首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under the National Ambient Air Quality Standards (NAAQS), put in place as a result of the Clean Air Amendments of 1990, three regions in the state of Utah are in violation of the NAAQS for PM10 and PM2.5 (Salt Lake County, Ogden City, and Utah County). These regions are susceptible to strong inversions that can persist for days to weeks. This meteorology, coupled with the metropolitan nature of these regions, contributes to its violation of the NAAQS for PM during the winter. During January–February 2009, 1-hr averaged concentrations of PM10-2.5, PM2.5, NOx, NO2, NO, O3, CO, and NH3 were measured. Particulate-phase nitrate, nitrite, and sulfate and gas-phase HONO, HNO3, and SO2 were also measured on a 1-hr average basis. The results indicate that ammonium nitrate averages 40% of the total PM2.5 mass in the absence of inversions and up to 69% during strong inversions. Also, the formation of ammonium nitrate is nitric acid limited. Overall, the lower boundary layer in the Salt Lake Valley appears to be oxidant and volatile organic carbon (VOC) limited with respect to ozone formation. The most effective way to reduce ammonium nitrate secondary particle formation during the inversions period is to reduce NOx emissions. However, a decrease in NOx will increase ozone concentrations. A better definition of the complete ozone isopleths would better inform this decision.

Implications: Monitoring of air pollution constituents in Salt Lake City, UT, during periods in which PM2.5 concentrations exceeded the NAAQS, reveals that secondary aerosol formation for this region is NOx limited. Therefore, NOx emissions should be targeted in order to reduce secondary particle formation and PM2.5. Data also indicate that the highest concentrations of sulfur dioxide are associated with winds from the north-northwest, the location of several small refineries.  相似文献   


2.
Yanbu, on the Red Sea, is an affluent Saudi Arabian industrial city of modest size. Substantial effort has been spent to balance environmental quality, especially air pollution, and industrial development. We have analyzed six years of observations of criteria pollutants O3, SO2, particles (PM2.5 and PM10) and the known ozone precursors—volatile organic compounds (VOCs) and nitrogen oxides (NOx). The results suggest frequent VOC-limited conditions in which ozone concentrations increase with decreasing NOx and with increasing VOCs when NOx is plentiful. For the remaining circumstances ozone has a complex non-linear relationship with the VOCs. The interactions between these factors at Yanbu cause measurable impacts on air pollution including the weekend effect in which ozone concentrations stay the same or even increase despite significantly lower emissions of the precursors on the weekends. Air pollution was lower during the Eids (al-Fitr and al-Adha), Ramadan and the Hajj periods. During Ramadan, there were substantial night time emissions as the cycle everyday living is almost reversed between night and day. The exceedances of air pollution standards were evaluated using criteria from the U.S. Environmental Protection Agency (EPA), World Health Organization (WHO), the Saudi Presidency of Meteorology and Environment (PME) and the Royal Commission Environmental Regulations (RCER). The latter are stricter standards set just for Yanbu and Jubail. For the fine particles (PM2.5), an analysis of the winds showed a major impact from desert dust. This effect had to be taken into account but still left many occasions when standards were exceeded. Fewer exceedances were found for SO2, and fewer still for ozone. The paper presents a comprehensive view of air quality at this isolated desert urban environment.

Implications: Frequent VOC-limited conditions are found at Yanbu in Saudi Arabia that increase ozone pollution if NOx is are reduced. In this desert environment, increased nightlife produces the highest levels of VOCs and NOx at night rather than the day. The effects increase during Ramadan. Fine particles peak twice a day—the morning peak is caused by traffic and increases with decreasing wind, potentially representing health concerns, but the larger afternoon peak is caused by the wind, and it increases with increasing wind speeds. These features suggest that exposure to pollutants must be redefined for such an environment.  相似文献   


