首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequential extraction (modified BCR procedure) combined with isotope analysis has been investigated as a tool for assessing mobilisation of lead into streams at an upland catchment in NE Scotland. The maximum lead concentrations (up to 110 mg kg(-1) in air-dried soil) occurred not at the surface but at about 10 cm depth. The lowest (206)Pb/(207)Pb ratios in any profile occurred, with one exception, at 2.5-5 cm depth. In the one exception, closest to the only road in the area, significantly lower (206)Pb/(207)Pb ratios in the surface soil together with much increased chloride concentrations (in comparison to other surface waters) indicated the possible mobilisation of roadside lead and transfer to the stream. The (206)Pb/(207)Pb ratios in extractable fractions tended at depth towards the ratio measured in the residual phase but the ratios in the oxidizable fraction increased to a value higher than that of the residual phase.  相似文献   

2.
Soil samples from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria contained very high concentrations of cadmium, lead and zinc (up to 140, 4900 and 5900 mg kg(-1), respectively). A roadside soil in a relatively uncontaminated area also contained high concentrations of the same metals (24, 1550 and 1870 mg kg(-1), respectively) indicating that the transport of ores could be a source of contamination. Even though the lead isotope ratios in all the samples fell within a very narrow range (for example, 1.186-1.195 for (206)Pb/(207)Pb), the samples could be differentiated into three distinct groups: ores ((206)Pb/(207)Pb and (208)Pb/(207)Pb ratios of 1.1874-1.1884 and 2.4755-2.4807, respectively), current deposition (1.1864 and 2.4704-2.4711, respectively) and local background (1.1927-1.1951 and 2.4772-2.4809, respectively). Although most of the current deposition has its origin in the ores used at the smelter, up to 12% could be from other sources such as petrol lead.  相似文献   

3.
Contamination of the environment from atmospheric deposition during the twentieth century is pervasive even in areas ostensibly considered pristine or remote from point sources. In this study, Pb concentrations in a 210Pb-dated peat core collected from the Okefenokee Swamp, GA were used to assess historical contaminant input via atmospheric deposition. Lead isotope ratios were determined by dynamic reaction cell ICP-MS (DRC-ICP-MS). Increases in Pb concentration occurred in the late nineteenth century and a marked rise in Pb concentrations pre-dated the widespread use of leaded gasoline within the US. The 206Pb/207Pb ratios of 1.19 during this period were consistent with coal combustion emissions. A later increase in Pb concentration, concurrent with a trend toward more radiogenic 206Pb/207Pb ratios in gasoline is consistent with an increased input of Pb from leaded gasoline emissions. However, it appears that coal combustion emissions remain a major source of Pb to the Okefenokee.  相似文献   

4.
Ratios of 206Pb/207Pb in a Lochnagar sediment core slowly decline from c. 1.32 at 140 cm to c. 1.23 at 9 cm, and then rapidly decline to c. 1.15 at the surface. Ninety percent of the Pb in the surface sediments can be attributed to anthropogenic sources. The 206Pb/207Pb ratio data imply that catchment peat surface contains a higher fraction of anthropogenic Pb than the sediment surface. The 206Pb/207Pb ratios in the surface of the sediment core are consistent with ratios in trapped sediments collected annually between 1998 and 2003. However, there is no significant decline in these recent samples suggesting that the reduction in atmospheric Pb emissions has not yet been recorded by the sediments due to Pb inputs from the catchment. As catchment peats store about 840 kg previously deposited anthropogenic Pb since 1860, it is likely that catchment inputs will continue to affect future 206Pb/207Pb ratios.  相似文献   

