首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The lateral down-slope movement of water, NO3 -, NH4 +, SO4 2-, H+ and DOC through an ablation till was examined from 1987 to 1990 for a one hectaresoil catena on a steep hillslope with uniform forest cover at the Turkey Lakes Watershed (TLW), Ontario, Canada. Natural variation in the export of nutrients from the soil profile via soil water to Little Turkey Lake was assessed in relation to nutrient distribution in soil at different topographic positions.Subsurface throughflow exhibited dramatic differences in nutrientconcentrations and fluxes with slope position, largely reflectingthat of the soil horizons through which the water passed. GreaterNO3 -, SO4 2-, and DOC concentrations in subsurface water in the upper, well-drained hillslope were a reflection of enrichment by contact with more acidic, more developed podzols, and more favorable soil physical and biological conditions for NO3 - retention in solution.Nutrient inputs to the lake were strongly influenced by increaseddown-slope transport of water, and increased SO4 2-, N, and C retention in wetter, less-developed podzolic soils that characterize lower slope positions. An understanding of water movement and soil development variation withtopographic position was required to accurately estimate nutrient budgets for steep slopes at TLW.  相似文献   

2.
Year-to-year variation in SO4 2-,NO3 -, Ca2+, K+, and Mg2+concentrations in forest floor and mineral soil percolatefrom a forested, podzolic soil at the Turkey Lakes Watershedon the Precambrian Shield was assessed for monotonic trendsbetween 1986 and 1995. Our objective was to examine howrapidly ion concentrations in soil percolate equilibratedafter stabilization of SO4 2- concentrations inprecipitation. Significant negative trends were detected inmonthly Ca2+, and Mg2+ concentrations in forestfloor and SO4 2-, Ca2+, and Mg2+ inmineral soil percolate during the 10-year-period. Thedecline in Ca2+ and Mg2+ was greater than annualdecreases in SO4 2- and NO3 - in forestfloor percolate and proportional to the reduction inSO4 2- in mineral soil percolate. Response ofmineral soil percolate to a 15 molc L-1SO4 2- decrease in wet-only precipitation between1985 and 1986 was a gradual decline in SO4 2-concentration through 1995. The five-year meanSO4 2- concentration in bulk precipitation, forestfloor percolate, and mineral soil percolate decreased 8, 9and 18 molc L-1 from 1986–90 to 1991–95.Microbial (mineralization of organic S) and sorption(release from and/or retention in the pool of insolubleSO4 2-) processes in the soil were logicalexplanations for the observed changes in SO4 2- inmineral soil percolate.  相似文献   

3.
This study presents the chemical composition of bulk deposition during the period of February 1996–May 1997 and the chemical composition of sub-event wet deposition on 13 August 1997 in Gebze. Samples were analyzed for SO4 2-, NO3 -, Cl-,Ca2+, Mg2+, K+, Na+, and NH4 + in addition to pH. The source of some ionic components in the bulk deposition such as K+ and Ca2+ were found to be the terrestrial regions, as expected. The (non-sea Cl-)/Cl- ratio of 0.05 suggests that the very large portion of Cl- in the bulkdeposition was of marine origin. The ratio of (non-sea SO4 2-)/SO4 2- varied between 0.86 and 0.99,indicating that the main source of sulfate was not the sea. It is found that the sulfate and calcium concentrations were highest in summer and lowest in fall. The analysis of bulk deposition also indicated that nearly 24% of the events were acidic (pH < 5.6). During sub-event wet deposition collectedon the same site pH decreased continually, and during the passageof cold front concentrations of Cl-, SO4 2- and NO3 - increased.  相似文献   

