首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A study of the anaerobic treatment of wastewaters derived from red (RWWW) and tropical fruit wine (TFWWW) production was carried out in four laboratory-scale fluidized bed reactors with natural zeolite as bacterial support. These reactors operated at mesophilic temperature (35°C). Reactors R1 and R2 contained Chilean natural zeolite, while reactors R3 and R4 used Cuban natural zeolite as microorganism support. In addition, reactors R1 and R3 processed RWWW, while reactors R2 and R4 used TFWWW as substrate. The biomass concentration attached to zeolites in the four reactors studied was found to be in the range of 44–46 g volatile solids (VS)/L after 90 days of operation time. Both types of zeolites can be used indistinctly in the fluidized bed reactors achieving more than 80%–86% chemical oxygen demand (COD) removals for organic loading rates (OLR) of up to at least 20 g COD/L d. pH values remained within the optimal range for anaerobic microorganisms for OLR values of up to 20 and 22 g COD/L d for RWWW and TFWWW, respectively. Toxicity and inhibition levels were observed at an OLR of 20 g COD/L d in reactors R1 and R3 while processing RWWW, whereas the aforementioned inhibitory phenomena were not observed at an OLR of 24 g COD/L d in R2 and R4, treating TFWWW as a consequence of the lower phenolic compound content present in this substrate. The volatile fatty acid (VFA) levels were always lower in reactors processing TFWWW (R2 and R4) and these values (< 400 mg/L, as acetic acid) were lower than the suggested limits for digester failure. The specific methanogenic activity (SMA) was twice as high in reactors R2 and R4 than in R1 and R3 after 120 days of operation when all reactors operated at an OLR of 20 g COD/L d.  相似文献   

2.
In the present study, fate of carbofuran in anaerobic environments and the adverse effects of carbofuran on conventional anaerobic systems were evaluated. Carbofuran degradation studies were carried out in batch reactors with varying carbofuran concentrations of 0 to 270.73 mg/L corresponding to a sludge-loading rate (SLR) of 2.12 x 10(-6) to 3.83 x 10(-3) g of carbofuran/g of volatile suspended solids (VSS)/d. Carbofuran concentration was reduced to undetectable levels at the end of 8 and 13 days in the batch reactors operated with a SLR of 2.12 x 10(-6) and 3.33 x 10(-5) g of carbofuran/g of VSS/d, respectively. Performances of two anaerobic reactors i.e. upflow anaerobic sludge blanket (UASB) and modified UASB (with tube settlers) were evaluated in the presence and absence of carbofuran using synthetic wastewater. In the absence of carbofuran, the soluble chemical oxygen demand (COD) removal efficiency in the conventional UASB reactor at 8 h and 6 h hydraulic retention time (HRT) was nearly 88% and 76%, respectively, whereas in modified UASB reactor it was increased to 90% at 8 h HRT and 78% at 6 h HRT. When 28 mg/L (SLR of 1.19 x 10(-2) g of carbofuran/g of VSS/d) of carbofuran was introduced in the reactors, the COD removal efficiency was reduced to 41% and 44% in conventional and modified UASB reactors respectively. However, the reactor could maintain around 80% COD removal efficiency at a carbofuran concentration of 7.84 mg/L (SLR of 3.64 x 10(-3) g of carbofuran/g of VSS/d). The reactor efficiency was also measured in terms of specific acetoclastic methanogenic activity (SMA). The toxic effect of carbofuran was reversible to a certain extent. Carbofuran removal efficiency in the conventional UASB reactor at carbofuran concentrations of 7, 13 and 28 mg/L were 40 +/- 3%, 27 +/- 3%, and 11 +/- 3%, respectively. In modified UASB reactor, carbofuran removal efficiency was almost uniform at 7 and 13 mg/L but it was reduced nearly by 56% at 28 mg/L. The major metabolite of carbofuran i.e. 3-keto carbofuran was found in all the reactors.  相似文献   

3.
固含率和稀释率对餐厨垃圾水解酸化过程的影响研究   总被引:2,自引:1,他引:1  
研究了餐厨垃圾分批厌氧消解过程中不同起始固含率(10%,12%和14%)和稀释率(0.25 d-1和0.33 d-1)对水解酸化过程pH值、垃圾消解、水解酸化液生产效率、脂肪酸组成和浓度等的影响。实验结果发现:以总固体去除率、单位质量垃圾累积COD溶出量(ACODm)和单位体积反应器累积COD溶出量(ACODv)等指标作为评价标准,起始固含率12%的体系具有较高的垃圾处理效率和反应器运行效率。与稀释率0.25 d-1的体系相比,稀释率0.33 d-1的体系在pH稳定性、总固体去除率和水解酸化液生产效率等方面具有明显的优势。所有体系中水解酸化产生的脂肪酸和醇均以乙酸、乙醇和丁酸为主,丙酸占总脂肪酸和醇的百分数在14.6%到17.1%之间,这种脂肪酸组成不会发生丙酸抑制,有利于后续产甲烷发酵的进行。  相似文献   