5.
Atmospheric lead (Pb) pollution during the last century in central Yunnan province, one of the largest non-ferrous metal production centers in China, was reconstructed using sediment cores collected from Fuxian and Qingshui Lakes. Lead concentrations and isotopic ratios (207Pb/206Pb and 208Pb/206Pb) were measured in sediment cores from both lakes. The operationally defined chemical fractions of Pb in sediment core from Fuxian Lake were determined by the optimized BCR procedure. The chronology of the cores was reconstructed using 210Pb and 137Cs dating methods. Similar three-phase variations in isotopic ratios and enrichment factors of Pb were observed in the sediment cores from both lakes. Before the 1950s, the sediment data showed low 207Pb/206Pb and 208Pb/206Pb ratios and enrichment factors (EFs?=?~1), indicating that the sedimentary Pb was predominantly of lithogenic origin. However, these indices were increased gradually between the 1950s and the mid-1980s, implying an atmospheric Pb deposition. The EFs and isotopic ratios of Pb reached their peak during recent years, indicating aggravating atmospheric Pb pollution. The average anthropogenic Pb fluxes since the mid-1980s were estimated to be 0.032 and 0.053 g m?2 year?1 recorded in Fuxian and Qingshui cores, respectively. The anthropogenic Pb was primarily concentrated in the reducible fraction. Combining the results of Pb isotopic compositions and chemical speciations in the sediment cores and in potential sources, we deduced that recent aggravating atmospheric Pb pollution in central Yunnan province should primarily be attributed to regional emissions from non-ferrous metal production industries.  相似文献   

6.
Stream sediments from the mining and smelting district of Príbram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg(-1), 26 039 mg Zn kg(-1), 316.4 mg Cd kg(-1), 256.9 mg Cu kg(-1)). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF>40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting (206Pb/207Pb=1.16), while the role of secondary smelting (car battery processing) is negligible.  相似文献   

7.
Lichens were used to evaluate the metal pollution in a forest ecosystem around the smelter of Murdochville, Canada. As reached values 5.8 times higher in the smelter vicinity than in the 'background' sites. This enrichment was 2 times higher for 3 metals (Cu, Cd and Pb). The highest As, Ba, Cd, Cu, and Pb concentrations in lichens were 4, 112, 1, 23, 50 and 952mg/kg respectively. Contamination declined exponentially with increasing distance from the smelter and was related to elevation and slope exposition to the smelter flux. (206)Pb/(207)Pb and (206)Pb/(204)Pb ratios were low close to the smelter (1.16 and 18), but increased with distance to constant values (1.19 and 18.7) and showed an inverse correlation with lead concentrations. Forest contamination was detectable up to 30km from the smelter.  相似文献   

8.
Urban soil Pb contamination is a great human health risk. Lead distribution and source in topsoils from 14 parks in Shanghai, China were investigated along an urban-rural gradient. Topsoils were contaminated averagely with 65 mg Pb kg−1, 2.5 times higher than local soil background concentrations. HCl-extracts contained more anthropogenic Pb signatures than total sample digests as revealed by the higher 207/206Pb and 208/206Pb ratios in extracts (0.8613 ± 0.0094 and 2.1085 ± 0.0121 versus total digests 0.8575 ± 0.0098 and 2.0959 ± 0.0116). This suggests a higher sensitivity of HCl-extraction than total digestion in identifying anthropogenic Pb sources. Coal combustion emission was identified as the major anthropogenic Pb source (averagely 47%) while leaded gasoline emission contributed 12% overall. Urbanization effects were observed by total Pb content and anthropogenic Pb contribution. This study suggests that to reduce Pb contamination, Shanghai might have to change its energy composition to clean energy.  相似文献   

9.
Rapid urbanization and industrialization in South China has placed great strain on the environment and on human health. In the present study, the total suspended particulate matter (TSP) in the urban and suburban areas of Hong Kong and Guangzhou, the two largest urban centres in South China, was sampled from December 2003 to January 2005. The samples were analysed for the concentrations of major elements (Al, Fe, Mg and Mn) and trace metals (Cd, Cr, Cu, Pb, V and Zn), and for Pb isotopic composition. Elevated concentrations of metals, especially Cd, Pb, V and Zn, were observed in the urban and suburban areas of Guangzhou, showing significant atmospheric trace element pollution. Distinct seasonal patterns were observed in the heavy metal concentrations of aerosols in Hong Kong, with higher metal concentrations during the winter monsoon period, and lower concentrations during summertime. The seasonal variations in the metal concentrations of the aerosols in Guangzhou were less distinct, suggesting the dominance of local sources of pollution around the city. The Pb isotopic composition in the aerosols of Hong Kong had higher 206Pb/207Pb and 208Pb/207Pb ratios in winter, showing the influence of Pb from the northern inland areas of China and the Pearl River Delta (PRD) region, and lower 206Pb/207Pb and 208Pb/207Pb ratios in summer, indicating the influence of Pb from the South Asian region and from marine sources. The back trajectory analysis showed that the enrichment of heavy metals in Hong Kong and Guangzhou was closely associated with the air mass from the north and northeast that originated from northern China, reflecting the long-range transport of heavy metal contaminants from the northern inland areas of China to the South China coast.  相似文献   

