首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Yanbu, on the Red Sea, is an affluent Saudi Arabian industrial city of modest size. Substantial effort has been spent to balance environmental quality, especially air pollution, and industrial development. We have analyzed six years of observations of criteria pollutants O3, SO2, particles (PM2.5 and PM10) and the known ozone precursors—volatile organic compounds (VOCs) and nitrogen oxides (NOx). The results suggest frequent VOC-limited conditions in which ozone concentrations increase with decreasing NOx and with increasing VOCs when NOx is plentiful. For the remaining circumstances ozone has a complex non-linear relationship with the VOCs. The interactions between these factors at Yanbu cause measurable impacts on air pollution including the weekend effect in which ozone concentrations stay the same or even increase despite significantly lower emissions of the precursors on the weekends. Air pollution was lower during the Eids (al-Fitr and al-Adha), Ramadan and the Hajj periods. During Ramadan, there were substantial night time emissions as the cycle everyday living is almost reversed between night and day. The exceedances of air pollution standards were evaluated using criteria from the U.S. Environmental Protection Agency (EPA), World Health Organization (WHO), the Saudi Presidency of Meteorology and Environment (PME) and the Royal Commission Environmental Regulations (RCER). The latter are stricter standards set just for Yanbu and Jubail. For the fine particles (PM2.5), an analysis of the winds showed a major impact from desert dust. This effect had to be taken into account but still left many occasions when standards were exceeded. Fewer exceedances were found for SO2, and fewer still for ozone. The paper presents a comprehensive view of air quality at this isolated desert urban environment.

Implications: Frequent VOC-limited conditions are found at Yanbu in Saudi Arabia that increase ozone pollution if NOx is are reduced. In this desert environment, increased nightlife produces the highest levels of VOCs and NOx at night rather than the day. The effects increase during Ramadan. Fine particles peak twice a day—the morning peak is caused by traffic and increases with decreasing wind, potentially representing health concerns, but the larger afternoon peak is caused by the wind, and it increases with increasing wind speeds. These features suggest that exposure to pollutants must be redefined for such an environment.  相似文献   


2.
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the “Ratio”) from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios <1 and NOx at Ratios >2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria, the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2, and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g., Chicago), the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.  相似文献   

3.
On hot summer days in the eastern United States, electricity demand rises, mainly because of increased use of air conditioning. Power plants must provide this additional energy, emitting additional pollutants when meteorological conditions are primed for poor air quality. To evaluate the impact of summertime NOx emissions from coal-fired electricity generating units (EGUs) on surface ozone formation, we performed a series of sensitivity modeling forecast scenarios utilizing EPA 2018 version 6.0 emissions (2011 base year) and CMAQ v5.0.2. Coal-fired EGU NOx emissions were adjusted to match the lowest NOx rates observed during the ozone seasons (April 1–October 31) of 2005–2012 (Scenario A), where ozone decreased by 3–4 ppb in affected areas. When compared to the highest emissions rates during the same time period (Scenario B), ozone increased ~4–7 ppb. NOx emission rates adjusted to match the observed rates from 2011 (Scenario C) increased ozone by ~4–5 ppb. Finally in Scenario D, the impact of additional NOx reductions was determined by assuming installation of selective catalytic reduction (SCR) controls on all units lacking postcombustion controls; this decreased ozone by an additional 2–4 ppb relative to Scenario A. Following the announcement of a stricter 8-hour ozone standard, this analysis outlines a strategy that would help bring coastal areas in the mid-Atlantic region closer to attainment, and would also provide profound benefits for upwind states where most of the regional EGU NOx originates, even if additional capital investments are not made (Scenario A).