3.
An ozone abatement strategy for the South Coast Air Basin (SoCAB) has been proposed by the South Coast Air Quality Management District (SCAQMD) and the California Air Resources Board (ARB). The proposed emissions reduction strategy is focused on the reduction of nitrogen oxide (NOx) emissions by the year 2030. Two high PM2.5 concentration episodes with high ammonium nitrate compositions occurring during September and November 2008 were simulated with the Community Multi-scale Air Quality model (CMAQ). All simulations were made with same meteorological files provided by the SCAQMD to allow them to be more directly compared with their previous modeling studies. Although there was an overall under-prediction bias, the CMAQ simulations were within an overall normalized mean error of 50%; a range that is considered acceptable performance for PM modeling. A range of simulations of these episodes were made to evaluate sensitivity to NOx and ammonia emissions inputs for the future year 2030. It was found that the current ozone control strategy will reduce daily average PM2.5 concentrations. However, the targeted NOx reductions for ozone were not found to be optimal for reducing PM2.5 concentrations. Ammonia emission reductions reduced PM2.5 and this might be considered as part of a PM2.5 control strategy.

Implications: The SCAQMD and the ARB have proposed an ozone abatement strategy for the SoCAB that focuses on NOx emission reductions. Their strategy will affect both ozone and PM2.5. Two episodes that occurred during September and November 2008 with high PM2.5 concentrations and high ammonium nitrate composition were selected for simulation with different levels of nitrogen oxide and ammonia emissions for the future year 2030. It was found that the ozone control strategy will reduce maximum daily average PM2.5 concentrations but its effect on PM2.5 concentrations is not optimal.  相似文献   


4.
The Marcellus Shale is one of the largest natural gas reserves in the United States; it has recently been the focus of intense drilling and leasing activity. This paper describes an air emissions inventory for the development, production, and processing of natural gas in the Marcellus Shale region for 2009 and 2020. It includes estimates of the emissions of oxides of nitrogen (NOx), volatile organic compounds (VOCs), and primary fine particulate matter (≤2.5 µm aerodynamic diameter; PM2.5) from major activities such as drilling, hydraulic fracturing, compressor stations, and completion venting. The inventory is constructed using a process-level approach; a Monte Carlo analysis is used to explicitly account for the uncertainty. Emissions were estimated for 2009 and projected to 2020, accounting for the effects of existing and potential additional regulations. In 2020, Marcellus activities are predicted to contribute 6–18% (95% confidence interval) of the NOx emissions in the Marcellus region, with an average contribution of 12% (129 tons/day). In 2020, the predicted contribution of Marcellus activities to the regional anthropogenic VOC emissions ranged between 7% and 28% (95% confidence interval), with an average contribution of 12% (100 tons/day). These estimates account for the implementation of recently promulgated regulations such as the Tier 4 off-road diesel engine regulation and the U.S. Environmental Protection Agency's (EPA) Oil and Gas Rule. These regulations significantly reduce the Marcellus VOC and NOx emissions, but there are significant opportunities for further reduction in these emissions using existing technologies.

Implications: The Marcellus Shale is one of the largest natural gas reserves in United States. The development and production of this gas may emit substantial amounts of oxides of nitrogen and volatile organic compounds. These emissions may have special significance because Marcellus development is occurring close to areas that have been designated nonattainment for the ozone standard. Control technologies exist to substantially reduce these impacts. PM2.5 emissions are predicted to be negligible in a regional context, but elemental carbon emissions from diesel powered equipment may be important.  相似文献   


5.
During Winter 2004, a series of elevated PM2.5 events occurred in Logan, Utah, coinciding with strong winter inversions. This period resulted in 17 exceedances of the 24-h PM2.5 standard, and some of the highest PM2.5 mass loadings recorded in the United States, including 9 days of 24-h PM2.5 measurements over 100 μg m−3. During the 3-month period, we monitored the size and mass concentrations of airborne particles using an aerosol mass spectrometer. PM2.5 concentrations were dominated by the formation of ammonium nitrate, accounting for over 50% of the non-refractory aerosol matter throughout the study and 80% on the highest pollution days. Another 15–20% of the particulate matter was composed of organic carbon. The high particle concentration loadings in Utah's Cache Valley result from a combination of unfavorable meteorology dominated by a severe cold-temperature inversion, a mix of rural and urban emission sources, and a confined geographical area. As a rapidly growing formerly rural area, the Cache Valley is representative of future air pollution problems facing areas of the interior west undergoing rapid urbanization.  相似文献   