10.
In the context of intense emissions causing atmospheric pollution, tree growth reductions could be related to soil chemistry modifications or direct foliar injuries. To verify these hypotheses, mineral soils were sampled in an area (Murdochville, Canada) where previous studies had demonstrated that tree growth was impacted by smelter emissions and that forest floor lead concentrations could be used as a proxy for atmospheric pollutant depositions. Samples were analysed for Al, Pb (concentrations and isotope ratios), basic cations (Ca, K, P, and Mg) and Zr. Mass balance calculations were performed on soil profiles to assess vertical migration of elements. Pb concentrations in litter diminished gradually with distance from the smelter. The Pb isotope ratios in these organic soil layers were close to those measured in the Murdochville ores. These patterns were not encountered in mineral soil layers. Pb isotope ratios in these layers were close to those measured in uncontaminated geological materials, and Pb concentrations and basic cation depletions were not related to the proximity of the smelter. Growth reduction was closely associated with litter Pb concentrations, which were used as a proxy for atmospheric deposition, but was not correlated with any elemental concentration or cation depletion measured in mineral soil layers. Our overall results suggest that trees responded mainly to direct atmospheric emissions, which caused foliar damage, rather than to soil chemistry modifications.  相似文献   

11.
Lead (Pb), like many other pollutants, is carried into the Arctic by long-range atmospheric transport from industrial centers at lower latitudes. Unlike other pollutants, Pb can be used to assess emission source regions through the use of stable Pb isotope analyses. Using sediment cores from 17 lakes (three profiles and 14 top/bottom sample pairs) in the Søndre Strømfjord (Kangerlussuaq) region, West Greenland (67°N), this study assesses the extent and origin of Pb pollution along a 150 km transect between the Inland Ice and Davis Strait. Like ice core analyses from the interior of Greenland, the isotope analyses suggest pre-industrial contamination, although significant concentration changes in the lake sediments do not occur until the 18th/19th centuries, with the maximum concentrations occurring about 1970. Compared to the background, the Pb concentrations in recent sediments have increased about 2.5-fold, with slightly higher enrichments towards the coast, where annual precipitation is highest. For all of the lakes, there is a major decline in the 206Pb/207Pb ratio in the recent sediments (mean 1.218±0.030) as compared to deeper sediments (mean 1.365±0.084). Using a Pb isotope mixing model, we calculated an excess Pb isotope ratio, i.e. the isotope ratio necessary to produce the observed declines in recent sediments. While studies of atmospheric aerosols in the high Arctic (206Pb/207Pb ratio ∼1.16) have indicated that Russian emissions (206Pb/207Pb ratio ∼1.15–1.16) are a dominant source of arctic pollution, the excess Pb ratios of the lake sediments in the Søndre Strømfjord region (206Pb/207Pb ratio ∼1.14–1.15), in the low Arctic, suggest that W Europe (206Pb/207Pb ratio ∼1.14) is also a major emission source for this region.  相似文献   

12.
Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-?lesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-?lesund, and the result showed that anthropogenic Pb peaked at 1960s-1970s, and thereafter a significant recovery was observed by a rapid increase of (206)Pb/(207)Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of (206)Pb/(207)Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments.  相似文献   

