首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are reported for a series of migration experiments performed in a hydraulically characterized, single, natural fracture in a block of granite with overall dimensions of 1 × 1 × 0.7 m (all approximate), using the conservative, poorly sorbing and strongly sorbing radionuclides 3H20, 131I, 22Na, 85Sr, 137Cs, 60Co, 154,155Eu, 237Np, and 238Pu. The volumetric flow velocity of the transport solution was 3 ml h−1, giving a residence time in the fracture of approximately 50 h. Elution profiles were obtained for 3H20, 131I, 22Na, 85Sr and 137Cs but no evidence of the other radionuclides was observed in the eluent. Results from supporting static sorption measurements on crushed geological materials and granite coupons showed in general higher sorption on alteration minerals than on granite. Sorption was lowest for 22Na and 85Sr.The migration of 131I, 22Na, 85Sr through the fracture in real time was followed using end-window Geiger-Müller probes located in unused boreholes. Additional information, obtained by alpha and gamma scanning of the fracture surfaces after separating the block along the fracture, confirmed that transport had occurred along the flow path predicted from the hydraulic characterization of the fracture and that, over a 5.5 month period, the bulk of the injected 137Cs had migrated only 75 cm along the flow path. The 60Co, the rare earths and the actinides had not moved beyond the location of the injection borehole, suggesting that fracture infilling minerals played a major role in retarding radionuclide transport. Additional confirmation of the role of secondary minerals in radionuclide retardation was obtained using selective sequential extraction on the fracture surfaces. These observations support the inclusion of sorption data for fracture infilling minerals in the sorption database developed for the geosphere model for the Canadian Nuclear Fuel Waste Management Program.  相似文献   

2.
The effects of bentonite colloids on strontium migration in fractured crystalline medium were investigated. We analyzed first the transport behaviour of bentonite colloids alone at different flow rates; then we compared the transport behaviour of strontium as solute and of strontium previously adsorbed onto stable bentonite colloids at a water velocity of approximately 7.1·10(-6)m/s-224m/yr. Experiments with bentonite colloids alone showed that - at the lowest water flow rate used in our experiments (7.1·10(-6)m/s) - approximately 70% of the initially injected colloids were retained in the fracture. Nevertheless, the mobile colloidal fraction, moved through the fracture without retardation, at any flow rate. Bentonite colloids deposited over the fracture surface were identified during post-mortem analyses. The breakthrough curve of strontium as a solute, presented a retardation factor, R(f)~6, in agreement with its sorption onto the granite fracture surface. The breakthrough curve of strontium in the presence of bentonite colloids was much more complex, suggesting additional contributions of colloids to strontium transport. A very small fraction of strontium adsorbed on mobile colloids moved un-retarded (R(f)=1) and this fraction was much lower than the expected, considering the quantity of strontium initially adsorbed onto colloids (90%). This behaviour suggests the hypothesis of strontium sorption reversibility from colloids. On the other hand, bentonite colloids retained within the granite fracture played a major role, contributing to a slower strontium transport in comparison with strontium as a solute. This was shown by a clear peak in the breakthrough curve corresponding to a retardation factor of approximately 20.  相似文献   

3.
Hydrated bentonite is a very plastic material and it is expected to enter in the rock microfractures at the granite/bentonite boundary of a deep geological high-level waste repository. This process is enhanced by the high swelling pressure of the clay. Since bentonite has a very good sorption capability for many radionuclides, the displacement of the clay might lead to a "clay-mediated" contaminant transport into the rock. The aim of this work is to study the contaminant transport into granite microfractures using nuclear ion beam techniques, and to determine to what extent the clay can favour it. To do so, bentonite previously doped with uranium, cesium and europium was put in contact with the surface of granite sheets. Granite sheets contacted with non-doped bentonite and with radionuclide solutions were also prepared as references. This allowed analysing the differences in the diffusion behaviour of the three systems: clay, radionuclides and clay plus radionuclides. A combination of Rutherford backscattering spectrometry (RBS) and other nuclear ion-beam techniques such as particle-induced X-ray emission (PIXE) and microPIXE was used to study the depth and lateral distribution of clay and contaminants inside granite. It was also tried to evaluate not only the diffusion depth and diffusion coefficients but also the different areas of the granite where the diffusants have a preferential access.  相似文献   

