首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In the present study, fate of carbofuran in anaerobic environments and the adverse effects of carbofuran on conventional anaerobic systems were evaluated. Carbofuran degradation studies were carried out in batch reactors with varying carbofuran concentrations of 0 to 270.73 mg/L corresponding to a sludge-loading rate (SLR) of 2.12 x 10(-6) to 3.83 x 10(-3) g of carbofuran/g of volatile suspended solids (VSS)/d. Carbofuran concentration was reduced to undetectable levels at the end of 8 and 13 days in the batch reactors operated with a SLR of 2.12 x 10(-6) and 3.33 x 10(-5) g of carbofuran/g of VSS/d, respectively. Performances of two anaerobic reactors i.e. upflow anaerobic sludge blanket (UASB) and modified UASB (with tube settlers) were evaluated in the presence and absence of carbofuran using synthetic wastewater. In the absence of carbofuran, the soluble chemical oxygen demand (COD) removal efficiency in the conventional UASB reactor at 8 h and 6 h hydraulic retention time (HRT) was nearly 88% and 76%, respectively, whereas in modified UASB reactor it was increased to 90% at 8 h HRT and 78% at 6 h HRT. When 28 mg/L (SLR of 1.19 x 10(-2) g of carbofuran/g of VSS/d) of carbofuran was introduced in the reactors, the COD removal efficiency was reduced to 41% and 44% in conventional and modified UASB reactors respectively. However, the reactor could maintain around 80% COD removal efficiency at a carbofuran concentration of 7.84 mg/L (SLR of 3.64 x 10(-3) g of carbofuran/g of VSS/d). The reactor efficiency was also measured in terms of specific acetoclastic methanogenic activity (SMA). The toxic effect of carbofuran was reversible to a certain extent. Carbofuran removal efficiency in the conventional UASB reactor at carbofuran concentrations of 7, 13 and 28 mg/L were 40 +/- 3%, 27 +/- 3%, and 11 +/- 3%, respectively. In modified UASB reactor, carbofuran removal efficiency was almost uniform at 7 and 13 mg/L but it was reduced nearly by 56% at 28 mg/L. The major metabolite of carbofuran i.e. 3-keto carbofuran was found in all the reactors.  相似文献   

2.
Biomass from a prototype reactor was used to investigate the kinetics of chemoheterotrophic reduction of solutions of ferric ethylenediaminetetraacetic acid (EDTA) and solutions containing the nitrosyl adduct of ferrous EDTA using ethanol as the primary electron donor and carbon source. A series of batch experiments were conducted using biomass extracted from the scrubber solution treatment and regeneration stage of a prototype iron EDTA-based unit process for the absorption of nitric oxide with subsequent biological treatment. Using a linear-sweep voltammetric method for analysis of the ferric EDTA concentration, iron-reducing bacteria were found to behave according to the Monod kinetic model, at initial concentrations up to 2.16 g chemical oxygen demand (COD) as ethanol per liter, with a half-velocity constant of 0.532 g COD as ethanol/L and a maximum specific utilization rate of 0.127 mol/L of ferric ethylenediamine-tetraacetic acid [Fe(III)EDTA]*(g volatile suspended solids [VSS]/L)d(-1). Based on batch analyses, biomass yield and endogenous decay values of iron-reducing bacteria were estimated to be 0.055 g VSS/g COD and 0.017 L/d, respectively. An average of 1.64 times the theoretical (stoichiometric) demand of ethanol was used to complete reduction reactions. Kinetics of the reduction of the nitrosyl adduct of ferrous EDTA are summarized by the following kinetic constants: half-velocity constant (Ks) of 0.39 g COD/L, maximum specific utilization rate (k) of 0.2 mol/L [NO x Fe(II)EDTA(2-)](g VSS/L)d(-1), and inhibition constant (K(I)) of 0.33 g COD/L, as applied to the modified Monod kinetic expression described herein. Based on batch analyses, the biomass yield of nitrosyl-adduct-reducing bacteria was estimated to be 0.259 g VSS/g COD, endogenous decay was experimentally determined to be 0.0569 L/d, and an average of 1.26 times the stoichiometric demand of ethanol was used to complete reduction reactions.  相似文献   