13.
This study examined trace metal contamination of sediments in Guiyu, China where primitive e-waste processing activities have been carried out. It was found that some river sediments in Guiyu were contaminated with Cd (n.d.-10.3mg/kg), Cu (17.0-4540mg/kg), Ni (12.4-543mg/kg), Pb (28.6-590mg/kg), and Zn (51.3-324mg/kg). The (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios of the Pb-contaminated sediments of Lianjiang (1.1787+/-0.0057 and 2.4531+/-0.0095, respectively) were lower than those of Nanyang River (1.1996+/-0.0059 and 2.4855+/-0.0082, respectively), indicating a significant input of non-indigenous Pb with low (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios. Copper, Pb and Zn in the non-residual fractions noticeably increased in the contaminated sediments compared to those in the uncontaminated sediments. A genuine concern is associated with potential transport of the contaminated sediments downstream and enhanced solubility and mobility of trace metals in the non-residual fractions.  相似文献   

14.
Identification of mining-related contaminants is important in order to assess the spreading of contaminants from mining as well as for site remediation purposes. This study focuses on lead (Pb) contamination in biota near the abandoned ‘Black Angel Mine’ in West Greenland in the period 1988-2008. Stable Pb isotope ratios and total Pb concentrations were determined in lichens, seaweed and mussels as well as in marine sediments. The results show that natural background Pb (207Pb/206Pb: 0.704-0.767) and Pb originating from the mine ore (207Pb/206Pb: 0.955) have distinct isotopic fingerprints. Total Pb in lichens, seaweed, and mussels was measured at values up to 633, 19 and 1536 mg kg−1 dry weight, respectively, and is shown to be a mixture of natural Pb and ore-Pb. This enables quantification of mining-related Pb and shows that application of Pb isotope data is a valuable tool for monitoring mining pollution.  相似文献   

15.
Lead isotopic ratios (LIR) of eight common food items, street dust, coal, diesel, sediments, lead ore and rainwater from India have been reported for the first time in this paper. This study characterized the source and extent of lead pollution in the different foodstuff consumed in Kolkata, a major metropolis of eastern India. The atmospheric lead input to the food items, sold openly in busy roadside markets of the city, has been quantified. The mean 207/206 and 208/206 LIRs of the eight food items ranged from 0.8847 to 0.8924 and 2.145 to 2.167, respectively. Diesel had the highest mean 207/206 and 208/206 values of 0.9015 and 2.1869, respectively, apart from the lead ore. The food items had a mean lead concentration between 3.78 and 43.35 mg kg?1. The two ratio scatter plots of all the different environmental matrices were spread linearly between the uncontaminated Ichapur sediment and diesel. The 207/206 LIRs of the coal with a mean of 0.8777 did not fall in the linear trend, while the street dust and food samples overlapped strongly. The rainwater sample had a 207/206 LIR of 0.9007. Contaminated sediments in Dhapa, the repository of the city’s municipal garbage, had a mean 207/206 LIR of 0.8658. The corresponding value obtained from the sewage-fed vegetable grown there was 0.8058. The present study indicated that diesel was one of the main contributor to Pb pollution. The atmospheric lead contribution to the food items was in the range of 68.48–86.66 %.  相似文献   

16.
The rapid economic development in the Yangtze River Delta (YRD), China in the last three decades has had a significant impact on the environment of the East China Sea (ECS). Lead isotopic compositions of a 210Pb dated sediment core collected from the coastal ECS adjacent to the Yangtze River Estuary were analyzed to track the Pb pollution in the region. The baseline Pb concentration in the coastal ECS sediments before the industrialization in China was 32 μg g−1, and the corresponding 206Pb/207Pb ratio was 1.195. The high-resolution profiles of Pb flux and 206Pb/207Pb ratios had close relationships with the economic development and the history of the use of leaded gasoline in China, and they were clearly different from those of most European countries and United States.  相似文献   