4.
The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (approximately 1 x 10(-3) M) and alkaline (pH > or = 8) waters.  相似文献   

5.
In order to determine the mechanisms of the retention of 60Co, 85Sr and 134Cs in natural silica sand columns, desorption experiments were performed by changes of pH and ionic strength and by injection of natural organic matter (NOM). Injection of KCl (0.1 M) resulted in a high release of 60Co (60-100%) and 85Sr (72-100%) but a smaller release of 134Cs (31-66%). Only limited release of 60Co (66%) and 85Sr (71%) and no release of 134Cs were observed by injection of NOM. The different percentages of desorption were related to the chemical characteristics of the organic colloids previously retained in columns before the desorption step. The results evidenced different sorption processes on energetically heterogeneous surface sites. According to the initial conditions, the binding of the radionuclides to the solid phase resulted from weak and easily reversible sorption processes to strong association probably by inner sphere complexes. The rather weak release of 134Cs by KCl was attributed to the strong retention of 134Cs by clay coatings on the natural silica sand surfaces.  相似文献   

6.
The natural system is expected to contribute to isolation at the proposed high-level nuclear waste (HLW) geologic repository at Yucca Mountain, NV (YM). In developing performance assessment (PA) computer models to simulate long-term behavior at YM, colloidal transport of radionuclides has been proposed as a critical factor because of the possible reduced interaction with the geologic media. Site-specific information on the chemistry and natural colloid concentration of saturated zone groundwaters in the vicinity of YM is combined with a surface complexation sorption model to evaluate the impact of natural colloids on calculated retardation factors (RF) for several radioelements of concern in PA. Inclusion of colloids into the conceptual model can reduce the calculated effective retardation significantly. Strongly sorbed radionuclides such as americium and thorium are most affected by pseudocolloid formation and transport, with a potential reduction in RF of several orders of magnitude. Radioelements that are less strongly sorbed under YM conditions, such as uranium and neptunium, are not affected significantly by colloid transport, and transport of plutonium in the valence state is only moderately enhanced. Model results showed no increase in the peak mean annual total effective dose equivalent (TEDE) within a compliance period of 10,000 years, although this is strongly dependent on container life in the base case scenario. At longer times, simulated container failures increase and the TEDE from the colloidal models increased by a factor of 60 from the base case. By using mechanistic models and sensitivity analyses to determine what parameters and transport processes affect the TEDE, colloidal transport in future versions of the TPA code can be represented more accurately.  相似文献   

7.
The sorption of radionuclides on natural colloids may significantly modify their transport behaviour through fractured media, since radionuclides bound to colloids may not be subject to the important retardation mechanisms of matrix diffusion and sorption onto pore surfaces. This paper reports on theoretical and experimental work aimed at assessing the relevance of colloid-facilitated transport to repository safety analyses, with specific reference to the Swiss case. Transport models are presented, developed in conjunction with field- and laboratory-based studies of deep groundwater in the crystalline basement of northern Switzerland, in which colloid size distributions, compositions and sorption properties have been measured. Various potential mechanisms giving rise to both reversible and irreversible sorption are discussed. In the first case, a simple approach is examined which is based on previously reported models of colloid transport and assumes reversible, linear sorption on colloids, for which experimental data have been obtained. It is shown that transport of radionuclides would not, in general, be significantly enhanced because of this process. A more recently developed and more complex model is then described incorporating irreversible sorption, in which case the transport of radionuclides tends to be strongly dependent on the extent of colloid-fracture wall interaction.  相似文献   