Implications: With the 8-hr maximum ozone National Ambient Air Quality Standard (NAAQS) decreasing from 75 to 70 ppb, modeling results indicate that use of postcombustion controls on coal-fired power plants in 2018 could help keep regions in attainment. By operating already existing nitrogen oxide (NOx) removal devices to their full potential, ozone could be significantly curtailed, achieving ozone reductions by up to 5 ppb in areas around the source of emission and immediately downwind. Ozone improvements are also significant (1–2 ppb) for areas affected by cross-state transport, especially Mid-Atlantic coast regions that had struggled to meet the 75 ppb standard.  相似文献   


4.
This study examined the effects of varying future reductions in emissions of oxides of nitrogen (NOx) and volatile organic compounds (VOC) on the location and magnitude of peak ozone levels within California’s South Coast Air Basin (SoCAB or Basin). As ozone formation is currently VOC-limited in the Basin, model simulations with 2030 baseline emissions (?61% for NOx and ?32% for VOC from 2008) predict 10–20% higher peak ozone levels (i.e., NOx disbenefit) in the western and central SoCAB compared with the 2008 base simulation. With additional NOx reductions of 50% beyond the 2030 baseline emissions (?81% from 2008), the predicted ozone levels are reduced by about 15% in the eastern SoCAB but remain comparable to 2008 levels in the western and central Basin. The Basin maximum ozone site shifts westward to more populated areas of the Basin and will result potentially in greater population-weighted exposure to ozone with even a relatively small shortfall in the required NOx reductions unless accompanied by additional VOC reductions beyond 2030 baseline levels. Once committed to a NOx-focused control strategy, NOx reductions exceeding 90% from 2008 levels will be necessary to attain the ozone National Ambient Air Quality Standards (NAAQS). The findings from this study and other recent work that the current VOC emission estimates are underestimated by about 50% suggest that greater future VOC reductions will be necessary to reach the projected 2030 baseline emissions. Increasing the base year VOC emissions by a factor of 1.5 result in higher 2008 baseline ozone predictions, lower relative response factors, and about 20% lower projected design values. If correct, these findings have important implications for the total and optimum mix of VOC and NOx emission reductions that will be required to attain the ozone NAAQS in the SoCAB.

Implications: Results of this study indicate that ozone levels in the western and central SoCAB would remain the same or increase with even a relatively small shortfall in the projected NOx reductions under planned NOx-focused controls. This possibility, therefore, warrants a rigorous analysis of the costs and effects of varying reductions of VOC and NOx on the formation and combined health impacts of ozone and secondary particles. Given the nonlinearity of ozone formation, such analyses should include the implications of gradually increasing global background ozone concentrations and the Basin’s topography and meteorology on the practical limits of alternative emission control strategies.  相似文献   

5.
An ozone abatement strategy for the South Coast Air Basin (SoCAB) has been proposed by the South Coast Air Quality Management District (SCAQMD) and the California Air Resources Board (ARB). The proposed emissions reduction strategy is focused on the reduction of nitrogen oxide (NOx) emissions by the year 2030. Two high PM2.5 concentration episodes with high ammonium nitrate compositions occurring during September and November 2008 were simulated with the Community Multi-scale Air Quality model (CMAQ). All simulations were made with same meteorological files provided by the SCAQMD to allow them to be more directly compared with their previous modeling studies. Although there was an overall under-prediction bias, the CMAQ simulations were within an overall normalized mean error of 50%; a range that is considered acceptable performance for PM modeling. A range of simulations of these episodes were made to evaluate sensitivity to NOx and ammonia emissions inputs for the future year 2030. It was found that the current ozone control strategy will reduce daily average PM2.5 concentrations. However, the targeted NOx reductions for ozone were not found to be optimal for reducing PM2.5 concentrations. Ammonia emission reductions reduced PM2.5 and this might be considered as part of a PM2.5 control strategy.