6.
Air quality in the mining sector is a serious environmental concern and associated with many health issues. Air quality management in mining regions has been facing many challenges due to lack of understanding of atmospheric factors and physical removal mechanisms. A modeling approach called the mining air dispersion model (MADM) is developed to predict air pollutants concentration in the mining region while considering the deposition effect. The model takes into account the planet’s boundary conditions and assumes that the eddy diffusivity depends on the downwind distance. The developed MADM is applied to a mining site in Canada. The model provides values for the predicted concentrations of PM10, PM2.5, TSP, NO2, and six heavy metals (As, Pb, Hg, Cd, Zn, Cr) at various receptor locations. The model shows that neutral stability conditions are dominant for the study site. The maximum mixing height is achieved (1280 m) during the evening in summer, and the minimum mixing height (380 m) is attained during the evening in winter. The dust fall (PM coarse) deposition flux is maximum during February and March with a deposition velocity of 4.67 cm/sec. The results are evaluated with the monitoring field values, revealing a good agreement for the target air pollutants with R-squared ranging from 0.72 to 0.96 for PM2.5, from 0.71 to 0.82 for PM10, and from 0.71 to 0.89 for NO2. The analyses illustrate that the presented algorithm in this model can be used to assess air quality for the mining site in a systematic way. Comparisons of MADM and CALPUFF modeling values are made for four different pollutants (PM2.5, PM10, TSP, and NO2) under three different atmospheric stability classes (stable, neutral, and unstable). Further, MADM results are statistically tested against CALPUFF for the air pollutants and model performance is found satisfactory.

Implications: The mathematical model (MADM) is developed by extending the Gaussian equation particularly when examining the settling process of important pollutants for the industrial region. Physical removal effects of air pollutants with field data have been considerred for the MADM development and for an extensive field case study. The model is well validated in the field of an open pit mine to assess the regional air quality. The MADA model helps to facilitate the management of the mining industry in doing estimation of emission rate around mining activities and predicting the resulted concentration of air pollutants together in one integrated approach.  相似文献   


7.
Dhaka, the capital of Bangladesh, is among the most polluted cities in the world. This research evaluates seasonal patterns, day-of-week patterns, spatial gradients, and trends in PM2.5 (<2.5 µm in aerodynamic diameter), PM10 (<10 µm in aerodynamic diameter), and gaseous pollutants concentrations (SO2, NO2, CO, and O3) monitored in Dhaka from 2013 to 2017. It expands on past work by considering multiple monitoring sites and air pollutants. Except for ozone, the average concentrations of these pollutants showed strong seasonal variation, with maximum during winter and minimum during monsoon, with the pollution concentration of PM2.5 and PM10 being roughly five- to sixfold higher during winter versus monsoon. Our comparisons of the pollutant concentrations with Bangladesh NAAQS and U.S. NAAQS limits analysis indicate particulate matter (PM2.5 and PM10) as the air pollutants of greatest concern, as they frequently exceeded the Bangladesh NAAQS and U.S. NAAQS, especially during nonmonsoon time. In contrast, gaseous pollutants reported far fewer exceedances throughout the study period. During the study period, the highest number of exceedances of NAAQS limits in Dhaka City (Darus-Salam site) were found for PM2.5 (72% of total study days), followed by PM10 (40% of total study days), O3 (1.7% of total study days), SO2 (0.38% of total study days), and CO (0.25% of total study days). The trend analyses results showed statistically significant positive slopes over time for SO2 (5.6 ppb yr?1, 95% confidence interval [CI]: 0.7, 10.5) and CO (0.32 ppm yr?1, 95% CI: 0.01, 0.56), which suggest increase in brick kilns operation and high-sulfur diesel use. Though statistically nonsignificant annual decreasing slopes for PM2.5 (?4.6 µg/m3 yr?1, 95% CI: ?12.7, 3.6) and PM10 (?2.7 µg/m3 yr?1, 95% CI: ?7.9, 2.5) were observed during this study period, the PM2.5 concentration is still too high (~ 82.0 µg/m3) and can cause severe impact on human health.