8.
Mechanistic model calculations for the migration of Cs, Ra, Am and Pb in compacted bentonite have been carried out to evaluate sensitivities with respect to different parameter variations. A surface chemical speciation/electric double layer model is used to calculate: (i) porewater composition and radionuclide speciation in solution and at the bentonite surface, yielding the distribution of mobile and sorbed species and (ii) interaction of diffusing species with negatively charged pore walls to obtain diffusion parameters. The basic scenario considers the interaction of compacted bentonite with a fresh-type groundwater; variations include the presence of bentonite impurities and saline groundwater. It is shown that these scenarios result in significant variations of porewater composition that affect migration via three mechanisms that can partly compensate each other: (1) effects on sorption through radionuclide complexation in solution, and competition of major cations for surface sites; (2) changes in radionuclide solution speciation leading to different diffusing species under different conditions; (3) effects on diffusion through changes in the electric double layer properties of the clay pores as a function of ionic strength.  相似文献   

9.
For several years tracer migration experiments are performed at Nagra's Grimsel Test Site in the Swiss Alps as a joint undertaking of Nagra, PNC and PSI. The aim is to develop methods for field experiments at possible sites for nuclear waste repositories and to test radionuclide transport models.A hydraulic dipole field is generated in a well-defined fracture zone in granite. The tracers used are non-sorbing (uranine, 3He, 4He, 82Br, 123I), mildly sorbing (22Na+, 24Na+), and more strongly sorbing (85Sr2+, 86Rb+, 134Cs+, 137Cs+). These experiments have been complemented by extensive laboratory investigations on petrography, on water-rock and nuclide-rock interaction as well as by migration experiments with bore cores.The main questions addressed are: What are the relevant geometric factors and mechanisms for transport, how well can breakthrough curves be extrapolated from one dipole arrangement to another, which parameters are scale dependent, is there a difference in sorption values between laboratory and field experiments or between static and dynamic experiments. Evaluating the experimental results for the non-sorbing uranine and the mildly sorbing tracers sorption, Strontium, we show that a consistent picture of tracer transport, and specifically of tracer sorption, is obtained when exploiting all available experimental information and using not too simplistic models.  相似文献   

10.
The influence of two types of colloids (natural organic matter, NOM), a colloid with high affinity for radionuclides (RN(s)), and hydrophilic synthetic latex (SHL), a colloid with low affinity for RN(s) on the transfer of (60)Co and (85)Sr in a silica sand column was studied under different physicochemical conditions: pH (4.9), ionic strength (10(-3) M and 10(-2) M), concentration of colloids (100 mg l(-1), 10 mg l(-1)), flow velocity (12.4 cm h(-1) and 3.7 cm h(-1)), water saturation of the column (100% and 70%). In the absence of colloids, the transfer of (60)Co and (85)Sr was retarded compared to the transfer of the conservative tracer. In the presence of colloids and according to the specific physicochemical conditions, an acceleration or retardation of (60)Co and (85)Sr transfer was observed compared to their transfer in the absence of colloids. Our results evidenced that any colloids even with low reactivity could significantly modify the RN transfer. However, the extent to which the transfer was influenced differs according to the colloid type; the NOM exhibiting higher impact than SHL. Batch experiments helped in interpreting of the interactions between the colloids, RN(s) and solid phase observed in column.  相似文献   

