首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用磷酸铵镁(MAP)沉淀法对高氨氮7-ACA综合废水进行了预处理试验研究,以Na2HPO4和MgCl2.6H2O作为沉淀剂,探讨了初始反应pH值、n(Mg2+):n(PO43-)/:n(NH4+)投配比及反应时间等因素对氨氮去除效果的影响。结合结晶物SEM分析,确定预处理的最佳工艺条件为:初始反应pH 9.0、n(Mg2+):n(PO43-):n(NH4+)投配比1.0:1.1:1和反应时间20 min。平行试验结果表明,在最佳工艺条件下,当进水氨氮浓度为1 020~1 190 mg/L时,处理后出水氨氮浓度为小于150.0 mg/L,氨氮去除率在85.0%以上,残磷量小于40.0 mg/L,为7-ACA综合废水的后续生化处理创造了有利条件。  相似文献   

2.
利用填料塔作为吹脱解吸设备,结合表面活性剂增强传质的特点,选取表面活性剂作为第三方物质,以空气作为气流吹脱解吸废水中的高浓度氨氮。实验研究了废水温度T、pH值、气液比n、表面活性剂种类和投加量ρ等条件变化对氨氮解吸效率η的影响。结果表明:加入表面活性剂X后,氨氮脱除效率提高2%;影响解吸效率因素的主次顺序为pH>T>n>ρ;最佳操作条件为T=80℃、pH=11.0、ρ=15 mg/L、n=650:1。在最佳的操作条件下,处理氨氮含量为2 159.0 mg/L和3 680.5 mg/L的废水时,解吸效率分别达到95.28%和94.69%,即废水最终的氨氮浓度为102.0 mg/L和195.5 mg/L,低于废水后续生化处理进水指标中对氨氮含量的要求。  相似文献   

3.
采用MAP法去除垃圾渗滤液中高浓度的氨氮,通过对正交实验和单因素实验确定最佳运行条件为pH值为10.0,反应时间为60min,Mg:N:P摩尔比为1.2:1.0:1.2,此时氨氮的去除率为73.1%,出水磷的浓度为56.3mg/L.  相似文献   

4.
为了预处理化工厂的高氨氮废水,采用向废水中投加Na2HPO.412H2O和MgCl.26H2O生成磷酸铵镁(鸟粪石)的方法,以去除其中的高浓度氨氮同时获得缓释肥鸟粪石。试验以模拟氨氮废水为研究对象,研究了鸟粪石结晶法回收氨氮的影响因素:反应时间、氨氮初始浓度、pH值、磷酸盐与镁盐投加量对高氨氮废水的去除效果,然后进行不同影响因素的试验,确定了氨氮去除的最佳工艺条件。研究结果表明,鸟粪石结晶法回收氨氮的最佳工艺条件为:反应时间10 min,pH值为9,NH4-N:PO4-P:Mg摩尔比为1:1.05:1.15,NH4-N、PO4-P与Mg的去除率分别为91.52%、99.58%与90.52%;残余浓度分别为90.87、4.96与174.1 mg/L,加入的磷几乎全部回收,无二次污染。预处理的废水进入污水处理厂进一步深度处理。  相似文献   

5.
赤泥对含磷废水中磷的去除效果及其影响因素研究   总被引:2,自引:0,他引:2  
为研究赤泥处理含磷废水过程中各影响因素的相互作用关系,并获得赤泥除磷效果最佳时的反应条件,文章以铝工业中产生的赤泥为主要原料,采用正交试验设计,考察赤泥与含磷废水的固液比、磷初始浓度、振荡频率、反应时间、含磷废水的pH值以及反应温度等6个因素对含磷废水中磷的去除效果的影响。在正交试验结果的基础上,选取磷初始浓度、赤泥与含磷废水的固液比、含磷废水的pH值、反应时间4个主要影响因素进行单因素试验,结果表明,赤泥与含磷废水的固液比1:25、磷初始浓度10 mg/L、振荡频率200 r/min、反应时间1 h、含磷废水的pH值2.00、反应温度20℃条件下对含磷废水中磷可以达到最佳去除效果,去除率可达98.63%。  相似文献   