3.
Methane production from the soluble fraction of distillers' dried grains with solubles, a co-product of ethanol production, was studied in 2-L anaerobic sequencing batch reactors (ASBRs) under 10 different operating conditions. Methane production and chemical oxygen demand (COD) removal were quantified for a wide range of operating parameters. Chemical oxygen demand removals of 64 to 95% were achieved at organic loading rates ranging from 1.5 to 22.2 g COD/L x d, solids retention times from 8 to 40 days, and food-to-microorganism ratios ranging from 0.4 to 1.9 g COD/g volatile suspended solids (VSS) x d. Biogas methane content varied from 61 to 74%, with 0.29 L CH4 produced/g COD removed. Roughly 56% of the influent COD and 84% of the COD removed in the ASBRs was converted to methane. Microbial yield (Y) and decay (b) constants were determined to be Y = 0.126 g VSS/g COD removed and b = 0.032 day(-1), respectively. Methane produced from co-products can reduce the costs and fossil-fuel consumption of ethanol manufacture.  相似文献   

4.
研究构建了2个容积为1.1 L的好氧活性污泥反应器(即1号和2号反应器)1,号反应器每天直接通加低剂量臭氧(投加量为0.01 g O3/g TSS),不加臭氧的2号反应器作为对照平行运行,均采用每天换一次人工污水的充/排式操作。运行71 d的结果表明2,个反应器对人工污水COD的处理效果基本相同。反应器运行40 d后1,号反应器的污泥浓度比2号反应器的污泥浓度低1 400~1 700 mg/L并可稳定在8 200 mg/L,污泥减量化效果明显。低剂量臭氧的直接通加明显降低了胞内ATP浓度,并影响了微生物的抗氧化活性,2号反应器的平均超氧化物歧化酶和过氧化氢酶酶活比1号反应器分别高了24.3%和9.5%。PCR-DGGE对两反应器微生物种群的分析结果表明:Uncultured gammaproteobacteria bacteri-um、Nannocystis exedens和Uncultured actinobacterium为1号反应器的主要种群;而2号反应器的主要种群为Uncultured bacte-rium和Uncultured gammaproteobacteria bacterium。  相似文献   

5.
Attempts were made in this study to examine the effectiveness of sequencing batch reactor (SBR) for the treatment of beverage industrial wastewater. The SBR was operated at three different organic loading rates (OLRs): 2, 1.7 and 1.1 kg COD/m3 d. Results of continuous long-term operation showed that by decreasing OLR from 2 to 1.7 kg COD/m3 day, the removal efficiency was increased from 95.5 to 99.3% for COD, from 95.3 to 98.1% for BOD and from 87 to 97.7% for TSS. While further decreasing of the OLR to 1.1 kg COD/m3 day, there is no significant adverse effect on organics removal. Also, residual total nitrogen (TN) concentration decreased by decreasing the OLR. However, increasing the OLRs exerted a slightly negative effect on the removal of total phosphorous. On the other hand, the experimental data indicated that the substrate utilization kinetic followed Monod's kinetics model approximately. The maximum specific substrate utilization rate (micro(max), half velocity coefficient (Ks), growth yield coefficient (Y) and decay coefficient (Kd) were 2.94 d(-1), 15.22 mg/L, 0.2384 g VSS/g COD and 0.2019 h(-1), respectively.  相似文献   