11.
Based on the results from detailed structural and petrological characterisation and on up-scaled laboratory values for sorption and diffusion, blind predictions were made for the STT1 dipole tracer test performed in the Swedish Asp? Hard Rock Laboratory. The tracers used were nonsorbing, such as uranine and tritiated water, weakly sorbing 22Na(+), 85Sr(2+), 47Ca(2+)and more strongly sorbing 86Rb(+), 133Ba(2+), 137Cs(+). Our model consists of two parts: (1) a flow part based on a 2D-streamtube formalism accounting for the natural background flow field and with an underlying homogeneous and isotropic transmissivity field and (2) a transport part in terms of the dual porosity medium approach which is linked to the flow part by the flow porosity. The calibration of the model was done using the data from one single uranine breakthrough (PDT3). The study clearly showed that matrix diffusion into a highly porous material, fault gouge, had to be included in our model evidenced by the characteristic shape of the breakthrough curve and in line with geological observations. After the disclosure of the measurements, it turned out that, in spite of the simplicity of our model, the prediction for the nonsorbing and weakly sorbing tracers was fairly good. The blind prediction for the more strongly sorbing tracers was in general less accurate. The reason for the good predictions is deemed to be the result of the choice of a model structure strongly based on geological observation. The breakthrough curves were inversely modelled to determine in situ values for the transport parameters and to draw consequences on the model structure applied. For good fits, only one additional fracture family in contact with cataclasite had to be taken into account, but no new transport mechanisms had to be invoked. The in situ values for the effective diffusion coefficient for fault gouge are a factor of 2-15 larger than the laboratory data. For cataclasite, both data sets have values comparable to laboratory data. The extracted K(d) values for the weakly sorbing tracers are larger than Swedish laboratory data by a factor of 25-60, but agree within a factor of 3-5 for the more strongly sorbing nuclides. The reason for the inconsistency concerning K(d)s is the use of fresh granite in the laboratory studies, whereas tracers in the field experiments interact only with fracture fault gouge and to a lesser extent with cataclasite both being mineralogically very different (e.g. clay-bearing) from the intact wall rock.  相似文献   

12.
Colloid-facilitated transport has been recognized as a potentially important and overlooked contaminant transport process. In particular, it has been observed that conventional two phase sorption models are often unable to explain transport of highly sorbing compounds in the subsurface appropriately in the presence of colloids. In this study a one-dimensional model for colloid-facilitated transport of chemicals in unsaturated porous media is developed. The model has parts for simulating coupled flow, and colloid transport and dissolved and colloidal contaminant transport. Richards' equation is solved to model unsaturated flow, and the effect of colloid entrapment and release on porosity and hydraulic conductivity of the porous media is incorporated into the model. Both random sequential adsorption and Langmuir approaches have been implemented in the model in order to incorporate the effect of surface jamming. The concept of entrapment of colloids into the air-water interface is used for taking into account the effect of retardation caused due to existence of the air phase. A non-equilibrium sorption approach with options of linear and Langmuir sorption assumptions are implemented that can represent the competition and site saturation effects on sorption of multiple compounds both to the solid matrix and to the colloidal particles. Several demonstration calculations are performed and the conditions in which the non-equilibrium model can be approximated by an equilibrium model are also studied.  相似文献   

13.
The CHemistry of the Uplands Model (CHUM) describes the transport of chemicals through upland catchments with acid, organic-rich soils, by a combination of sub-models for equilibrium soil chemistry, hydrology, weathering, and nitrogen cycling. CHUM was used to simulate the retention and transport of metallic radionuclides (Co, Sr, Cs, UO(2), U(IV), Th, Am), in the soils of a small catchment in Cumbria, UK, for 2 years after their atmospheric deposition in a single hypothetical precipitation event. Export of radionuclides to streamwater is calculated to occur most readily following deposition of the dissolved elements at high water saturation of the catchment, when little incoming rainwater is required to make up the small moisture deficit of the organic surface horizon, and solutes can move to greater depths in the soil profile. Deposition when the catchment is drier, or of particulate radionuclides, leads to stronger retention. Radionuclide retention or transport depends on the strength of chemical interaction with the solid phases of the different soil horizons; this varies among the elements, and also with oxidation state, U(IV) species being more strongly retained than UO(2). For purely organic soils, the least strongly retained radionuclide is Cs, but the presence in the mineral soil horizon of small amounts of clay mineral with high selectivity towards Cs can markedly increase with high selectivity towards Cs can markedly increase its retention. For the actinides, binding by dissolved organic matter is important; for example, the rate of transport of Th to the stream is increased by more than two orders of magnitude by complexation with dissolved fulvic acid. The model assumptions suggest that, in the longer term, losses from the catchment of Co, Sr and Cs would take place on a time-scale of decades, whereas the actinides would be much more persistent.  相似文献   