Implications: This study revealed key insights into air quality challenges across Dhaka, Bangladesh, indicating particulate matter (PM) as Dhaka’s most serious air pollutant threat to human health. The results of these analyses indicate that there is a need for immediate further investigations, and action based on those investigations, including the conduct local epidemiological PM exposure-human health effects studies for this city, in order to determine the most public health effective interventions.  相似文献   


8.
The U.S. Environmental Protection Agency (EPA), state and local agencies have focused their efforts in assessing secondary fine particulate matter (aerodynamic diameter ≤2.5 µm; PM2.5) formation in prevention of significant deterioration (PSD) air dispersion modeling. The National Association of Clean Air Agencies (NACAA) developed a method to account for secondary PM2.5 formation by using sulfur dioxide (SO2) and nitrogen oxides (NOx) offset ratios. These ratios are used to estimate the secondary formation of sulfate and nitrate PM2.5. These ratios were first introduced by the EPA for nonattainment areas in the Implementation of the New Source Review (NSR) Program for Particulate Matter Less than 2.5 Micrometers (PM2.5), 73 FR 28321, to offset emission increases of direct PM2.5 emissions with reductions of PM2.5 precursors and vice versa. Some regulatory agencies such as the Minnesota Pollution Control Agency (MPCA) have developed area-specific offset ratios for SO2 and NOx based on Comprehensive Air Quality Model with Extensions (CAMx) evaluations for air dispersion modeling analyses. The current study evaluates the effect on American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) predicted concentrations from the use of EPA and MPCA developed ratios. The study assesses the effect of these ratios on an electric generating utility (EGU), taconite mine, food processing plant, and a pulp and paper mill. The inputs used for these four scenarios are based on common stack parameters and emissions based on available data. The effect of background concentrations also evaluates these scenarios by presenting results based on uniform annual PM2.5 background values. This evaluation study helps assess the viability of the offset ratio method developed by NACAA in estimating primary and secondary PM2.5 concentrations. An alternative Tier 2 approach to combine modeled and monitored concentrations is also presented.

Implications:

On January 4, 2012, the EPA committed to engage in rulemaking to evaluate updates to the Guideline on Air Quality Models (Appendix W of 40 CFR 51) and, as appropriate, incorporate new analytical techniques or models for secondary PM2.5. As a result, the National Association of Clean Air Agencies (NACAA) developed a screening method involving offset ratios to account for secondary PM2.5 formation. The use of this method is promising to evaluate total (direct and indirect) PM2.5 impacts for permitting purposes. Therefore, the evaluation of this method is important to determine its viability for widespread use.  相似文献   