Implications: The SCAQMD and the ARB have proposed an ozone abatement strategy for the SoCAB that focuses on NOx emission reductions. Their strategy will affect both ozone and PM2.5. Two episodes that occurred during September and November 2008 with high PM2.5 concentrations and high ammonium nitrate composition were selected for simulation with different levels of nitrogen oxide and ammonia emissions for the future year 2030. It was found that the ozone control strategy will reduce maximum daily average PM2.5 concentrations but its effect on PM2.5 concentrations is not optimal.  相似文献   


6.
The Marcellus Shale is one of the largest natural gas reserves in the United States; it has recently been the focus of intense drilling and leasing activity. This paper describes an air emissions inventory for the development, production, and processing of natural gas in the Marcellus Shale region for 2009 and 2020. It includes estimates of the emissions of oxides of nitrogen (NOx), volatile organic compounds (VOCs), and primary fine particulate matter (≤2.5 µm aerodynamic diameter; PM2.5) from major activities such as drilling, hydraulic fracturing, compressor stations, and completion venting. The inventory is constructed using a process-level approach; a Monte Carlo analysis is used to explicitly account for the uncertainty. Emissions were estimated for 2009 and projected to 2020, accounting for the effects of existing and potential additional regulations. In 2020, Marcellus activities are predicted to contribute 6–18% (95% confidence interval) of the NOx emissions in the Marcellus region, with an average contribution of 12% (129 tons/day). In 2020, the predicted contribution of Marcellus activities to the regional anthropogenic VOC emissions ranged between 7% and 28% (95% confidence interval), with an average contribution of 12% (100 tons/day). These estimates account for the implementation of recently promulgated regulations such as the Tier 4 off-road diesel engine regulation and the U.S. Environmental Protection Agency's (EPA) Oil and Gas Rule. These regulations significantly reduce the Marcellus VOC and NOx emissions, but there are significant opportunities for further reduction in these emissions using existing technologies.

Implications: The Marcellus Shale is one of the largest natural gas reserves in United States. The development and production of this gas may emit substantial amounts of oxides of nitrogen and volatile organic compounds. These emissions may have special significance because Marcellus development is occurring close to areas that have been designated nonattainment for the ozone standard. Control technologies exist to substantially reduce these impacts. PM2.5 emissions are predicted to be negligible in a regional context, but elemental carbon emissions from diesel powered equipment may be important.  相似文献   


7.
Abstract

We evaluated day-of-week differences in mean concentrations of ozone (O3) precursors (nitric oxide [NO], nitrogen oxides [NOx], carbon moNOxide [CO], and volatile organic compounds [VOCs]) at monitoring sites in 23 states comprising seven geographic focus areas over the period 1998– 2003. Data for VOC measurements were available for six metropolitan areas in five regions. We used Wednesdays to represent weekdays and Sundays to represent weekends; we also analyzed Saturdays. At many sites, NO, NOx, and CO mean concentrations decreased at all individual hours from 6:00 a.m. to 3:00 p.m. on Sundays compared with corresponding Wednesday means. Statistically significant (p < 0.01) weekend decreases in ambient concentrations were observed for 92% of NOx sites, 89% of CO sites, and 23% of VOC sites. Nine-hour (6:00 a.m. to 3:00 p.m.) mean concentrations of NO, NOx, CO, and VOCs declined by 65, 49, 28, and 19%, respectively, from Wednesdays to Sundays (median site responses). Despite the large reductions in ambient NOx and moderate reductions in ambient CO and VOC concentrations on weekends, ozone and particulate matter (PM) nitrate did not exhibit large changes from week-days to weekends. The median differences between Wednesday and Sunday mean ozone concentrations at all monitoring sites ranged from 3% higher on Sundays for peak 8-hr concentrations determined from all monitoring days to 3.8% lower on Sundays for peak 1-hr concentrations on extreme-ozone days. Eighty-three percent of the sites did not show statistically significant differences between Wednesday and weekend mean concentrations of peak ozone. Statistically significant weekend ozone decreases occurred at 6% of the sites and significant increases occurred at 11% of the sites. Average PM nitrate concentrations were 2.6% lower on Sundays than on Wednesdays. Statistically significant Sunday PM nitrate decreases occurred at one site and significant increases occurred at seven sites.  相似文献   