17.
Lead isotopes and heavy metal concentrations were measured in two sediment cores sampled in estuaries of Xiangjiang and Lishui Rivers in Hunan province, China. The presence of anthropogenic contribution was observed in both sediments, especially in Xiangjiang sediment. In the Xiangjiang sediment, the lower 206Pb/207Pb and higher 208Pb/206Pb ratio, than natural Pb isotope signature (1.198 and 2.075 for 206Pb/207Pb and 208Pb/206Pb, respectively), indicated a significant input of non-indigenous Pb with low 206Pb/207Pb and high 208Pb/206Pb. The corresponding concentrations of heavy metals (As, Cd, Zn, Mn and Pb) were much higher than natural values, suggesting the contaminations of heavy metals from extensive ore-mining activities in the region.  相似文献   

18.
During Fall 1996, epiphytic lichens were collected along altitudinal sections in two areas of France (the Vosges mountains in the North-East, and the Alps, in Haute-Savoie) in order to verify any geographic distribution of atmospheric metals on a small scale. These lichens have various Pb isotopic compositions (206Pb/207Pb=1.126–1.147) which are correlated with the altitude of sampling. Lichens sampled near valleys display isotopic ratios significantly less radiogenic than those sampled at several hundred to thousand meters of altitude. In the Vosges sections, Pb concentrations and isotopic compositions of lichens may be used to define three zones: (1) valley: Pb-rich and non-radiogenic ratios, (2) transition: low-Pb and intermediate isotopic compositions, (3) mountain: heterogeneous Pb concentrations but more radiogenic and homogeneous Pb isotopic composition. Other metals (Zn, Cu, Cd, As), when normalised one to another, are not fractionated between these zones and display homogeneous relative abundance along the altitudinal sections of both sites. Variation of 206Pb/207Pb ratios with altitude is interpreted in terms of mixing of at least two pollution sources: one being the petrol (leaded and/or unleaded) combustion, and the other being of industrial origin. The latter is characterised by a more radiogenic isotopic composition. The Pb isotopic composition of flue gas residues from different municipal solid waste combustors in the Rhine valley and in other areas of France would suggest that these plants might be an important source of industrial Pb in the atmosphere. If the average industrial Pb in France has a 206Pb/207Pb close to 1.15, between 60 and 80% of the total Pb in lichens from the Rhine valley would come from gasoline combustion, whereas 85–90% of the Pb would have an industrial origin in lichens from higher altitude in the Vosges mountains. Although lichens from the Alps were collected at higher altitude, the percentage of industrial Pb for these lichens would be slightly lower (65%). Major winds and convection winds in the different valleys must then play an important role in term of distribution of atmospheric Pb in function of altitude.  相似文献   

19.
The impact of 40 years of sulfur (S) emissions from a sour gas processing plant in Alberta (Canada) on soil development, soil S pools, soil acidification, and stand nutrition at a pine (Pinus contorta x Pinus banksiana) ecosystem was assessed by comparing ecologically analogous areas subjected to different S deposition levels. Sulfur isotope ratios showed that most deposited S was derived from the sour gas processing plant. The soil subjected to the highest S deposition contained 25.9 kmol S ha(-1) (uppermost 60 cm) compared to 12.5 kmol S ha(-1) or less at the analogues receiving low S deposition. The increase in soil S pools was caused by accumulation of organic S in the forest floor and accumulation of inorganic sulfate in the mineral soil. High S inputs resulted in topsoil acidification, depletion of exchangeable soil Ca2+ and Mg2+ pools by 50%, podzolization, and deterioration of N nutrition of the pine trees.  相似文献   

20.
The root uptake of lead (Pb) by trees and the transfer of Pb by leaf litter deposition to the forest floor were investigated through a pot experiment with Norway spruce. Natural Pb and radio isotopic lead (210Pb) were determined in needles and twigs and in the pot soil spiked with 210Pb. Calculations of the specific activity in plant material and in the supporting pot soil showed that less than 2% of the Pb content of needles and twigs originates from root uptake and approximately 98% are deposited from the atmosphere. Atmospheric Pb has declined by a factor of 7 from 1980 to 2007 but is still a major pathway of Pb to vegetation and topsoils. The conclusion from the experiment is that the internal circulation of Pb through root uptake, translocation and litterfall, gives an insignificant input of Pb to the forest floor compared to atmospheric deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号