首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cavin L 《Die Naturwissenschaften》2010,97(12):1035-1040
Gars (Lepisosteidae) are ray-finned fishes with controversial relationships to other actinopterygian lineages. When fossil taxa are considered, gars are grouped with Mesozoic macrosemiids and ‘semionotids’ in the Semionotiformes, but the intra-relationships within this order are still elusive. Here, the evolutionary history of gars is reinvestigated using a set of well-preserved extinct semionotiform taxa in a phylogenetic analysis. Results indicate that the gar lineage roots in a clade of Late Jurassic–Cretaceous semionotiform fishes. The closest relatives to gars were plant-eating and detritivorous freshwater fishes. The occurrence of semionotiform remains in Early and early Late Cretaceous continental deposits worldwide possibly reflects an important radiation of this group, comparable to the present-day diversification of cypriniforms. Other Late Triassic to Early Cretaceous semionotiform taxa are gathered in a single clade with weakly supported internal nodes, pointing out the necessity to better understand the osteology of these fishes.  相似文献   

2.
Fossilization in amber is unique in preserving specimens with microscopic fidelity; however, arthropod inclusions are rarely examined beyond the exoskeleton as this requires destructive sampling when traditional techniques are used. We report the first complete, digital 3D, non-destructive reconstruction of the anatomy of an insect fossil, a specimen of †Mengea tertiaria embedded in a 42-Ma Baltic amber. This was made possible using Synchrotron μ-CT. The species belongs to the stem group of the phylogenetically enigmatic and extremely specialized Strepsiptera. Most internal structures of the fossil are preserved, but small parts of the lumen had decayed due to incomplete infiltration of the resin. Data on internal organs provided additional information for resolving phylogenetic relationships. A sister group relationship between †Mengea and all extant lineages of the group was confirmed with characters previously not accessible. The newly gained information also yielded some insights in the biology of †Mengea and the early evolutionary history of Strepsiptera. The technique has a tremendous potential for a more accurate interpretation of diverse fossil arthropods preserved in ambers from 130 Ma to the present.  相似文献   

3.
There is a general consensus that most of today’s nonvenomous snakes are descendants of venomous snakes that lost their venomous capabilities secondarily. This implies that the evolutionary history of venomous snakes and their venom apparatus should be older than the current evidence from the fossil record. We compared some of the oldest-known fossil snake fangs from the Lower Miocene of Germany with those of modern viperids and elapids and found their morphology to be indistinguishable from the modern forms. The primary function of recent elapid and viperid snake fangs is to facilitate the extremely rapid, stab-like application of highly toxic venoms. Our findings therefore indicate that the other components of the venom-delivery system of Early Miocene vipers and elapids were also highly developed, and that these snakes used their venom in the same way as their modern relatives. Thus, the fossil record supports the view that snakes used their venoms to rapidly subdue prey long before the mid-Tertiary onset of the global environmental changes that seem to have supported the successful radiation of venomous snakes.  相似文献   

4.
The ungulate and rodent fossil records are often used independently to understand mammalian evolutionary history. Few studies have directly compared both records over long time periods and large geographic areas. Here, we compiled two datasets of European fossil localities containing rodents and/or ungulates over 20 My (Early Miocene–Early Pliocene) and processed the data with the same methodology. We counted the raw diversity and calculated a measure of evenness (Pielou’s index). After controlling for potential biases on diversity estimators, we identify the evenness index as a more reliable estimator bringing interesting insights into the way both mammal groups are structured by biotic or abiotic factors. In this study, we consider that an uneven distribution of the species richness among families, when only some families successfully diversify within the “continental-scale community”, represents a lower adaptability of this community to the environmental context. Pielou’s index is used to estimate this adaptability through time. The responses of ungulates and rodents to environmental changes are very divergent, especially facing the climatic changes known since the Middle Miocene. The general patterns suggest that rodent broad-scale assemblages are affected by all kinds of perturbations, even short biotic and abiotic events, but show a better adaptability when facing long-term abiotic changes. Unlike rodents, the ungulate assemblages show more stability in periods of relative environmental stability but show less adaptability to long-term climatic changes. Life-history traits of mammals can help explain patterns of diversity and biogeography at different spatial scales and may probably partly explain the opposite patterns evidenced here.  相似文献   