6.
Chromium species behaviour in the activated sludge process   总被引:3,自引:0,他引:3  
The purpose of this research was to compare trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) removal by activated sludge and to investigate whether Cr(VI) reduction and/or Cr(III) oxidation occurs in a wastewater treatment system. Chromium removal by sludge harvested from sequencing batch reactors, determined by a series of batch experiments, generally followed a Freundlich isotherm model. Almost 90% of Cr(III) was adsorbed on the suspended solids while the rest was precipitated at pH 7.0. On the contrary, removal of Cr(VI) was minor and did not exceed 15% in all experiments under the same conditions. Increase of sludge age reduces Cr(III) removal, possibly because of Cr(III) sorption on slime polymers. Moreover, the decrease of suspended solids concentration and the acclimatization of biomass to Cr(VI) reduced the removal efficiency of Cr(III). Batch experiments showed that Cr(III) cannot be oxidized to Cr(VI) by activated sludge. On the contrary, Cr(VI) reduction is possible and is affected mainly by the initial concentration of organic substrate, which acts as electron donor for Cr(VI) reduction. Initial organic substrate concentration equal to or higher than 1000 mgl(-1) chemical oxygen demand permitted the nearly complete reduction of 5 mgl(-1) Cr(VI) in a 24-h batch experiment. Moreover, higher Cr(VI) reduction rates were obtained with higher Cr(VI) initial concentrations, expressed in mg Cr(VI) g(-1) VSS, while decrease of suspended solids concentration enhanced the specific Cr(VI) reduction rate.  相似文献   

7.
The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.  相似文献   

8.
Nitrifier growth parameters--the maximum growth rate (microAmax) and yield (YA)--were estimated by measuring the rate of carbon dioxide uptake and additional rates of oxygen uptake and ammonia (or nitrite) use. Batch tests in a combined titrimetric and offgas analyzer with enriched Nitrobacter and Nitrosomonas cultures and an activated sludge sample were performed. The measured microAmax values for the Nitrobacter and Nitrosomonas cultures were 0.67 +/- 0.03 day(-1) and 0.54 +/- 0.09 day(-1), while the YA values were 0.072 +/- 0.01 g volatile suspended solids (VSS) x g nitrogen (N)(-1) and 0.14 +/- 0.02 gVSS x gN(-1), respectively. For the activated sludge sample, microAmax was observed to increase with pH (microAmax = 0.72 x 3.3(pH-7.1)) over the range 6.8 to 7.1. All microAmax and YA values determined by this method were similar to those previously reported. Compared with other microAmax and YA estimation methods, this method allows for unique microAmax and YA estimations for given conditions from a single experiment.  相似文献   

9.
This research focuses on the removal of 2, 4-D via denitrification, with a particular emphasis on the effect of adding naturally generated volatile fatty acids (VFAs) as a carbon source. These VFAs had been produced from an acid-phase anaerobic digester (mean VFA concentration of 3153 ± 801 mg/L [as acetic acid]). The first step involved developing 2, 4-D degrading bacteria in a sequencing batch reactor (SBR) fed with both sewage and 2, 4-D (30–100 mg/L). Subsequent denitrification batch tests demonstrated that the specific denitrification rate increased from 0.0119 ± 0.0039 to 0.0192 ± 0.0079 g NO3-N/g volatile suspended solids (VSS) per day, when using 2, 4-D alone versus 2, 4-D plus natural VFAs from the digester as a carbon source. Similarly, the specific 2, 4-D consumption rate increased from 0.0016 ± 0.0009 to 0.0055 ± 0.0021 g 2,4-D/g VSS per day, when using 2, 4-D alone as compared to using 2, 4-D plus natural VFAs. Finally, a parallel increase in the percent 2, 4-D removal was observed, rising from 28.33 ± 11.88 using 2, 4-D alone to 54.17 ± 21.89 using 2, 4-D plus natural VFAs.  相似文献   

10.
不同碳源下的间歇曝气反硝化实验研究   总被引:2,自引:0,他引:2  
本实验研究在序批式模式下高浓度硝酸盐的反硝化,比较用甲醇、醋酸钠和消化污泥上清液作碳源。实验发现,间歇曝气有助于提高反硝化污泥的沉降性能,而厌氧条件下,污泥的沉降性能差。污泥浓度4~5gVSS/L下,3种碳源都能有效地进行反硝化。最大硝酸盐去除率为0486gNO3N/gVSS·d。开始阶段,亚硝酸盐浓度增加,但用醋酸盐和硝化污泥上清液作碳源,其浓度最终下降为零。  相似文献   