9.
In recent years, many air quality monitoring programs have favored measurement of particles less than 2.5 µm (PM2.5) over particles less than 10 µm (PM10) in light of evidence that health impacts are mostly from the fine fraction. However, the coarse fraction (PM10-2.5) may have independent health impacts that support continued measurement of PM10 in some areas, such as those affected by road dust. The objective of this study was to evaluate the associations between different measures of daily PM exposure and two daily indicators of population health in seven communities in British Columbia, Canada, where road dust is an ongoing concern. The measures of exposure were PM10, PM2.5, PM10-2.5, PM2.5 adjusted for PM10-2.5, and PM10-2.5 adjusted for PM2.5. The indicators of population health were dispensations of the respiratory reliever medication salbutamol sulfate and nonaccidental mortality. This study followed a time-series design using Poisson regression over a 2003–2015 study period, with analyses stratified by three seasons: residential woodsmoke in winter; road dust in spring; and wildfire smoke in summer. A random-effects meta-analysis was conducted to establish a pooled estimate. Overall, an interquartile range increase in daily PM10-2.5 was associated with a 3.6% [1.6, 5.6] increase in nonaccidental mortality during the road dust season, which was reduced to 3.1% [0.8, 5.4] after adjustment for PM2.5. The adjusted coarse fraction had no effect on salbutamol dispensations in any season. However, an interquartile range increase in PM2.5 was associated with a 2.7% [2.0, 3.4] increase in dispensations during the wildfire season. These analyses suggest different impacts of different PM fractions by season, with a robust association between the coarse fraction and nonaccidental mortality in communities and periods affected by road dust. We recommend that PM10 monitoring networks be maintained in these communities to provide feedback for future dust mitigation programs.

Implications: There was a significant association between daily concentrations of the coarse fraction and nonaccidental mortality during the road dust season, even after adjustment for the fine fraction. The acute and chronic health effects associated with exposure to the coarse fraction remain unclear, which supports the maintenance of PM10 monitoring networks to allow for further research in communities affected by sources such as road dust.  相似文献   


10.
This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM2.5) and ≤10 µm (PM10) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM2.5 concentrations the day before hospital admission and elevated PM10 concentrations 2 days before hospital admission. An increment of 10 μg/m3 in PM2.5 and PM10 was correlated with a 6% (95% CI 1.02–-1.10) and 4% (95% CI 1.00–1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM2.5 and PM10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China.

Implications: This study demonstrated that short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.  相似文献   


11.
This paper discusses results from a vehicular emissions research study of over 350 vehicles conducted in three communities in Los Angeles, CA, in 2010 using vehicle chase measurements. The study explores the real-world emission behavior of light-duty gasoline vehicles, characterizes real-world super-emitters in the different regions, and investigates the relationship of on-road vehicle emissions with the socioeconomic status (SES) of the region. The study found that in comparison to a 2007 earlier study in a neighboring community, vehicle emissions for all measured pollutants had experienced a significant reduction over the years, with oxides of nitrogen (NOX) and black carbon (BC) emissions showing the largest reductions. Mean emission factors of the sampled vehicles in low-SES communities were roughly 2–3 times higher for NOX, BC, carbon monoxide, and ultrafine particles, and 4–11 times greater for fine particulate matter (PM2.5) than for vehicles in the high-SES neighborhood. Further analysis indicated that the emission factors of vehicles within a technology group were also higher in low-SES communities compared to similar vehicles in the high-SES community, suggesting that vehicle age alone did not explain the higher vehicular emission in low-SES communities.

Evaluation of the emission factor distribution found that emissions from 12% of the sampled vehicles were greater than five times the mean from all of the sampled fleet, and these vehicles were consequently categorized as “real-world super-emitters.” Low-SES communities had approximately twice as many super-emitters for most of the pollutants as compared to the high-SES community. Vehicle emissions calculated using model-year-specific average fuel consumption assumptions suggested that approximately 5% of the sampled vehicles accounted for nearly half of the total CO, PM2.5, and UFP emissions, and 15% of the vehicles were responsible for more than half of the total NOX and BC emissions from the vehicles sampled during the study.

Implications: This study evaluated the real-world emission behavior and super-emitter distribution of light-duty gasoline vehicles in California, and investigated the relationship of on-road vehicle emissions with local socioeconomic conditions. The study observed a significant reduction in vehicle emissions for all measured pollutants when compared to an earlier study in Wilmington, CA, and found a higher prevalence of high-emitting vehicles in low-socioeconomic-status communities. As overall fleet emissions decrease from stringent vehicle emission regulations, a small fraction of the fleet may contribute to a disproportionate share of the overall on-road vehicle emissions. Therefore, this work will have important implications for improving air quality and public health, especially in low-SES communities.  相似文献   


12.
In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments.

In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries.

Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models.

Natural “interventions” - reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems – demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g., carbonaceous species, may cause harm, aiding interpretation of epidemiological studies.

Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer, and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the U.S. EPA rubric for judging possible causality of PM2.5. mass concentrations, be used to assess which PM2.5. species are most harmful to public health.

Implications: Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. “Natural intervention” studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.

A list of acronyms will be found at the end of the article.  相似文献   


13.
Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM2.5 concentration (13.2 ± 13.7 µg/m3) was similar to the average measured Grimm 11-R PM2.5 concentration (11.3 ± 15.1 µg/m3). The overall correlation (r2) for PM2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m3) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m3) with an r2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM2.5.

Implications: The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM2.5 and coarse PM (PM10-2.5) mass concentrations were estimated using a DC1700 PM sensor. The calculated PM mass concentrations from the number concentrations of DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM2.5.  相似文献   


14.
The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NOx. Photochemical ozone production rates responded differently to 30% NOx and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NOx and VOCs also produced changes in OH. The responses in OH to 30% reductions in NOx and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NOx reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NOx and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NOx and VOC reductions under consideration.

Implications: The purpose of this paper is to compare predicted ozone responses to NOx and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their application in the air quality models used for policymaking.  相似文献   


15.
ABSTRACT

Because the U. S. Environmental Protection Agency (EPA) has changed the National Ambient Air Quality Standards (NAAQS) for ambient particulate matter (PM), there is a great deal of interest in determining recent PM trends. This paper examines trends in PM10 (i.e., particulate matter less than 10 micrometers in diameter) for areas of the United States based on their attainment status—for PM10 and ozone nonattainment and attainment areas. The analysis also focuses on urban, suburban, and rural areas, and eastern and western areas. The time period of evaluation is from 1988 through 1995. To shed further light on the ambient PM10 trends, trends in ambient SO2, NO2, and volatile organic compounds (VOCs) are also analyzed. Finally, trends in emission inventories of SO2, NOx, VOCs, and PM10 are evaluated. Results of the analysis show that widespread and similar reductions in PM10 levels have occurred over the last seven years. Annual reductions range from 3.0% to 3.8%, with the greatest reductions coming in PM10 nonattainment areas, but with very significant reductions also in PM10 attainment areas, ozone attainment areas, and rural areas. The widespread reductions appear to be due to a set of controls or common factors that are having a fairly uniform effect in all of the areas. The consistency of the reductions in different areas suggests that the reductions may also be primarily in the fine particles (i.e., those less than 2.5 micrometers in diameter, or PM2.5), which are more readily transported than coarse particles.  相似文献   

16.
Organic carbon (OC), elemental carbon (EC), and 90 organic compounds (36 polycyclic aromatic hydrocarbons [PAHs], 25 n-alkane homologues, 17 hopanes, and 12 steranes) were concurrently quantified in atmospheric particulate matter of PM2.5 and PM10. The 24-hr PM samples were collected using Harvard Impactors at a suburban site in Doha, Qatar, from May to December 2015. The mass concentrations (mean ± standard deviation) of PM2.5 and PM10 were 40 ± 15 and 145 ± 70 µg m?3, respectively, exceeding the World Health Organization (WHO) air quality guidelines. Coarse particles comprised 70% of PM10. Total carbonaceous contents accounted for 14% of PM2.5 and 10% of PM10 particulate mass. The major fraction (90%) of EC was associated with the PM2.5. In contrast, 70% of OC content was found in the PM2.5–10 fraction. The secondary OC accounted for 60–68% of the total OC in both PM fractions, indicating photochemical conversions of organics are much active in the area due to higher air temperatures and solar radiations. Among the studied compounds, n-alkanes were the most abundant group, followed by PAHs, hopanes, and steranes. n-Alkanes from C25 to C35 prevailed with a predominance of odd carbon numbered congeners (C27–C31). High-molecular-weight PAHs (5–6 rings) also prevailed, within their class, with benzo[b + j]fluoranthene (Bb + jF) being the dominant member. PAHs were mainly (80%) associated with the PM2.5 fraction. Local vehicular and fugitive emissions were predominant during low-speed southeasterly winds from urban areas, while remote petrogenic/biogenic emissions were particularly significant under prevailing northwesterly wind conditions.