5.
Although Asia is thought to have played a critical role in the radiation of artiodactyls, the fossil record of stem selenodonts (“dichobunoids”) remains dramatically poor in tropical Asian regions. In this study, we report a new dichobunid genus and species Cadutherium kyaukmagyii and a new basal ruminant genus and species Irrawadymeryx pondaungi, from the late Middle Eocene Pondaung Formation, Central Myanmar. Although the scarcity of the present material prevents any attempts to investigate the phylogenetic relationships of Cadutherium with contemporaneous forms from other Holarctic landmasses, this new form shed new light on the diversity of these small rabbit-like ungulates during a key period of their evolutionary history. Reexamination of the small-bodied artiodactyls from Pondaung leads us to propose new identifications of certain published specimens and, in turn, to investigate the temporal and geographic distribution of taxa recognized in the Pondaung Formation. Although fragmentary, these potential new taxa reveal an unsuspected diversity of small forms among artiodactyls of Pondaung. This addition to the Eocene record of dichobunoids and early ruminants provides further insight in the diversity of dental patterns among small artiodactyls from the Pondaung Formation and attests to the antiquity of these groups in Southeast Asia.  相似文献   

6.
During the last century, approximately 30 hypotheses have been constructed to explain the evolution of the human upright posture and locomotion. The most important and recent ones are discussed here. Meanwhile, it has been established that all main hypotheses published until the last decade of the past century are outdated, at least with respect to some of their main ideas: Firstly, they were focused on only one cause for the evolution of bipedality, whereas the evolutionary process was much more complex. Secondly, they were all placed into a savannah scenario. During the 1990s, the fossil record allowed the reconstruction of emerging bipedalism more precisely in a forested habitat (e.g., as reported by Clarke and Tobias (Science 269:521–524, 1995) and WoldeGabriel et al. (Nature 412:175–178, 2001)). Moreover, the fossil remains revealed increasing evidence that this part of human evolution took place in a more humid environment than previously assumed. The Amphibian Generalist Theory, presented first in the year 2000, suggests that bipedalism began in a wooded habitat. The forests were not far from a shore, where our early ancestor, along with its arboreal habits, walked and waded in shallow water finding rich food with little investment. In contrast to all other theories, wading behaviour not only triggers an upright posture, but also forces the individual to maintain this position and to walk bipedally. So far, this is the only scenario suitable to overcome the considerable anatomical and functional threshold from quadrupedalism to bipedalism. This is consistent with paleoanthropological findings and with functional anatomy as well as with energetic calculations, and not least, with evolutionary psychology. The new synthesis presented here is able to harmonise many of the hitherto competing theories.  相似文献   

7.
Evolutionary theory has been likened to a “universal acid” (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research—evolutionary developmental biology—has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin’s Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the “Jena school” of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about “biometabolic modi” are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research—heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of evolution in Russia and is only partly known outside of the Russian-reading world because only one of his many books was translated into English early on. He made many important contributions to evolutionary theory and we point out the important parallels between Schmalhausen’s ideas (stabilizing selection, autonomization) and C. H. Waddington’s (canalization, genetic assimilation). This is one of the many parallels that have contributed to an increased appreciation of the internationality of progress in evolutionary thinking in the first half of the twentieth century. A direct link between German and Russian evolutionary biology is provided by N. V. Timoféeff-Ressovsky, whose work on, e.g., fly genetics in Berlin is a crucial part of the history of evo-devo. To emphasize the international nature of heterochrony research as predecessor to the modern era of EvoDevo, we include Sir G. R. de Beer’s work in the UK. This historical part is followed by a short review of the discovery and importance of homeobox genes and of some of the major concepts that form the core of modern EvoDevo, such as modularity, constraints, and evolutionary novelties. Major trends in contemporary EvoDevo are then outlined, such as increased use of genomics and molecular genetics, computational and bioinformatics approaches, ecological developmental biology (eco-devo), and phylogenetically informed comparative embryology. Based on our survey, we end the review with an outlook on future trends and important issues in EvoDevo.  相似文献   