11.
A study of the role of the depth in the performance of laboratory-scale down-flow anaerobic fixed-bed reactors (DFAFBR) was carried out at different nominal hydraulic retention times (HRT(N)) using piggery waste as substrate at different influent concentrations (2, 4, 6 and 8 g COD/L). The profiles of soluble chemical oxygen demand (COD) (SCOD), organic nitrogen (O.N.), ammonia nitrogen (A.N.), pH and electrical conductivity (E.C.) through the reactor depths showed an initial highly active zone, which was located around the first half of the reactor depth, and a second zone with a lower biological activity. It was found that the depth of the active zone decreased as the HRT(N) increased and that the slopes of the profiles obtained increased with the rise in the influent concentration. A hydraulic test showed an increase in the dispersion number when the HRT(N) increased. The reactors showed a hydraulic pattern between plug-flow and back-mix. The real values of HRT (Theta) also defined as real contact times were determined to be 0.7, 2.1, 3.4, 4.7, 6.4 and 8 days for values of HRT(N) of 1, 2, 3, 4, 5 and 6 days, respectively. It was found that the concentration of SCOD within the reactor decreased exponentially with the increase in the value of theta. Additionally, the influent concentration had a strong influence on the SCOD variation concentration, mainly at values of theta under 1.5 days, which corresponded to the first part of the reactors.  相似文献   

12.
An upflow anaerobic sludge blanket (UASB)-anoxicaerobic system was used for treatment of tomato and bean processing wastewater. At various hydraulic retention times, ranging from 0.7 to 5 days, excellent removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total suspended solids (TSS), ammonia-nitrogen (NH4-N), and total Kjeldahl nitrogen was achieved with final effluent BOD/TSS/NH4N concentrations of less than 15/15/1 mg/L. Biogas yield in the UASB reactor varied from 0.33 to 0.44 m3/kgCODremoved. The kinetics of anaerobic treatment were investigated. The yield coefficient was 0.03 gVSS/gCOD; maximum specific growth rate was 0.24 day(-1); Monod half velocity constant was 135 mgCOD/L; and specific substrate utilization rate was 3.25 gCOD/gVSS x d. Nitrification and denitrification kinetics were studied in batch experiments, and the rates were comparable with those in the continuous flow system.  相似文献   

13.
The start up and performance of the Anammox process were tested in sequencing batch reactors with two different configurations: a bubble column (SBR-B) and a gas-lift reactor (SBR-G). Different off-gas upflow velocities were tested (3.53-12.3 cm min(-1)) in order to expose the biomass to different shear conditions and to study their effects on both efficiency and physical properties of the Anammox granular biomass. For the SBR-B the minimum gas upflow velocity needed to achieve biomass suspension inside the reactor was 12.3 cm min(-1). Such velocity made impossible the stable operation of the process. The fluidization of biomass for the SBR-G was reached at a gas upflow velocity of 3.52 cm min(-1). This system maintained an efficiency of nitrite removal around 98% at values up to 5.29 cm min(-1) but when the gas upflow velocity was increased from 5.29 to 9.70 cm min(-1) a significant decrease of the specific Anammox activity of the biomass from 0.35 to 0.05 g Ng(-1) VSS d(-1) was measured. The system lost 85% of its nitrogen removal efficiency which was not restored in spite of returning the gas upflow velocity to its initial value.  相似文献   