6.
实验采用Fenton反应-中和-厌氧菌法处理某高盐度工业废水,考察了各因素对COD去除率的影响。实验结果表明,Fenton反应处理该工业废水的最佳条件是:n(H2O2):n(COD)=2:1,n(H2O2):n(Fe2+)=4:1,pH=3,反应时间采用120 min。Fenton处理后废水COD由24 230 mg/L下降到13 020 mg/L,去除率达到46.26%;所得反应液用Ca(OH)2中和沉淀后COD值降低到11 060 mg/L,去除率为15.05%;最后废水经稀释后进行厌氧菌降解处理,COD为1 625 mg/L的废水经厌氧菌6天处理后降为466 mg/L,去除率为71.32%,达到GB8978-1996中规定的COD三级排放标准。  相似文献   

7.
微波技术处理焦化废水中的氨氮研究   总被引:3,自引:1,他引:3  
分别以中等浓度氨氮的焦化生化处理外排水和含高浓度氨氮的焦化蒸氨废水为处理对象,采用微波技术进行脱氮处理研究。结果表明:对于初始浓度为331mg/L的生化外排水,当pH值11时,微波处理3min后氨氮浓度降为6mg/L;对于初始浓度为1350mg/L的高浓度蒸氨废水,当pH值为11时,微波处理5min后氨氮浓度降至54mg/L。该研究为中高浓度氨氮废水处理提供了新思路。  相似文献   

8.
通过试验研究了投加石灰法、投加氯化钙法、石灰-氯化钙联合法、石灰-盐酸联合法4种化学沉淀法对除氟吸附剂再生尾液的处理效果和影响因素。结果表明:静置沉淀90min后,使用投加石灰法处理pH值为12、含氟浓度为2 000mg/L的除氟吸附剂再生尾液,处理后残余氟离子浓度大于50mg/L,使用投加氯化钙法,处理后残余氟离子浓度小于20mg/L,使用石灰-氯化钙联合法和石灰-盐酸联合法,处理后残余氟离子浓度均小于10mg/L;4种方法的最佳搅拌强度为150r/min,最佳反应pH值为12左右,最佳静置时间为90min;其中,采用石灰-盐酸联合法处理pH值为12、含氟浓度为2 000mg/L的高氟再生尾液,在石灰投加量超过理论量60%(即为6.231 6g/L),加入65.4mL/L 2M的HCl时,出水可以达到国家污水排放一级标准,且pH值在7左右。  相似文献   

9.
化学沉淀法处理高浓度氨氮废水工艺条件研究   总被引:5,自引:3,他引:2  
以Na2HPO4和MgSO4为沉淀剂,对氯化铵、硫酸铵、氨水以及碳酸氨等四种高浓度氨氮废水进行化学沉淀法脱氮处理。正交试验的结果表明,废水初始pH值是影响氨氮去除率最主要的因素,Mg2+和PO43+的投加量与废水中氨氮的比值也对氨氮去除率有重要影响。单因素试验进一步优化表明,对于此四种氨氮废水,当初始氨氮浓度为1500mg/L时,去除氨氮的最佳工艺条件为:pH10.1~10.5,Mg:N和P:N的比例分别为1.2~1.4和1.0~1.2,此时各废水中氨氮的去除率可达到93%~99%,磷的利用率达到97%以上。  相似文献   