8.
Particulate matter mass (PM), trace gaseous pollutants, and select volatile organic compounds (VOCs) with meteorological variables were measured in Logan, Utah (Cache Valley), for >4 weeks during winter 2017 as part of the Utah Winter Fine Particle Study (UWFPS). Higher PM levels for short time periods and lower ozone (O3) levels were present due to meteorological and mountain valley conditions. Nitrogenous pollutants were relatively strongly correlated with PM variables. Diurnal cycles of NOx, O3, and fine PM(PM 2.5) (aerodynamic diameter <2.5 μm [PM2.5]) suggested formation from NOx. O3 levels increased from early morning into midafternoon, and NOx and PM2.5 increased throughout the morning, followed by sharp decreases. Toluene/benzene and xylenes/benzene ratios and VOC correlations with nitrogenous and PM species were indicative of local traffic sources. Wind sector comparisons suggested that pollutant levels were lower when winds were from nearby mountains to the east versus winds from northerly or southerly origins.

Implications: The Cache Valley in Idaho and Utah has been designated a PM2.5 nonattainment area that has been attributed to air pollution buildup during winter stagnation events. To inform state implementation plans for PM2.5 in Cache Valley and other PM2.5 nonattainment areas in Utah, a state and multiagency federal research effort known as the UWFPS was conducted in winter 2017. As part of the UWFPS, the U.S. Environmental Protection Agency (EPA) measured ground-based PM species and their precursors, VOCs, and meteorology in Logan, Utah. Results reported here from the EPA study in Logan provide additional understanding of wintertime air pollution conditions and possible sources of PM and gaseous pollutants as well as being useful for future PM control strategies in this area.  相似文献   


9.
ABSTRACT

A modeling system consisting of MM5, Calmet, and Calgrid was used to investigate the sensitivity of anthropogenic volatile organic compound (VOC) and oxides of nitrogen (NOx) reductions on ozone formation within the Cascadia airshed of the Pacific Northwest. An ozone episode that occurred on July 11-14, 1996, was evaluated. During this event, high ozone levels were recorded at monitors downwind of Seattle, WA, and Portland, OR, with one monitor exceeding the 1 hr/120 ppb National Ambient Air Quality Standard (at 148 ppb), and six monitors above the proposed 8 hr/80 ppb standard (at 82-130 ppb). For this particular case, significant emissions reductions, between 25 and 75%, would be required to decrease peak ozone concentrations to desired levels. Reductions in VOC emissions alone, or a combination of reduced VOC and NOx emissions, were generally found to be most effective; reducing NOx emissions alone resulted in increased ozone in the Seattle area. When only VOC emissions were curtailed, ozone reductions occurred in the immediate vicinity of densely populated areas, while NOx reductions resulted in more widespread ozone reductions.  相似文献   

10.
Under the National Ambient Air Quality Standards (NAAQS), put in place as a result of the Clean Air Amendments of 1990, three regions in the state of Utah are in violation of the NAAQS for PM10 and PM2.5 (Salt Lake County, Ogden City, and Utah County). These regions are susceptible to strong inversions that can persist for days to weeks. This meteorology, coupled with the metropolitan nature of these regions, contributes to its violation of the NAAQS for PM during the winter. During January–February 2009, 1-hr averaged concentrations of PM10-2.5, PM2.5, NOx, NO2, NO, O3, CO, and NH3 were measured. Particulate-phase nitrate, nitrite, and sulfate and gas-phase HONO, HNO3, and SO2 were also measured on a 1-hr average basis. The results indicate that ammonium nitrate averages 40% of the total PM2.5 mass in the absence of inversions and up to 69% during strong inversions. Also, the formation of ammonium nitrate is nitric acid limited. Overall, the lower boundary layer in the Salt Lake Valley appears to be oxidant and volatile organic carbon (VOC) limited with respect to ozone formation. The most effective way to reduce ammonium nitrate secondary particle formation during the inversions period is to reduce NOx emissions. However, a decrease in NOx will increase ozone concentrations. A better definition of the complete ozone isopleths would better inform this decision.