8.
刘镇  朱玉凡  郭文凯  刘晓  陈强 《环境科学》2019,40(5):2069-2077
随着我国工业的快速发展和城市化进程的加快,化石燃料的大量使用造成了严重的二氧化硫、颗粒物和挥发性有机物(volatile organic compounds,VOCs)等大气污染.目前,对化石燃料燃烧排放挥发性有机物环境影响的研究较少,本文计算了兰州市化石燃料燃烧源排放VOCs及其相应的臭氧生成潜势(ozone formation potential,OFP)和二次有机气溶胶生成潜势(secondary organic aerosols formation potential,SOAFP),其中水泥制造业的OFP和SOAFP占比最大,分别为45. 3%、50. 9%;其次为砖瓦制造业,但其吨标煤燃烧排放VOCs的OFP和SOAFP值最高,折为吨标煤后天然气燃烧产生VOCs的O_3和SOA最小.兰州市主城区化石燃料燃烧源OFP和SOAFP主要为电力和热力的生产供应以及西固区工业企业排放VOCs的贡献,其它地区为水泥制造业、砖瓦制造业、钢铁冶炼业等高能耗的行业的贡献为主.芳香烃是化石燃料燃烧源排放VOCs中对OFP和SOAFP均贡献最大的一类物质,占比分别为40. 0%和67. 2%,并且在生成潜势贡献前10的物种中芳香烃为主要物种.与生物质燃烧源相比,化石燃料燃烧源具有较强的O_3和SOA生成能力(2. 58 t·t~(-1)和3. 16 kg·t~(-1)).  相似文献   

9.
A skeleton of a chicken-sized crane precursor is described from the Lower Oligocene of the Lubéron in Southern France. Parvigrus pohli gen. et sp. nov. is the most substantial Paleogene fossil record of the Grues (Aramidae [limpkin] + Gruidae [cranes]), and among its oldest representatives. The fossil species is classified in the new taxon Parvigruidae, which is shown to be the sister group of extant Grues. It is the first fossil record of a stem lineage representative of the Grues and, among others, differs from modern Grues in its smaller size, shorter beak, and rail-like limb proportions. Size increase in the stem lineage of the Gruidae may be related to the spread of grasslands during the Oligocene and Miocene. Occurrence of stem lineage Grues in the Lower Oligocene of Europe is in concordance with the fact that there is no evidence for the presence of crown group members of modern avian “families” in pre-Oligocene fossil deposits. Electronic Supplementary Material  Supplementary material is available for this article at  相似文献   

10.
New fossil spiders (Arachnida: Araneae) from Middle Jurassic (ca. 165 Ma) strata of Daohugou, Inner Mongolia, China are described as Eoplectreurys gertschi gen. et sp. nov. and referred to the modern haplogyne family Plectreuridae. This small family is restricted to southwestern USA, Mexico, and the adjacent Caribbean area today and hitherto has only a sparse Cenozoic fossil record. The morphology of Eoplectreurys is remarkably similar to modern forms and thus demonstrates great evolutionary conservatism. This new discovery not only extends the fossil record of the family by at least 120 Ma to the Middle Jurassic but also supports the hypothesis of a different distribution of the family in the past than today and subsequent extinction over much of its former range.  相似文献   

11.
12.
Herein, we report evidence of an envenomation apparatus (EA) in two different species of extinct “giant” shrews, Beremendia and an indeterminate soricine (Mammalia, Eulipotyphla, Soricidae), documented by very well preserved fossil specimens recovered from two Early Pleistocene cave deposits of the Sierra de Atapuerca in Burgos, Spain. The two soricine taxa from Atapuerca have evolved specialized teeth as EAs, which differ from those of recently reported mammals of the Paleocene age, being more similar to the ones described in the modern Solenodon. This discovery reveals the first instance of shrews possessing what appears to be an EA, an evolutionary adaptation that, in these species, was probably related to an increase in body mass and hunting of a larger-sized prey. The Atapuerca specimens would have a highly specialized EA, one of the very few reported for an extinct or living mammal of any time. In addition to the presence of a gutter-like groove along the medial side of the crown of the lower incisors, these two species also present stout jaws and a modified mandibular symphysis with a conspicuous cavity, which in life would likely contain large amounts of connective tissue. The strong mandible architecture of these large shrews would be, in this way, reinforced by a more immovable symphysis, increasing the bite force exerted over a potential prey. This adaptation, together with the grooved incisors, would ensure a rapid and efficient transmission of the poisonous saliva to paralyze relatively large-sized prey.  相似文献   