10.
以磷浓度50mg/L的实验室模拟废水为研究对象,考察了以鸟粪石(MAP)形式回收磷的最佳摩尔配比,并借助X-衍射(XRD)对不同摩尔配比条件下得到的沉淀物进行分析。试验结果表明,在pH=9.5时,以鸟粪石形式回收磷的最佳Mg:N:P=4:1.6:1。对沉淀物的XRD分析发现,在pH=9.5,当固定Mg:P=1.6时,N:P=1时沉淀物中基本不含MAP,当N:P=2时,生成的沉淀物中混有少量的副产物Mg(3PO)42,当N:P2时则生成较纯的MAP;当固定N:P=4时,Mg:P=2是生成较纯的MAP的临界值,超过此比例则生成副产物Mg(3PO)42;当反应按照理论配比投加氨氮和镁盐时,所得产物基本不是MAP,而是副产物Mg(3PO)42。故鸟粪石沉淀结晶反应中应尽量提高氨氮配比,并避免投加过量的镁盐,以保证回收产物的纯度。  相似文献   

11.
化学沉淀法除去废水中的氨氮及其反应的探讨   总被引:29,自引:0,他引:29  
研究了化学沉淀法处理含氨氮废水,实验研究了不同操作条件,如溶液pH值、沉淀剂种类和配比、废水中的初始氨浓度等对氨的处理效率的影响,在适宜的操作条件下,可除去废水中的氨高达99%,处理后残液中氨浓度小于1mg/L(1ppm),探讨了化学沉淀反应过程的机理。  相似文献   

12.
Chemical precipitation to form magnesium ammonium phosphate (MAP) is an effective technology for recovering ammonium nitrogen (NH4 +-N). In the present research, we investigated the thermodynamic modeling of the PHREEQC program for NH4 +-N recovery to evaluate the effect of reaction factors on MAP precipitation. The case study of NH4 +-N recovery from coking wastewater was conducted to provide a comparison. Response surface methodology (RSM) was applied to assist in understanding the relative significance of reaction factors and the interactive effects of solution conditions. Thermodynamic modeling indicated that the saturation index (SI) of MAP followed a polynomial function of pH. The SI of MAP increased logarithmically with the Mg2+/NH4 + molar ratio (Mg/N) and the initial NH4 +-N concentration (CN), respectively, while it decreased with an increase in Ca2+/NH4 + and CO3 2??/NH4 + molar ratios (Ca/N and CO3 2??/N), respectively. The trends for NH4 +-N removal at different pH and Mg/N levels were similar to the thermodynamic modeling predictions. The RSM analysis indicated that the factors including pH, Mg/N, CN, Ca/N, (Mg/N) (CO3 2??/N), (pH)2, (Mg/N)2, and (CN)2 were significant. Response surface plots were useful for understanding the interaction effects on NH4 +-N recovery.  相似文献   

13.
一种新型电化学法处理硝态氮废水的初步研究   总被引:2,自引:0,他引:2  
叶舒帆  胡筱敏  张杨  董俊 《环境科学》2010,31(8):1827-1833
通过对Pd-Me双金属催化还原NO 3--N和折点氯化法处理NH 4+-N的相关理论分析,提出了一种基于电化学法的新型NO 3--N废水处理工艺.即利用具有电子空轨的常见金属元素修饰Ti基获得催化阴极,在电场的作用下,将NO 3--N催化还原;通过调整催化元素的配比和电解条件,控制NO 3--N还原产物主要为NH 4+-N;利用阳极氧化Cl-生成高氧化性物质HOCl,将NH 4+-N氧化为无害产物N2-N.结果表明,金属元素Co和Cu修饰Ti基制得阴极可以有效地催化还原模拟废水中的NO 3--N;按前驱物溶液金属元素摩尔比1∶1制得Ti基Co-Cu复合涂层催化阴极,可以将NO 3--N高效催化还原为NH 4+-N;电解体系中引入Cl-后,通过阳极作用可将NO 3--N还原生产的NH 4+-N有效地氧化为N2-N.在100 mg/L NO 3--N模拟废水中添加1 000 mg/L Cl-,设置极板间距6 mm、电流400 mA,电解2.5 h后出水NO 3--N、NO 2--N、NH 4+-N和TN分别为2.9、0.5、1.7和6.0 mg/L.  相似文献   