Implications: Monitoring of air pollution constituents in Salt Lake City, UT, during periods in which PM2.5 concentrations exceeded the NAAQS, reveals that secondary aerosol formation for this region is NOx limited. Therefore, NOx emissions should be targeted in order to reduce secondary particle formation and PM2.5. Data also indicate that the highest concentrations of sulfur dioxide are associated with winds from the north-northwest, the location of several small refineries.  相似文献   


11.
Both similarities and differences in summertime atmospheric photochemical oxidation appear in the comparison of four field studies: TEXAQS2000 (Houston, 2000), NYC2001 (New York City, 2001), MCMA2003 (Mexico City, 2003), and TRAMP2006 (Houston, 2006). The compared photochemical indicators are OH and HO2 abundances, OH reactivity (the inverse of the OH lifetime), HOx budget, OH chain length (ratio of OH cycling to OH loss), calculated ozone production, and ozone sensitivity. In terms of photochemical activity, Houston is much more like Mexico City than New York City. These relationships result from the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx), which are comparable in Houston and Mexico City, but much lower in New York City. Compared to New York City, Houston and Mexico City also have higher levels of OH and HO2, longer OH chain lengths, a smaller contribution of reactions with NOx to the OH reactivity, and NOx-sensitivity for ozone production during the day. In all four studies, the photolysis of nitrous acid (HONO) and formaldehyde (HCHO) are significant, if not dominant, HOx sources. A problematic result in all four studies is the greater OH production than OH loss during morning rush hour, even though OH production and loss are expected to always be in balance because of the short OH lifetime. The cause of this discrepancy is not understood, but may be related to the under-predicted HO2 in high NOx conditions, which could have implications for ozone production. Three photochemical indicators show particularly high photochemical activity in Houston during the TRAMP2006 study: the long portion of the day for which ozone production was NOx-sensitive, the calculated ozone production rate that was second only to Mexico City's, and the OH chain length that was twice that of any other location. These results on photochemical activity provide additional support for regulatory actions to reduce reactive VOCs in Houston in order to reduce ozone and other pollutants.  相似文献   

12.
Electrical generation units (EGUs) are important sources of nitrogen oxides (NOx) that contribute to ozone air pollution. A dynamic management system can anticipate high ozone and dispatch EGU generation on a daily basis to attempt to avoid violations, temporarily scaling back or shutting down EGUs that most influence the high ozone while compensating for that generation elsewhere. Here we investigate the contributions of NOx from individual EGUs to high daily ozone, with the goal of informing the design of a dynamic management system. In particular, we illustrate the use of three sensitivity techniques in air quality models—brute force, decoupled direct method (DDM), and higher-order DDM—to quantify the sensitivity of high ozone to NOx emissions from 80 individual EGUs. We model two episodes with high ozone in the region around Pittsburgh, PA, on August 4 and 13, 2005, showing that the contribution of 80 EGUs to 8-hr daily maximum ozone ranges from 1 to >5 ppb at particular locations. At these locations and on the two high ozone days, shutting down power plants roughly 1.5 days before the 8-hr ozone violation causes greater ozone reductions than 1 full day before; however, the benefits of shutting down roughly 2 days before the high ozone are modest compared with 1.5 days. Using DDM, we find that six EGUs are responsible for >65% of the total EGU ozone contribution at locations of interest; in some locations, a single EGU is responsible for most of the contribution. Considering ozone sensitivities for all 80 EGUs, DDM performs well compared with a brute-force simulation with a small normalized mean bias (–0.20), while this bias is reduced when using the higher-order DDM (–0.10).