13.
Systemic acquired resistance (SAR) of plants to pathogens is a well-defined phenomenon. The underlying signalling pathways and its application in crop protection are intensively studied. However, most studies are conducted on crop plants or on Arabidopsis as a model plant. The taxonomic distribution of this phenomenon and its dependence on life history are thus largely unknown. We quantified activities of three classes of resistance-related enzymes in 18 plant species to investigate whether plants with varying life histories differ in their investment in disease resistance. Enzyme activities were quantified in untreated plants, and in plants induced with BION, a chemical resistance elicitor. All species showed constitutive activities of chitinase, peroxidase, or glucanase. However, constitutive chitinase activities varied by 30 times, and peroxidase by 50 times, among species. Several species did not respond to the induction treatment, while enzyme activities in other species increased more than threefold after BION application. Plant species differ dramatically in the presence and inducibility of resistance enzymes. This variation could be related to life history: While all resistance enzymes were significantly induced in larger perennial plants that flower during summer, spring geophytes hardly showed inducible resistance. These plants grow in an environment that is characterised by a low-pathogen pressure, and thus may simply ‘escape’ from infection. Our study presents the first comparative data set on resistance-related enzymes in noncultivated plants. The current view on SAR—narrowed by the concentration on cultivated crops—is not sufficient to understand the ecological and evolutionary relevance of this widespread plant trait.  相似文献   

14.
Codfishes, the Gadiformes, are quite abundant in modern temperate and polar waters with a fossil record ranging back into the Palaeogene. The oldest records are from the Danian and Selandian of Europe and South Australia. The bipolar distribution early in their evolutionary history implies that their origin must have occurred quite early in the Palaeocene, or even in the Late Cretaceous with subsequent rapid diversification. By the Eocene, gadiforms were highly abundant and widespread. With the exception of gadiforms, no Eocene Antarctic teleostean group is present in the modern Antarctic fauna. Here, we review the early evolution and diversification of gadiforms in general and of macrouroids in particular. We also describe the undoubtedly oldest skeletal macrourid specimen with otoliths preserved in situ. It is the first definitive record of this group from the Eocene of Antarctica filling a gap in its stratigraphic distribution. The fossil record of gadiforms in general and macrouroids in particular indicates that the origin of both was in shallow shelf environments but with adaptations to deep-water settings early in their evolution. While gadoids seemingly originated in the earliest Palaeogene and rapidly experienced a first major radiation event in the eastern North Atlantic and/or North Sea Basin, macrouroids evolved in the Southern Ocean and migrated northwards into the South Atlantic before the establishment of the circum-Antarctic current and subsequent isolation of the Antarctic fish fauna. These two timely and regional separated adaptive radiation events in the Palaeogene gave rise to their modern taxonomic diversity and global distribution.  相似文献   

15.
Captorhinids, a clade of Paleozoic reptiles, are represented by a rich fossil record that extends from the Late Carboniferous into the Late Permian. Representatives of this clade dispersed from the equatorial regions of Laurasia into the temperate regions of Pangea during the Middle and Late Permian. This rich fossil record shows that there was an evolutionary trend from faunivorous to omnivorous and herbivorous feeding habits within this clade. The discovery of well-preserved captorhinid materials in the Middle Permian of China allows us to determine that the new taxon, Gansurhinus qingtoushanensis, gen. et sp. nov, is a member of Moradisaurinae, a clade of captorhinids with multiple tooth rows arranged in parallel. The presence of this moradisaurine in the Middle Permian of south central Asia leads us to suggest that paleogeographic changes during the Permian, with part of what is today China becoming a large peninsula of Pangea, allowed these early reptiles as well as other terrestrial vertebrates to extend their geographic ranges to this region of the Late Paleozoic supercontinent.  相似文献   

16.
Although Asia is thought to have played a critical role in the basal radiation of Ruminantia, the fossil record of early selenodont artiodactyls remains poorly documented in this region. Dental remains of a new bunoselenodont artiodactyl are described from the late Eocene of Krabi, southern Thailand. This new form, Krabitherium waileki gen. et sp. nov, is tentatively referred to the Tragulidae (Ruminantia) on the basis of several dental features, including a weak Tragulus fold and the presence of a deep groove on the anterior face of the entoconid. Although this new form is suggestive of the enigmatic ?Gelocus gajensis Pilgrim 1912 from the “base of the Gaj” (lower Chitarwata Formation) of the Bugti Hills (Central Pakistan), K. waileki most likely represents an early representative of a relatively bunodont group of tragulids that includes the genus Dorcabune, known from the Miocene of south Asia. This addition to the Eocene record of early ruminants attests to the antiquity of the group in Southeast Asia and lends support to the hypothesis that the Tragulidae represents one of the first offshoots in the evolutionary history of Ruminantia.  相似文献   