4.
A study of the anaerobic treatment of wastewaters derived from red (RWWW) and tropical fruit wine (TFWWW) production was carried out in four laboratory-scale fluidized bed reactors with natural zeolite as bacterial support. These reactors operated at mesophilic temperature (35 degrees C). Reactors R1 and R2 contained Chilean natural zeolite, while reactors R3 and R4 used Cuban natural zeolite as microorganism support. In addition, reactors R1 and R3 processed RWWW, while reactors R2 and R4 used TFWWW as substrate. The biomass concentration attached to zeolites in the four reactors studied was found to be in the range of 44-46 g volatile solids (VS)/L after 90 days of operation time. Both types of zeolites can be used indistinctly in the fluidized bed reactors achieving more than 80%-86% chemical oxygen demand (COD) removals for organic loading rates (OLR) of up to at least 20 g COD/L d. pH values remained within the optimal range for anaerobic microorganisms for OLR values of up to 20 and 22 g COD/L d for RWWW and TFWWW, respectively. Toxicity and inhibition levels were observed at an OLR of 20 g COD/L d in reactors R1 and R3 while processing RWWW, whereas the aforementioned inhibitory phenomena were not observed at an OLR of 24 g COD/L d in R2 and R4, treating TFWWW as a consequence of the lower phenolic compound content present in this substrate. The volatile fatty acid (VFA) levels were always lower in reactors processing TFWWW (R2 and R4) and these values (< 400 mg/L, as acetic acid) were lower than the suggested limits for digester failure. The specific methanogenic activity (SMA) was twice as high in reactors R2 and R4 than in R1 and R3 after 120 days of operation when all reactors operated at an OLR of 20 g COD/L d.  相似文献   

5.
The nitrogen-removal performances of three full-scale piggery wastewater treatment plants, with different organic and nitrogen loads, at the capacity ranges of 95 to 130 m3/d, were compared in this study. Plants 1 and 2 can be characterized as the modification of anoxic-aerobic operating systems, while an anaerobic and anoxic-aerobic system was used in plant 3. The influent piggery wastewater concentration for plant 1 was relatively lower, but with higher organic and nitrogen loads, resulting in higher chemical oxygen demand (COD) and ammonium-nitrogen in effluent. Plant 2 was operated with strong piggery wastewater, resulting in a higher operating temperature. The high temperature could inhibit the nitrifying activity in plant 2. Although plant 3 was operated with a higher influent total COD-to-total Kjeldahl nitrogen ratio (TCOD:TKN), an additional external carbon source was required to polish the final effluent to remove nitrogen. Influent COD in plant 3 was used in the anaerobic-anoxic reactor for both methane (CH4) production and denitrification. Based on various mass balances, including caloric, COD, and alkalinity, the key elements for the successful nitrogen removal from the piggery waste were reactor temperature (less than 35degrees C), influent TCOD:TKN (greater than 6), and alkalinity-to-TKN ratio (greater than 3).  相似文献   

6.
Lou SJ  Tartakovsky B  Zeng Y  Wu P  Guiot SR 《Chemosphere》2006,65(7):1212-1220
In this work, rhodamine-related fluorescence was measured on-line at four reactor heights in order to study hydrodynamics within an upflow anaerobic sludge bed reactor. A linear dependence of the dispersion coefficient (D) on the upflow velocity was observed, while the influence of the organic loading rate (OLR) was insignificant. Furthermore, the Bodenstein number of the reactor loaded with granulated sludge was found to be position-dependent with the largest values measured at the bottom of the sludge bed. This trend was not observed in the reactor without sludge. Chemical oxygen demand (COD) and volatile fatty acid (VFA) concentrations were measured at the same reactor heights as in rhodamine tests using conventional off-line analytical methods and on-line multiwavelength fluorometry. Significant spatial COD and VFA gradients were observed at organic loading rates above 6g COD l(R)(-1)d(-1) and linear upflow velocities below 0.8m h(-1).  相似文献   