Implications: Dynamic management of electrical generation has the potential to meet daily ozone air quality standards at low cost. We show that dynamic management can be effective at reducing ozone, as EGU contributions are important and as the number of EGUs that contribute to high ozone in a given location is small (<6). For two high ozone days and seven geographic regions, EGUs would best be shut down or their production scaled back roughly 1.5 days before the forecasted exceedance. Including online sensitivity techniques in an air quality forecasting model can provide timely and useful information on which EGUs would be most beneficial to shut down or scale back temporarily.  相似文献   


13.
An important marine pollution issue identified by the International Maritime Organization (IMO) is NOx emissions; however, the stipulated method for determining the NOx certification value does not reflect the actual high emission factors of slow-speed two-stroke diesel engines over long-term slow steaming. In this study, an accurate method is presented for calculating the NOx emission factors and total amount of NOx emissions by using the actual power probabilities of the diesel engines in four types of bulk carriers. The proposed method is suitable for all types and purposes of diesel engines, is not restricted to any operating modes, and is highly accurate. Moreover, it is recommended that the IMO-stipulated certification value calculation method be modified accordingly to genuinely reduce the amount of NOx emissions. The successful achievement of this level of reduction will help improve the air quality, especially in coastal and port areas, and the health of local residents.

Implications: As per the IMO, the NOx emission certification value of marine diesel engines having a rated power over 130 kW must be obtained using specified weighting factor (WF)-based calculation. However, this calculation fails to represent the current actual situation. Effective emission reductions of 6.91% (at sea) and 31.9% (in ports) were achieved using a mathematical model of power probability functions. Thus, we strongly recommend amending the certification value of NOx Technical Code 2008 (NTC 2008) by removing the WF constraints, such that the NOx emissions of diesel engines is lower than the Tier-limits at any load level to obtain genuine NOx emission reductions.  相似文献   


14.
Reactive nitrogen species emission from the exhausts of gasoline and diesel vehicles, including nitrogen oxides (NOx) and nitrous acid (HONO), contributes as a significant source of photochemical oxidant precursors in the ambient air. Multiple laboratory and on-road exhaust measurements have been performed to estimate the NOx emission factors from various vehicles and their contribution to atmospheric pollution. Meanwhile, HONO emission from vehicle exhaust has been under-measured despite the fact that HONO can contribute up to 60% of the total hydroxyl budget during daytime and its formation pathway is not fully understood. A profound traffic-induced HONO to NOx ratio of 0.8%, established by Kurtenbach et al. since 2001, has been widely applied in various simulation studies and possibly linked to under-estimation of HONO mixing ratios and OH radical budget in the morning. The HONO/NOx ratios from direct traffic emission have become debatable when it lacks measurements for direct HONO emission from vehicles upon the fast-changing emission reduction technology. Several recent studies have reported updated values for this ratio. This study has reported the measurement of HONO and NOx emission as well as the estimation of exhaust-induced HONO/NOx ratios from gasoline and diesel vehicles using different chassis dynamometer tests under various real-world driving cycles. For the tested gasoline vehicle, which was equipped with three-way catalyst after-treatment device, HONO/NOx ratios ranged from 0 to 0.95 % with very low average HONO concentrations. For the tested diesel vehicle equipped with diesel particulate active reduction device, HONO/NOx ratios varied from 0.16 to 1.00 %. The HONO/NOx ratios in diesel exhaust were inversely proportional to the average speeds of the tested vehicles.