14.
Ağdağ ON  Sponza DT 《Chemosphere》2005,59(6):871-879
This study investigated the effects of alkalinity on the anaerobic treatment of the organic solid wastes collected from the kitchen of Engineering Faculty in Dokuz Eylul University, Izmir, Turkey and the leachate characteristics treated in three simulated landfill anaerobic bioreactors. All of the reactors were operated with leachate recirculation. One reactor was operated without alkalinity addition. The second reactor was operated by the addition of 3 g l-1 d-1 of NaHCO3 alkalinity to the leachate and the third reactor was operated by the addition of 6 g l-1 d-1 NaHCO3 alkalinity to the leachate. After 65 d of anaerobic incubation, it was observed that the chemical oxygen demand (COD), volatile fatty acids (VFA) concentrations, and biochemical oxygen demand to chemical oxygen demand (BOD5/COD) ratios in the leachate samples produced from the alkalinity added reactors were lower than the control reactor while the pH values were higher than the control reactor. The COD values were measured as 18900, 3800 and 2900 mg l-1 while the VFA concentrations were 6900, 1400 and 1290 mg l-1, respectively, in the leachate samples of the control, and reactors containing 3 g l-1 NaHCO3 and 6 g l-1 NaHCO3 after 65 d of anaerobic incubation. The total nitrogen (TN), total phosphorus (TP) and ammonium nitrogen (NH4-N) concentrations in organic solid waste (OSW) significantly reduced in the reactor containing 6 g l-1 NaHCO3 by d 65. The values of pH were 6.54, 7.19 and 7.31, after 65 d of anaerobic incubation, respectively, in the aforementioned reactors results in neutral environmental conditions in alkalinity added reactors. Methane percentage of the control, reactors containing 3 g l-1 NaHCO3 and 6 g l-1 NaHCO3 were 37%, 64% and 65%, respectively, after 65 d of incubation. BOD5/COD ratios of 0.27 and 0.25 were achieved in the 3 and 6 g l-1 NaHCO3 containing reactors, indicating a better OSW stabilization. Alkalinity addition reduced the waste quantity, the organic content of the solid waste and the biodegradation time.  相似文献   

15.
采用上流式固定床反应器,在常温下连续运行,考察MnO2对海洋性ANAMMOX菌富集培养的影响,其中接种的海洋海底沉积物采自大连市附近海域。结果表明,在反应器运行近150d中,加入MnO2的R1反应器的最大总氮去除速率为137.82gN/(m3·d),比没有加人MnO2的R2反应器高出近20gN/(m3·d)。在低温环境(10~15℃)运行时,R1反应器的氨氮和亚硝氮去除率比R2反应器均高出10%,且Rl反应器对温度变化的适应性和运行稳定性都好于R2反应器。这表明MnO2的加入确实在一定程度上促进了海洋性ANAMMOX细菌的富集,并增强了ANAMMOX反应器对温度变化的适应性,使其能够在较宽的温度范围下运行。  相似文献   

16.
A/O-MBR中MLSS浓度对污泥性能及膜通量的影响   总被引:1,自引:1,他引:0  
采用国产聚丙烯中空纤维帘式膜组件,进行了A/O-MBR系统处理生活污水的实验研究,主要探讨了系统中污泥浓度(MLSS)与膜通量变化过程的关系。实验结果表明,MLSS由3 805 mg/L升高到6 912 mg/L时,污泥混合液胞外聚合物(EPS)由43 mg/g VSS增加到81 mg/g VSS,EPS中多糖与蛋白质的比例从0.87增加到1.08。同时,污泥相对疏水性(RH)的降低与Zeta电位的升高也在一定程度上共同促进了膜污染速率的上升。实验条件下,当运行时间为60 d左右,MLSS升高至6 200 mg/L时,跨膜压差上升迅速,膜组件清洗周期由初始的22 d缩短为11 d。A/O-MBR中由于MLSS浓度变化而导致的活性污泥混合液特性的变化,是影响膜通量变化的重要原因。  相似文献   