14.
Various construction materials are under consideration for nuclear waste repositories. Two important materials are concrete and bentonite clay, which will act as mechanical barriers and prevent convective water flow. These barriers will also retard transport (diffusion controlled) of dissolved radionuclides by a combination of mechanical constraints and chemical interactions with the solid.An important issue is the possible change of the initial sodium bentonite into the calcium form due to interaction with calcium from the concrete. The initial leaching of concrete was studied using radioactive spiked concrete in contact with compacted bentonite.Measurement were made of the diffusion of Cs, Am and Pu into 5 different types of concrete in contact with pore water. The diffusivity measured for Cs agrees reasonably well with data found in the literature. No movement could be measured for Am and Pu (< 0.2 mm), even though the contact times were extremely long (2.5 and 5 yr, respectively). The diffusion of Na, Ca and Cs from concrete into bentonite was also measured.  相似文献   

15.
The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.  相似文献   

16.
Leaching of the strongly sorbing pesticides glyphosate and pendimethalin was evaluated in an 8-month field study focussing on preferential flow and particle-facilitated transport, both of which may enhance the leaching of such pesticides in structured soils. Glyphosate mainly sorbs to mineral sorption sites, while pendimethalin mainly sorbs to organic sorption sites. The two pesticides were applied in equal dosage to a structured, tile-drained soil, and the concentration of the pesticides was then measured in drainage water sampled flow-proportionally.The leaching pattern of glyphosate resembled that of pendimethalin, suggesting that the leaching potential of pesticides sorbed to either the inorganic or organic soil fractions is high in structured soils. Both glyphosate and pendimethalin leached from the root zone, with the average concentration in the drainage water being 3.5 and 2.7 μg L−1, respectively. Particle-facilitated transport (particles >0.24 μm) accounted for only a small proportion of the observed leaching (13-16% for glyphosate and 16-31% for pendimethalin). Drain-connected macropores located above or in the vicinity of the drains facilitated very rapid transport of pesticide to the drains. That the concentration of glyphosate and pendimethalin in the drainage water remained high (>0.1 μg L−1) for up to 7 d after a precipitation event indicates that macropores between the drains connected to underlying fractures were able to transport strongly sorbing pesticides in the dissolved phase. Lateral transport of dissolved pesticide via such discontinuities implies that strongly sorbing pesticides such as glyphosate and pendimethalin could potentially be present in high concentrations (>0.1 μg L−1) in both water originating from the drainage system and the shallow groundwater located at the depth of the drainage system.  相似文献   

17.
In the context of a study by the International Geomechanical Commission (IGC) and the International Atomic Energy Agency (IAEA) on the effects of nuclear tests at the atolls of Mururoa and Fangataufa, release to the biosphere is estimated for 35 radionuclides originating from 147 nuclear underground tests. Based on a qualitatively characterised hydrogeological situation of atolls and relatively scarce site-specific data, a model chain was developed to conservatively estimate the radionuclide fluxes via groundwater, from their sources, the explosion cavities, towards the biosphere, the ocean or lagoon. Finite element hydro-thermal modelling was used to describe water flow. Parameters were calibrated by a very few measured pre-test temperature profiles in bore holes. The impact of the tests on groundwater flow and mechanical impact on rock was considered. Estimates were made to quantify spatial extensions and temporal evolution of impact by using measurements on refilling rate of the cavities. Tests were categorised according to their specific yield and location although detailed data were missing. A base case parameter set was defined for the hydraulic conditions and for the initial radionuclide inventory of individual tests. Models were used to describe the concentration of radionuclides in the cavities as a function of time. Radionuclide transport from the cavities to the biosphere was represented by two different approaches: a double porosity model for the fractured volcanic rock and a single porosity model for the overlaying, highly porous carbonates. Results consist of conservative estimates on radionuclide release into the environment, or concentration in the lagoon or ocean water. Their sensitivity was investigated using different models and parameters. A few measured data (concentrations in a few cavities, in the deep carbonates and in the lagoons for selected radionuclides, such as 3H, 14C, 36Cl, 90Sr, 129I, 137Cs239 240Pu and 241Am) were available for a comparison with the calculations. In view of the lack and uncertainty of site-specific data, the agreement is of acceptable quality.  相似文献   