Implications: Photolysis of HONO is a dominant source of morning OH radicals. Conventional traffic-induced HONO/NOx ratio of 0.8% has possibly linked to underestimation of the total HONO budget and consequently underestimation of OH radical budget. The recently reported HONO/NOx ratio of ~1.6% was used to stimulate HONO emission, which resulted in increased HONO concentrations during morning peak hours and its impact of 14% OH increment in the morning. However, the results were still lower than the measured concentrations. More studies should be conducted to establish an updated traffic-induced HONO/NOx ratio.  相似文献   


15.
An updated version of the SAPRC-99 gas-phase atmospheric chemical mechanism, designated SAPRC-07, is described. The rate constants and reactions have been updated based on current data and evaluations, the aromatics mechanisms have been reformulated and are less parameterized, chlorine chemistry has been added, the method used to represent peroxy reactions has been reformulated to be more appropriate for modeling gas-phase secondary organic aerosol precursors, and representations for many types of VOCs have been added or improved. This mechanism was evaluated against the result of ~2400 environmental chamber experiments carried out in 11 different environmental chambers, including experiments to test mechanisms for over 110 types of VOCs. The performance in simulating the chamber data was generally satisfactory for most types of VOCs but some biases were seen in simulations of some types of experiments. The mechanism was used to derive updated MIR and other ozone reactivity scales for almost 1100 types of VOCs, though in most cases the changes in MIR values relative to SAPRC-99 were not large. This mechanism update results in somewhat lower predictions of ozone in one-day ambient model scenarios under low VOC/NOx conditions. The files needed to implement the mechanism and additional documentation is available at the SAPRC mechanism web site at http://www.cert.ucr.edu/~carter/SAPRC.  相似文献   

16.
Air quality impacts of volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from major sources over the northwestern United States are simulated. The comprehensive nested modeling system comprises three models: Community Multiscale Air Quality (CMAQ), Weather Research and Forecasting (WRF), and Sparse Matrix Operator Kernel Emissions (SMOKE). In addition, the decoupled direct method in three dimensions (DDM-3D) is used to determine the sensitivities of pollutant concentrations to changes in precursor emissions during a severe smog episode in July of 2006. The average simulated 8-hr daily maximum O3 concentration is 48.9 ppb, with 1-hr O3 maxima up to 106 ppb (40 km southeast of Seattle). The average simulated PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) concentration at the measurement sites is 9.06 μg m?3, which is in good agreement with the observed concentration (8.06 μg m?3). In urban areas (i.e., Seattle, Vancouver, etc.), the model predicts that, on average, a reduction of NOx emissions is simulated to lead to an increase in average 8-hr daily maximum O3 concentrations, and will be most prominent in Seattle (where the greatest sensitivity is??0.2 ppb per % change of mobile sources). On the other hand, decreasing NOx emissions is simulated to decrease the 8-hr maximum O3 concentrations in remote and forested areas. Decreased NOx emissions are simulated to slightly increase PM2.5 in major urban areas. In urban areas, a decrease in VOC emissions will result in a decrease of 8-hr maximum O3 concentrations. The impact of decreased VOC emissions from biogenic, mobile, nonroad, and area sources on average 8-hr daily maximum O3 concentrations is up to 0.05 ppb decrease per % of emission change, each. Decreased emissions of VOCs decrease average PM2.5 concentrations in the entire modeling domain. In major cities, PM2.5 concentrations are more sensitive to emissions of VOCs from biogenic sources than other sources of VOCs. These results can be used to interpret the effectiveness of VOC or NOx controls over pollutant concentrations, especially for localities that may exceed National Ambient Air Quality Standards (NAAQS).

Implications: The effect of NOx and VOC controls on ozone and PM2.5 concentrations in the northwestern United States is examined using the decoupled direct method in three dimensions (DDM-3D) in a state-of-the-art three-dimensional chemical transport model (CMAQ). NOx controls are predicted to increase PM2.5 and ozone in major urban areas and decrease ozone in more remote and forested areas. VOC reductions are helpful in reducing ozone and PM2.5 concentrations in urban areas. Biogenic VOC sources have the largest impact on O3 and PM2.5 concentrations.  相似文献   