7.
为了研究厌氧折流板反应器在常温下的启动情况,在22.5~30.2℃条件下,对不加填料的5隔室厌氧折流板反应器和加填料的4隔室复合式厌氧折流板反应器同步进行了启动实验。实验用水为高浓度淀粉废水,两反应器采用相同的启动策略,即梯度增加进水COD浓度与降低水力停留时间相结合的方式。两反应器有效容积均为47.8 L,启动初始负荷为0.6 kg COD/(m3.d),逐渐增加到10 kg COD/(m3.d)。实验表明,经过6个阶段87 d的运行,反应器启动完成,并成功培养出颗粒污泥,两反应器对COD的去除率都能达到85%以上。在启动过程中两反应器对COD的去除效率相近。  相似文献   

8.
The insecticide gamma-hexachlorocyclohexane (gamma-HCH or lindane), which has been extensively used for agricultural and medical purposes, presents high persistence and toxicity to the environment and low solubility. This study intends to assess the efficiency of an anaerobic reactor to degrade HCH isomers contained in soil slurry cultures. This study was developed in two phases: experiments in flasks to optimize the process parameters, and assessment of the slurry process in the anaerobic slurry reactor operated for an approximate period of a year. The influence of different environmental conditions was evaluated: the HCH concentration (25-100 mg HCH kg-1), the type of substrate (volatile fatty acids or starch), the sludge concentration (2-8 g VSS l-1) and the replacement of spiked soil to simulate a fed-batch operation (10-50%). The best results were obtained when the reactor was operated with a sludge concentration of 8 g VSS l-1, starch concentration of 2 g COD l-1 and soil replacements of 10-20%. Under these conditions, alpha- and gamma-HCH were completely degraded after 10d while nearly 90% beta- and delta-HCH were removed only after 50 d. According to the obtained results related to the total degradation of the HCH isomers and the degradation rates, especially high for alpha- and gamma-HCH, the anaerobic slurry reactor appears to be a good alternative for the degradation of the HCH isomers present in polluted soil.  相似文献   

9.
在UASB反应器中接种好氧污泥培养厌氧颗粒污泥进行启动,研究不同HRT对老龄(13年)垃圾渗滤液对处理效果的影响情况。通过保持进水COD浓度不变、逐步缩短HRT从而提高容积负荷到40 g COD/(L.d)的方法,可以培育出直径为1~3 mm颗粒污泥,最终产气量稳定在100 L/d,甲烷含量在60%~70%之间,COD去除率保持在90%左右,污泥层最底部MLSS为81 g/L。逐步提高HRT依次为6、12、24、48和72 h考察其对处理效果的影响,当HRT为24 h时处理效果最好,COD去除率最高达到35%左右。  相似文献   

10.
2种UASB的ANAMMOX与反硝化协同作用对比研究   总被引:4,自引:1,他引:3  
采用2套UASB-ANAMMOX反应器处理垃圾渗滤液,其中反应器2具有生物膜,对反应器在有机环境下的ANAMMOX与反硝化协同作用进行对比研究。在稳定期,反应器1和反应器2对氨氮、亚硝氮、TIN、COD的平均去除率分别为95.7%、95.9%、77.3%、70.3%和97.4%、96.4%、87.2%、74.8%。反应器1对TIN和COD最大容积去除率为112.2和107.7 g/(m3.d),反应器2对TIN和COD最大容积去除率为120.5和119.9 g/(m3.d)。结果表明,过高的负荷会对反应器产生抑制作用,且当抑制产生后协同作用难以恢复到原来水平。在厌氧氨氧化与反硝化协同作用良好时,pH值和碱度均存在特征性变化。总体上,反应器2比反应器1具有更强的厌氧氨氧化与反硝化协同作用和抗负荷冲击能力。  相似文献   

11.
研究构建了2个容积为1.1 L的好氧活性污泥反应器(即1号和2号反应器)1,号反应器每天直接通加低剂量臭氧(投加量为0.01 g O3/g TSS),不加臭氧的2号反应器作为对照平行运行,均采用每天换一次人工污水的充/排式操作。运行71 d的结果表明2,个反应器对人工污水COD的处理效果基本相同。反应器运行40 d后1,号反应器的污泥浓度比2号反应器的污泥浓度低1 400~1 700 mg/L并可稳定在8 200 mg/L,污泥减量化效果明显。低剂量臭氧的直接通加明显降低了胞内ATP浓度,并影响了微生物的抗氧化活性,2号反应器的平均超氧化物歧化酶和过氧化氢酶酶活比1号反应器分别高了24.3%和9.5%。PCR-DGGE对两反应器微生物种群的分析结果表明:Uncultured gammaproteobacteria bacteri-um、Nannocystis exedens和Uncultured actinobacterium为1号反应器的主要种群;而2号反应器的主要种群为Uncultured bacte-rium和Uncultured gammaproteobacteria bacterium。  相似文献   