18.
Experiments were conducted at the Asp? Hard Rock Laboratory in order to improve the understanding of radionuclide retention properties of fractured crystalline bedrock in the 10-100 m scale (TRUE Block Scale Project, jointly funded by ANDRA, ENRESA, Nirex, JNC, Posiva and SKB). A series of tracer experiments were performed using sorbing tracers in three different flow paths. The different flow paths had Euclidian lengths of 14, 17 and 33 m, respectively, and one to three water conducting structures. Four tests were performed using different cocktails made up of radioactive sorbing tracers (22,24Na+, 42K+, 47Ca2+, 85Sr2+, 83,86Rb+, 131,133Ba2+ and 134,137Cs+). For each tracer injection, the breakthrough of sorbing tracers was compared to the breakthrough of a conservative tracer, 82Br-, 131I-, HTO and 186ReO4-, respectively. In the two longer flow paths, no breakthrough of 83Rb+ and 137Cs+ was observed after 8 months of pumping. Selected tracer tests were subject to basic modelling in which a one-dimensional (1D) advection-dispersion model, including surface sorption, and an unlimited matrix diffusion were used for the interpretation of the results. The results of the modelling indicated that there is a slightly higher mass transfer into a highly porous material in the block-scale experiment compared with in situ experiments performed over shorter distances and significantly higher than what would have been expected from laboratory data obtained from studies of the interactions in nonaltered intact rock.  相似文献   

19.
The adsorption behavior of 241Am, 60Co, 137Cs and 85Sr in the presence and absence of chelating ligands (ethylenediaminetetraacetic acid, ethylenediaminediacetic acid, hydroxyethyliminodiacetic acid, iminodiaceiticacid and methyliminodiacetic acid) was investigated. Sorption affinity in the absence of chelating ligands followed: Am(III) > Co(II) > Cs(I) > Sr(II). The presence of chelating ligands generally had little effect on sorption of 85Sr and 137Cs with Kd values 110 and 690 mL g−1, respectively. But at 0.02 M of ethylenediaminetetraacetic or hydroxyethyliminodiacetic, the Kd decreased to 5 or 63 mL g−1, respectively, where thermochemical modeling indicated almost all 85Sr is complexed with these ligands. The Kd values for 241Am and 60Co generally decreased with increasing chelating agent concentrations. In notable cases, the Kd values for Am increased at specific concentrations of 10−3 M for IDA, MIDA and 10−4 M for EDDA. This is proposed to be due to formation of a ternary surface complex.  相似文献   

20.
Scenarios of barrier failure and radionuclide release to the near-surface environment are important to consider within performance and safety assessments of repositories for nuclear waste. A geological repository for spent nuclear fuel is planned at Forsmark, Sweden. Conceptual and numerical reactive transport models were developed in order to assess the retention capacity of the Quaternary till and clay deposits for selected radionuclides, in the event of an activity release from the repository. The elements considered were carbon (C), chlorine (Cl), cesium (Cs), iodine (I), molybdenum (Mo), niobium (Nb), nickel (Ni), radium (Ra), selenium (Se), strontium (Sr), technetium (Tc), thorium (Th), and uranium (U). According to the numerical predictions, the repository-derived nuclides that would be most significantly retained are Th, Ni, and Cs, mainly through sorption onto clays, followed by U, C, Sr, and Ra, trapped by sorption and/or incorporation into mineral phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号