17.
The kinetics of the anaerobic digestion of olive mill wastewater (OMW) was studied in the mesophilic and thermophilic ranges of temperature. Two completely mixed continuous flow bioreactors operating at 35 degrees C and 55 degrees C and with an average biomass concentration of 5.45 g VSS litre(-1) were used. The thermophilic reactor worked satisfactorily between hydraulic retention times (HRT) of 10 to 40 days, removing between 94.6 and 84.4% of the initial chemical oxygen demand (COD). In contrast, the mesophilic reactor showed a marked decrease in substrate utilization and methane production at a HRT of 10 days. TVFA levels and the TVFA/alkalinity ratio were higher and close to the suggested limits for digester failure. The yield coefficient for methane production (1 CH(4) STP g(-1) COD(added)) was 28% higher in the thermophilic process than in the mesophilic one. Macroenergetic parameters, calculated using Guiot's kinetic model, gave yield coefficients for the biomass (Y) of 0.18 (mesophilic) and 0.06 g VSS g(-1) COD (thermophilic) and specific rates of substrate uptake for cell maintenance (m) of 0.12 (mesophilic) and 0.27 g COD g(-1) VSS.day(-1) (thermophilic). The experimental results showed the rate of substrate uptake (R(s); g COD g(-1) VSS.day(-1)), correlated with the concentration of biodegradable substrate (S(b); g COD litre(-1)), through an equation of the Michaelis-Menten type for the two temperatures used.  相似文献   

18.
Columnar packed-bed (PB) reactors with a specific surface area of 127 m2/m3 were investigated in this study for treating nitrate wastewater. This study demonstrated that a single-stage packed bed was able to achieve total nitrogen (TN) and chemical oxygen demand (COD) removal efficiencies higher than 83 and 75%, respectively. The highest achievable TN and COD removal rates were 47.2 g N/m2 x d and 158.0 g COD/m2 x d, respectively. The substrate removal rate in the PB column was found to follow half-order reaction kinetics, with a reaction coefficient, kappa, of 53.62 (mg/L)1/2/d. A dual-stage PB system was capable of achieving TN and COD removal efficiencies greater than 99 and 98%, respectively. Effluent TN and COD concentrations less than 6.5 mg NO3(-)-N/L and 50.0 mg COD/L, respectively, were obtained when the dual PB system was used.  相似文献   

19.
The feasibility of using dried attached-growth biomass from the polyurethane (PU) foam cubes as a solid carbon source to enhance the denitrification process in the intermittently aerated moving bed sequencing batch reactor (IA-MBSBR) during the treatment of low COD/N containing wastewater was investigated. By packing the IA-MBSBR with 8 % (v/v) of 8-mL PU foam cubes saturated with dried attached-growth biomass, total nitrogen removal efficiency of 80 % could be achieved for 10 consecutive cycles of operation when the intermittent aeration strategy of consecutive 1 h of aeration followed by 2 h of non-aeration period during the REACT period of the IA-MBSBR was adopted. Negligible release of ammonium nitrogen (NH4 +–N) and slow-release of COD from the dried biomass would ensure that the use of this solid carbon source would not further burden the treatment system. The slow-releasing COD was found to have no effect in promoting the assimilation process and would also allow the carbon source to be used for many cycles of operation. The ‘carbon-spent’ PU foam cubes could be reused by merely drying at 60 °C at the end of the operational mode. Thus, the dried attached-growth biomass formed on the PU foam cubes could be exploited as an alternative solid carbon source for the enhancement of denitrification process in the IA-MBSBR.  相似文献   

20.
This study was conducted to evaluate the performance of an innovative two-stage process, BIOCELL, that was developed to produce hydrogen (H2) and methane (CH4) from food waste on the basis of phase separation, reactor rotation mode, and sequential batch technique. The BIOCELL process consisted of four leaching-bed reactors for H2 recovery and post-treatment and a UASB reactor for CH4 recovery. The leaching-bed reactors were operated in a rotation mode with a 2-day interval between degradation stages. The sequential batch technique was useful to optimize environmental conditions during H2 fermentation. The BIOCELL process demonstrated that, at the high volatile solids (VS) loading rate of 11.9 kg/m3 x day, it could remove 72.5% of VS and convert VS(removed) to H2 (28.2%) and CH4 (69.9%) on a chemical oxygen demand (COD) basis in 8 days. H2 gas production rate was 3.63 m3/m3 x day, while CH4 gas production rate was 1.75 m3/m3 x day. The yield values of H2 and CH4 were 0.31 and 0.21 m3/kg VS(added), respectively. Moreover, the output from the post-treatment could be used as a soil amendment. The BIOCELL process proved to be stable, reliable, and effective in resource recovery as well as waste stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号