12.
外循环式UASB反应器处理高浓度酒精废水   总被引:1,自引:1,他引:0  
利用改进型上流式厌氧污泥床反应器在中温条件下处理高浓度酒精废水,研究反应器的启动影响因素及颗粒污泥形成过程,分析反应器运行特性。在容积负荷为10.39 kg COD/(m3.d),COD去除率达90.2%,VFA在300 mg/L以下,平均产气率为0.328 m3/kg COD,取得最佳的运行效果,为高浓度酒精废水的处理应用提供科学依据。  相似文献   

13.
采用厌氧UASB-好氧接触氧化工艺对汽车脱脂废水进行连续处理实验研究。结果表明,在脱脂废水进水COD浓度为6 000 mg/L,厌氧水力停留时间为3.4 d,好氧水力停留时间为2.5 d条件下,COD总去除率平均为93%,厌氧段平均值为38%。厌氧段可以提高出水的可生化性,厌氧-好氧接触氧化工艺效果要明显优于好氧工艺。  相似文献   

14.
Oily wastewater treatment using a novel hybrid PBR-UASB system   总被引:3,自引:0,他引:3  
Jeganathan J  Nakhla G  Bassi A 《Chemosphere》2007,67(8):1492-1501
In this study, anaerobic treatability of oily wastewater was investigated in a hybrid reactor system consisting of a packed bed reactor (PBR) followed by an upflow anaerobic sludge blanket (UASB) reactor at 35 degrees C. The system was operated using real pet food wastewater at different hydraulic retention times and loading rates for 165 d. The PBR was packed with sol-gel/alginate beads containing immobilized enzyme which hydrolyzed the oil and grease (O&G) into free long chain fatty acids, that were biodegraded by the UASB. The hybrid system was operated up to an oil loading rate of 4.9 kg O&Gm(-3)d(-1) (to the PBR) without any operational problems for a period of 100 d, with COD and O&G removal efficiencies above 90% and no sludge flotation was observed in the UASB. Beads supplement to the PBR was less than 2 g d(-1) and the relative activity was about 70%. Further increment in O&G loading to 18.7 kg O&Gm(-3)d(-1) caused destabilization of the system with 0.35% (v float/v feed) sludge float removed from the UASB.  相似文献   

15.
内循环厌氧反应器的启动及影响因素   总被引:1,自引:0,他引:1  
采用内循环(IC)厌氧反应器,以生产淀粉和酒精的混合废水为处理对象,研究了中温条件下IC反应器的启动及影响因素。结果表明:接种厌氧消化污泥进行培养,逐渐提高进水有机负荷,运行105 d后,可实现IC反应器的启动;当进水COD浓度为11 500 mg/L,有机容积负荷为6.13 kg COD/(m3·d),COD去除率能到达95%左右;水力停留时间对启动过程没有影响,而温度和温度波动影响COD去除率;VFA比pH更能准确快速地反眏出反应器内部环境的变化,防止反应器的酸化;反应器内污泥实现颗粒化,并且具有良好的沉降性。  相似文献   

16.
The removal capacity of carbon and nitrogen from an artificial leachate was evaluated by using laboratory-scale columns, and a design was proposed to remove nitrogen more efficiently from a semiaerobic landfill. Five columns (i.e., two artificial municipal waste columns under anaerobic and semiaerobic conditions, an artificial construction waste column under semiaerobic conditions, and two crushed stone columns under anaerobic and semiaerobic conditions) were used. The influent load rates of organics [g chemical oxygen demand (COD)/m3 x day], NH4+, NO3- and aeration conditions for the columns were varied, and the removal capacities of the columns for COD, NH4+-N, and NO3--N were measured. Among the packed column materials, crushed stone was shown to be most effective in removing COD, NH4+ N, and NO3--N from artificial leachate. Average removal rates of crushed column under the semiaerobic condition (column D) for COD and NH4+-N were estimated at about 150 g COD/m3 x day and 20 g COD/m3 x day, while those of crushed column under anaerobic condition (column E) for COD and NO3--N at about 400 and 150 g COD/m3 x day, respectively. It also was found that denitrification and nitrification reactions in column D occurred at the same time, and the ratio of denitrification to nitrification was estimated to be about 80%. Therefore, an anaerobic structure, which could be attached to the bottom of a main pipe in a semiaerobic landfill, is suggested to remove nitrogen and organic substances more effectively.  相似文献   