Implications: An unprecedented study in Qatar established concentration profiles of EC, OC, and 90 organic compounds in PM2.5 and PM10. Multiple tracer organic compounds for each source can be used for convincing source apportionment. Particle concentrations exceeded WHO air quality guidelines for 82–96% of the time, revealing a severe problem of atmospheric PM in Doha. Dominance of EC and PAHs in fine particles signifies contributions from combustion sources. Dependence of pollutants concentrations on wind speed and direction suggests their significant temporal and spatial variability, indicating opportunities for improving the air quality by identifying sources of airborne contaminants.  相似文献   


17.
Scientists have effectively proved that vegetative environment buffers (VEBs) can be used for reducing dust emissions from livestock buildings, but they have seen fewer tests in poultry farms. A field research was conducted to assess the effectiveness of VEBs on reducing downwind transport of particulate matter (PM) from a ventilated poultry house in Changchun. Five plant species transferred from local area were used to establish five diverse VEBs and separately installed outside of the ventilation fans in summer 2017. The five plant species were Winged Euonymus (WE), Malus Spectabilis (MS), Padus Maackii (PAA), Acer Saccharum Marsh (ASM), and Padus Virginiana “Red Select Shrub” (PV_RSS). The mass concentrations of PM2.5 and PM10 (particulate matter with an aerodynamic diameter of 2.5 μm and 10 μm or less, respectively) were monitored at downwind and upwind sampling locations around the VEB. The results showed that with the presenting of VEBs, the particle concentrations at the downwind sampling point were significantly reduced compared with that at the upwind sampling point (p < 0.05). Specifically, compared to the control test without VEB, the VEB with PV_RSS had the best PM concentration reduction rate (CRR) of 47.24%±4.33% and 41.13%±5.83% for PM2.5 and PM10, respectively. The rough surface of plant leaves may help intercept more PM, though it was also affected by other factors (such as the blade angle, the interaction with wind) needed to be further investigated. The VEB with PV_RSS, which presented the best capacity of CRR, selectively intercepted PM, mainly related to the elements of N, Na, Mg, P, S, and Cl.

Implications: Five plant species, including WE, PAA, MS, ASM, and PV_RSS, were evaluated as VEBs to mitigate particulate emissions from outside of a ventilated poultry house in Changchun. They all significantly reduced particulate matter emissions. However, the PV_RSS presented the best capability of trapping fine and coarse particles: PM2.5 and PM10, respectively, while the PAA was the worst one. The microstructure of leaves affected particle deposition and remaining on the leaves, and PV_RSS selectively intercepted particulate matter mainly related to certain elements.  相似文献   


18.
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter <2.5 μm; PM2.5) and coarse (aerodynamic diameter 2.5–10 μm; PM2.5–10) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM2.5 (21.9 μg/m3) and PM10 (107.8 μg/m3) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM2.5 (10 μg/m3) and PM10 (20 μg/m3), respectively. Similar to other Middle Eastern locales, PM2.5–10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM2.5 and PM2.5–10: (1) soil/road dust, (2) incineration, and (3) traffic; and for PM2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM2.5 (27%) and PM2.5–10 (77%) mass, and the largest source contributor for PM2.5 was from residual oil burning (63%). Temporal variations of PM2.5–10 and PM2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM2.5 and PM2.5–10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting.