17.
Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories (forest land and non-forest land) for two management practices (short rotation vs. long rotation) to study mitigation potential of afforestation and fossil fuel substitution as compared to carbon storage. Significant carbon benefit can be obtained in the long run from using lands for growing short rotation energy crops and substituting fossil fuels by the biomass thus produced, as opposed to sequestering carbon in the biomass of the trees. When growth rates are high and harvest is used in a sustainable manner (i.e., replanting after every harvest), the opportunities for net carbon reductions appear to be fossil fuel substitution, rather than storage in ecosystem biomass. Our results suggest that at year 100 a total of 216 Mg C ha−1 is sequestered for afforestation/reforestation using long rotation sal (Shorea robusta Gaertn.f) species, as opposed to offset of 412 Mg C ha−1 for carbon storage and fossil fuel substitution for short rotation poplar (Populus Deltoides Marsh) plantations. The bioenergy option results in a continuous stream of about 3 Mg C ha−1 yr−1 of carbon benefits per year on forest land and 4 Mg C ha−1 yr−1 on non-forest land. Earlier studies have shown that in India waste land availability for establishing energy plantations is in the range of 9.6 to 36.5 Mha. Thus, using the 758 Tg biomass per year generated from 9.6 Mha waste land gives a mitigation potential in the range of 227 to 303 Tg C per year for carbon storage and fossil fuel substitution from poplar plantation for substituting coal based power generation. Depending upon the land availability for plantation, the potential for energy generation is in the range of 11,370 PJ, possibly amounting to a bioenergy supply of 43% of the total projected energy consumption in 2015. Further studies are needed to estimate the mitigation potential of other species with different productivities for overall estimation of the economic feasibility and social acceptability in a tropical country like India.  相似文献   

18.
Viviparity (giving birth to live young) in fossil reptiles has been known only in a few marine groups: ichthyosaurs, pachypleurosaurs, and mosasaurs. Here, we report a pregnant specimen of the Early Cretaceous Hyphalosaurus baitaigouensis, a species of Choristodera, a diapsid group known from unequivocal fossil remains from the Middle Jurassic to the early Miocene (about 165 to 20 million years ago). This specimen provides the first evidence of viviparity in choristoderan reptiles and is also the sole record of viviparity in fossil reptiles which lived in freshwater ecosystems. This exquisitely preserved specimen contains up to 18 embryos arranged in pairs. Size comparison with small free-living individuals and the straight posture of the posterior-most pair suggest that those embryos were at term and had probably reached parturition. The posterior-most embryo on the left side has the head positioned toward the rear, contrary to normal position, suggesting a complication that may have contributed to the mother’s death. Viviparity would certainly have freed species of Hyphalosaurus from the need to return to land to deposit eggs; taking this advantage, they would have avoided intense competition with contemporaneous terrestrial carnivores such as dinosaurs.  相似文献   

19.
Synodontis (Mochokidae, Siluriformes) is a freshwater catfish endemic to Africa. The 118 extant species are present in almost all hydrographic basins. Some species are restricted to a single stream, whereas others have a vast distribution. Synodontis is known in the fossil record since the Miocene, and its history depends on the connections among African basins through time. The identification of species in the fossil record is essential to reconstruct this historical pattern. Catfish pectoral and dorsal spines are robust, they preserve well and they form most of the fossil remains for the genus Synodontis. Unfortunately, the criteria for the identification of extant Synodontis species are not applicable to fossil specimens. Here, we define 11 original morphological characters that permit to discriminate four extant species from the Chad-Chari hydrographic system. Six of these characters are defined on pectoral spines and five on dorsal spines. We then show that these characters can be used successfully for identifying fossil specimens. In particular, we present a case study in which we identify Synodontis cf. schall and Brachysynodontis cf. batensoda in the hominid-bearing sector Toros-Menalla (Late Miocene, northern Chad). We show that spine anatomy can be a powerful tool to recognise catfish species through time and thus to identify historical diversity pattern.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号