncertainty associated with prediction of their climate drivers. To assess their numerical sensitivity to predicted input variables, we generate a set of ecological model simulations run using an ensemble of different versions of the reconstructed fields. We construct such an ensemble by sampling from the posterior predictive distribution of the climate field. We demonstrate that the estimated prediction error of the climate field can be very high. We evaluate the importance of such errors in ecological model experiments using an ensemble of historical precipitation time series in simulations of grassland biogeochemical dynamics with an ecological numerical model, Century. We show how uncertainty in predicted precipitation fields is propagated into ecological model results and that this propagation had different modes. Depending on output variable, the response of model dynamics to uncertainty in inputs ranged from uncertainty in outputs that matched that of inputs to those that were muted or that were biased, as well as uncertainty that was persistent in time after input errors dropped.  相似文献   

20.
Fungal symbioses affect the diversity, dynamics, and spatial patterns of trees in tropical forests. Their ecological importance is partly driven by their inherent patchiness. We used epifoliar fungi, a guild of common, benign, obligate, fungal symbionts of plants, as a model system to evaluate the relative importance of host phylogeny, host relative abundance, and microclimate on the three-dimensional distribution of plant-fungus symbioses. In parallel studies in rainforests in Panama and Australia, most epifoliar fungi were able to colonize several plant lineages but showed significant host preferences within the local plant community. More closely related plant species were not more likely to share fungal symbionts. Instead, fungal species were more likely to be shared by more abundant hosts, which supported a greater number and diversity of fungi. Environmental conditions strongly affected spatial distributions, with sites in the dark understory 2.5- to fourfold more likely to have epifoliar fungi than in the exposed forest canopy. In the understory, fungal incidence increased with canopy openness. Canopy trees supported only a subset of the fungal symbionts found in the understory, suggesting that adult trees are not reservoirs of these fungal symbionts for understory juveniles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号