17.
On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NOx), and volatile organic compounds (VOCs) during 1995–2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NOx, and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995–2009 period despite an increase in total vehicle distance traveled. The CO and NOx emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NOx in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001–2009. Although this trend coexists with the declining trends in on-road NOx, VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors.
Implications:Large reductions in on-road vehicle emissions of CO and NOx in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NOx during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of the benefits of past control measures.  相似文献   

18.
The city of Santiago, Chile experiences frequent high pollution episodes and as a consequence very high ozone concentrations, which are associated with health problems including increasing daily mortality and hospital admissions for respiratory illnesses. The development of ozone abatement strategies requires the determination of the potential of each pollutant to produce ozone, taking into account known mechanisms and chemical kinetics in addition to ambient atmospheric conditions. In this study, the photochemical formation of ozone during a summer campaign carried out from March 8–20, 2005 has been investigated using an urban photochemical box model based on the Master Chemical Mechanism (MCMv3.1). The MCM box model has been constrained with 10 min averages of simultaneous measurements of HONO, HCHO, CO, NO, j(O1D), j(NO2), 31 volatile organic compounds (VOCs) and meteorological parameters. The O3–NOx–VOC sensitivities have been determined by simulating ozone formation at different VOC and NOx concentrations. Ozone sensitivity analyses showed that photochemical ozone formation is VOC-limited under average summertime conditions in Santiago. The results of the model simulations have been compared with a set of potential empirical indicator relationships including H2O2/HNO3, HCHO/NOy and O3/NOz. The ozone forming potential of each measured VOC has been determined using the MCM box model. The impacts of the above study on possible summertime ozone control strategies in Santiago are discussed.  相似文献   

19.
Research over the past ten years has created a more detailed and coherent view of the relation between O3 and its major anthropogenic precursors, volatile organic compounds (VOC) and oxides of nitrogen (NOx). This article presents a review of insights derived from photochemical models and field measurements. The ozone–precursor relationship can be understood in terms of a fundamental split into a NOx-senstive and VOC-sensitive (or NOx-saturated) chemical regimes. These regimes are associated with the chemistry of odd hydrogen radicals and appear in different forms in studies of urbanized regions, power plant plumes and the remote troposphere. Factors that affect the split into NOx-sensitive and VOC-sensitive chemistry include: VOC/NOx ratios, VOC reactivity, biogenic hydrocarbons, photochemical aging, and rates of meteorological dispersion. Analyses of ozone–NOx–VOC sensitivity from 3D photochemical models show a consistent pattern, but predictions for the impact of reduced NOx and VOC in indivdual locations are often very uncertain. This uncertainty can be identified by comparing predictions from different model scenarios that reflect uncertainties in meteorology, anthropogenic and biogenic emissions. Several observation-based approaches have been proposed that seek to evaluate ozone–NOx–VOC sensitivity directly from ambient measurements (including ambient VOC, reactive nitrogen, and peroxides). Observation-based approaches have also been used to evaluate emission rates, ozone production efficiency, and removal rates of chemically active species. Use of these methods in combination with models can significantly reduce the uncertainty associated with model predictions.  相似文献   

20.
Ambient aerometric data were used to predict whether ozone formation at specific times and locations in central California was limited by the availability of volatile organic compounds (VOC) or oxides of nitrogen (NOx). The predictions were compared with differences between mean weekday and weekend peak ozone values. The comparison with weekend and weekday ozone levels provided a means for empirically investigating the effects of VOC and NOx reductions on ozone formation, because the relative proportions and levels of ozone precursor species were significantly different on weekends than on weekdays. Weekend NOx levels averaged 27 percent lower than weekday levels at the time of the peak ozone hour. Daytime weekend levels of VOC species were also consistently lower than weekday values throughout the region, though the differences between weekends and weekdays were not always statistically significant (p<0.05). Site-to-site differences between weekend and weekday mean peak hourly ozone were related to whether ozone formation was VOC- or NOx-limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号