14.
铁炭曝气微电解对炸药废水的试验研究   总被引:4,自引:1,他引:4  
采用铁炭曝气微电解对炸药废水进行预处理,处理结果表明:当炸药废水调节pH值为2,反应时间2h,物质A投加量2g/L,铁屑与活性炭体积比为1∶1时,进水TOC为2600mg/L,COD为2500mg/L,NH3-N为190mg/L,出水TOC为250mg/L,COD为400mg/L,NH3-N为20mg/L,去除率分别为90.5%、82%和89.6%,BOD5/COD由0.16提高到0.38。  相似文献   

15.
用化学沉淀法对厌氧处理后有机胺废水中的氨氮进行处理研究,考察pH、n(Mg^2+):n(NH4^+)、n(PO4^3-):n(NH4^+)、反应时间等影响因素。结果表明,在pH=10,反应时间10min,n(Mg):n(N):n(P)=1.2:1:1.2时氨氮由659.03mg/L降至58.52mg/L,去除效率达到91.12%。  相似文献   

16.
针对铜酞菁废水COD、铜、氨氮含量高,可生化性差等特点,采用混凝沉淀—缺氧—好氧生物接触氧化联合工艺对其进行研究,并对药剂投加量、pH值、回流比(R)、水力停留时间(HRT)等工艺参数进行了优选。运行结果表明,经该工艺处理后,出水Cu~(2 )=0.115mg/L、NH_3-N=0.54mg/L、C0D_(cr)=45.2mg/L、TKN=2.14mg/L,各项指标均达到国家一级排放标准(GB8978-1996)。  相似文献   

17.
催化臭氧氧化预处理垃圾渗滤液   总被引:2,自引:0,他引:2  
采用浸渍法制备载铜活性炭催化剂,系统地研究了催化氧化法对垃圾渗滤液中的COD和氨氮去除效果,对臭氧氧化和催化臭氧氧化效率进行了对比。在该方法下制备的催化剂中,活性组分金属铜的含量为2.89%。结果表明:在投加催化剂的情况下,COD的去除效率可得到显著提高。实验结果表明:处理COD为4980mg/L,氨氮为2100mg/L的垃圾渗滤液废水,在室温、pH为3、反应时间为120min、催化剂投加量为150g/L、臭氧的流量为5.2mg/min的条件下,废水中的COD及氨氮的去除率分别达到达81.9%和99.04%。  相似文献   

18.
用内填YDT弹性立体填料的水解(酸化)-缺氧-好氧固定床生物膜系统处理焦化废水。结果表明:当进水COD和NH3-N浓度分别为1065mg/L和253mg/L,系统水力停留时间(HRT)为33.5h,混合液回流比为3.6时,出水COD约为180mg/L,NH3-N为5mg/L,COD和NH3-N的去除率分别达83%和98%。  相似文献   

19.
含铬电镀废水的资源化处理   总被引:5,自引:1,他引:4  
针对电镀厂产生的高浓度含铬废水,研究了硫化钠还原沉淀法回收电镀废水中的铬的可能性。讨论了pH、投药量、反应时间和搅拌速率等变量对铬回收效果的影响。结果表明:在pH1.6,工业硫化钠(60%)投加量为4.0g/L废水,搅拌速率170r/min和反应时间t=90min的条件下能够将原水中初始浓度为533.1mg/L的三价铬C(rⅢ)和530.0mg/L的六价铬[C(rⅥ)]分别降到42.9mg/L和0.01mg/L。此时铬渣中三氧化二铬(Cr2O3)含量为29.5%,满足回用要求。接下来,为了进一步去除残余的三价铬C(rⅢ),利用正交试验设计讨论了重金属捕集剂(FZ)对其去除的最佳条件。在上述条件下出水中总铬(TCr)浓度最终降到0.94mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号