17.
Prospects for the phased anaerobic treatment of wastewater are extremely promising. With the variety of reactor designs available and the amenability of reactors to modification, existing treatment systems may be replaced or upgraded as required to achieve increased stability, higher loading capacities and greater process efficiencies than single-stage systems. In recent times, various reactor configurations and substrates are applied to two-phase anaerobic process. This paper reviews applications and studies of two-phase anaerobic degradation for wastewater treatment, sums up the performance of application to treating waste from distillery, landfill leachate, coffee, cheese whey and dairy, food, pulp and paper, sludge and solid, etc., and summarises reactor configurations, environmental and operational conditions, and comparisons of two-phase anaerobic digestion with other anaerobic reactors.  相似文献   

18.
采用膨胀颗粒污泥床(EGSB)反应器对城市生活垃圾焚烧厂产生的垃圾沥滤液进行处理。实验结果表明:中温条件下,当COD浓度为55 000 mg/L左右,有机容积负荷(OLR)为22.8 kg COD/(m3.d)时,EGSB对垃圾沥滤液具有较好的的处理效果,COD去除率可达94.2%。当进水COD为72 000 mg/L左右时,为保证反应器的稳定运行,OLR应降低至18.2 kg COD/(m3.d),此时COD去除率可以达到88%左右,出水COD平均为9 103 mg/L。垃圾沥滤液和EGSB处理出水均以小分子量有机物为主,其中<4 kDa的有机物分别占76.5%和74.4%。EGSB对整个分子量区间的溶解性有机物都有较好的处理效果,其中对大分子有机物的处理效率相对更高。  相似文献   

19.
Performance of mixed microbial anaerobic culture in treating synthetic waste-water with high Chemical Oxygen Demand (COD) and varying atrazine concentration was studied. Performance of hybrid reactors with wood charcoal as adsorbent, with a dose of 10 g/l and 40 g/l, along with the microbial mass was also studied. All the reactors were operated in sequential mode with Hydraulic Retention Time (HRT) of 5 days. In all the cases, COD removal after 5 days was found to be above 81%. Initial COD was above 1,000 mg/l. From a hybrid reactor COD removal after 2 days was observed to be 90%. Atrazine reduction after 5 days by microbial mass alone was 43.8%, 40% and 33.2% with an initial concentration of 0.5, 1.0 and 2.0 mg/l respectively. MLSS on all the cases were almost same. Increasing MLSS concentration by about 2 fold did not increase the atrazine removal efficiency significantly. Maximum atrazine removal was observed to be 64% from the hybrid reactor with 10 g/l of wood charcoal and 69.4% from the reactor with 40 g/l of wood charcoal. Atrazine removal from the hybrid reactors after 15 days were observed to be 35.7% and 38.7%, which showed that the higher dose of wood charcoal in hybrid reactor did not improve the atrazine removal efficiency significantly. Specific methanogenic activity test showed no inhibitory effect of atrazine on methane producing bacteria. The performance of anaerobic microorganisms in removing atrazine with no external carbon source and inorganic nitrogen source was studied in batch mode. With an initial concentration of 1.0 mg/l, reduction of atrazine by the anaerobic microorganisms in absence of external carbon source after 35 days was observed to be 61.8% where as in absence of external carbon and inorganic nitrogen source the reduction was only 44.2% after 150 days. Volatilization loss of atrazine was observed to be insignificant.  相似文献   

20.
研究了城市生活垃圾焚烧厂渗沥液中Ca2+对厌氧颗粒污泥膨胀床反应器(EGSB)处理效果的影响,并采用静态实验方法考察了Ca2+对厌氧颗粒污泥产甲烷活性的影响。实验结果表明,进水COD为17000mg/L的条件下,当Ca2+浓度低于6000mg/L时,EGSB对COD去除率达93%以上;当Ca2+浓度高于6000mg/L时,COD去除率随运行时间明显下降,并在污泥中形成大量沉淀。静态实验结果表明,废水中低浓度Ca2+促进了厌氧颗粒污泥的产甲烷活性,但高浓度Ca2+明显抑制了其产甲烷活性,这是导致高Ca2+浓度条件下EGSB对COD去除率降低的主要原因。研究表明,颗粒污泥产甲烷活性恢复程度随Ca2+浓度增加而减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号