Implications: Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source of PM2.5–10 is natural windblown soil and road dust, whereas the predominant source of PM2.5 is residual oil burning, generated from the port and oil refinery located west of the air sampler, suggesting that targeted emission controls could significantly improve the air quality in the city. The compositional differences point to a need for health effect studies to be conducted in this region, so as to directly assess the applicability of the existing guidelines to the Middle East air pollution.  相似文献   


19.
This study proposes an easy-to-apply method, the Total Life Cycle Emission Model (TLCEM), to calculate the total emissions from shipping and help ship management groups assess the impact on emissions caused by their capital investment or operation decisions. Using TLCEM, we present the total emissions of air pollutants and greenhouse gases (GHGs) during the 25-yr life cycle of 10 post-Panamax containerships under slow steaming conditions. The life cycle consists of steel production, shipbuilding, crude oil extraction and transportation, fuel refining, bunkering, and ship operation. We calculate total emissions from containerships and compare the effect of emission reduction by using various fuels. The results can be used to differentiate the emissions from various processes and to assess the effectiveness of various reduction approaches. Critical pollutants and GHGs emitted from each process are calculated. If the containerships use heavy fuel oil (HFO), emissions of CO2 total 2.79 million tonnes (Mt), accounting for 95.37% of total emissions, followed by NOx and SOx emissions,which account for 2.25% and 1.30%, respectively.The most significant emissions are from the operation of the ship and originate from the main engine (ME).When fuel is switched to 100% natural gas (NG), SOx, PM10, and CO2 emissions show remarkable reductions of 98.60%, 99.06%, and 21.70%, respectively. Determining the emission factor of each process is critical for estimating the total emissions. The estimated emission factors were compared with the values adopted by the International Maritime Organization (IMO).The proposed TLCEM may contribute to more accurate estimates of total life cycle emissions from global shipping.

Implications: We propose a total life cycle emissions model for 10 post-Panamax container ships. Using heavy fuel oil, emissions of CO2 total 2.79 Mt, accounting for approximately 95% of emissions, followed by NOx and SOx emissions. Using 100% natural gas, SOx, PM10, and CO2 emissions reduce by 98.6%, 99.1%, and 21.7%, respectively. NOx emissions increase by 1.14% when running a dual fuel engine at low load in natural gas mode.  相似文献   


20.
The Imperial County Community Air Monitoring Network was developed as part of a community-engaged research study to provide real-time particulate matter (PM) air quality information at a high spatial resolution in Imperial County, California. The network augmented the few existing regulatory monitors and increased monitoring near susceptible populations. Monitors were both calibrated and field validated, a key component of evaluating the quality of the data produced by the community monitoring network. This paper examines the performance of a customized version of the low-cost Dylos optical particle counter used in the community air monitors compared with both PM2.5 and PM10 (particulate matter with aerodynamic diameters <2.5 and <10 μm, respectively) federal equivalent method (FEM) beta-attenuation monitors (BAMs) and federal reference method (FRM) gravimetric filters at a collocation site in the study area. A conversion equation was developed that estimates particle mass concentrations from the native Dylos particle counts, taking into account relative humidity. The R2 for converted hourly averaged Dylos mass measurements versus a PM2.5 BAM was 0.79 and that versus a PM10 BAM was 0.78. The performance of the conversion equation was evaluated at six other sites with collocated PM2.5 environmental beta-attenuation monitors (EBAMs) located throughout Imperial County. The agreement of the Dylos with the EBAMs was moderate to high (R2 = 0.35–0.81).

Implications: The performance of low-cost air quality sensors in community networks is currently not well documented. This paper provides a methodology for quantifying the performance of a next-generation Dylos PM sensor used in the Imperial County Community Air Monitoring Network. This air quality network provides data at a much finer spatial and temporal resolution than has previously been possible with government monitoring efforts. Once calibrated and validated, these high-resolution data may provide more information on susceptible populations, assist in the identification of air pollution hotspots, and increase community awareness of air pollution.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号