4.
The paired catchment study at the forested Bear Brook Watershed in Maine (BBWM) U.S.A. documents interactions among short- to long-term processes of acidification. In 1987–1989, runoff from the two catchments was nearly identical in quality and quantity. Ammonium sulfate has been added bi-monthly since 1989 to the West Bear catchment at 1800 eq ha-1 a-1; the East Bear reference catchment is responding to ambient conditions. Initially, the two catchments had nearly identical chemistry (e.g., Ca2+, Mg2+, SO4 2-, and alkalinity ≈82, 32, 100, and 5 μeq L-1, respectively). The manipulated catchment responded initially with increased export of base cations, lower pH and alkalinity, and increased dissolved Al,NO3 - and SO4 2-. Dissolved organic carbon and Si have remained relatively constant. After 7 yr of treatment, the chemical response of runoff switched to declining base cations, with the other analytes continuing their trends; the exports of dissolved and particulate Al, Fe, and P increased substantially as base cations declined. The reference catchment has slowly acidified under ambient conditions, caused by the base cation supply decreasing faster than the decrease of SO4 2, as pollution abates. Export of Al, Fe and, P is mimicking that of the manipulated watershed, but is lower in magnitude and lags in time. Probable increasing SO4 2- adsorption caused by acidification has moderated the longer-term trends of acidification of both watersheds. The trends of decreasing base cations were interrupted by the effects of several short-term events, including severe ice storm damage to the canopy, unusual snow pack conditions, snow melt and rain storms, and episodic input of marine aerosols. These episodic events alter alkalinity by5 to 15 μeq L-1 and make it more difficult to determine recovery from pollution abatement.  相似文献   

5.
The Turkey Lakes Watershed (TLW) was established in 1980 as asite for study of the ecosystem effects of acidic deposition, andsince then there has been 40% reduction in North AmericanSO2 emissions. Monitoring records for bulk deposition,shallow and deep ground water, two headwater streams and two lakeoutflows have been tested to identify statistically significantmonotonic trends. The TLW appears to be responding to decliningacidifying emissions because the most prevalent chemical trendacross sample types/stations was decreasing SO4 2-. Increasing pH was detected in four of the seven data sets, butonly the H+ decrease in bulk deposition was of a magnitudeto be an important ionic compensation for the SO4 2-decline. There is little evidence of acidification recovery inTLW waters however. Increasing alkalinity was found only in theoutflow of the penultimate lake of the basin, and in fact, deepground water and the other lake outflow had decreasing alkalinitytrends (i.e., continuing acidification). For the surface waterstations, the greater part of the ionic compensation fordeclining SO4 2- was decreasing base cations, and as aresult, these waters are probably becoming more dilute with time,although only the headwater streams exhibited decliningconductivity. Five of seven data sets had increasing dissolvedorganic carbon concentrations. Increasing NO3 - wasimportant in ground waters. Drought has strongly influencedtrends and delayed recovery by mobilizing S stored in catchmentwetlands and/or soils.  相似文献   

6.
Previously, it has been observed that the internal circulation (ion leakage) of calcium from a coniferous forest is caused by uptake of sulphur dioxide (SO2). Here we show that this correlation was not changed when the forest floor is covered with a roof. The reaction takes place in the canopy and is not influenced by deposition and root uptake of calcium and sulphate. The ion leakage of calcium is linked to the loss of acidity in throughfall. The process can, for one of the catchments, schematically be written: SO2 + H2O + 0.5 O2 + 0.58 CaA2→ SO4 2- + 0.94 H+ + 0.58 Ca2+ + 1.16 HA, in which A denotes the anion to a weak acid. This reaction also takes place today when the SO2 concentration is very low, but when the precipitation is still acidic. The ion leakage of manganese also is caused by the uptake of SO2, but only 0.12 manganese ions are released per SO2 molecule.  相似文献   

7.
More than 85% of the mountainous spruce forest of the Bavarian Forest National Park died after bark beetle attack during the last decade. The elemental budget of intact stands and of different stages after the dieback was investigated. N-fluxes in throughfall of intact stands were lower (12–16 kg ha-1 a-1) than in an earlier study in an intact mountainous spruce stand in the Bavarian Forest National Park and were reduced in the first years after the dieback (3–5 kg N ha-1 a-1). Nitrate-N fluxes by seepage water of intact stands at 40 cm depth, which is below the main rooting zone, were moderate (5–9 kg ha-1 a-1). After the dieback of the stands, NH4 + concentrations were increased in humus efflux as were NO3 - concentrations in mineral soil. Due to the relatively high precipitation, dilution of the elemental concentrations in seepage was considerable.Therefore, NO3 - concentrations were usually below the level of drinking water (806 μmol NO3 - L-1), with lowest concentrations after the snowmelt and highest in autumn. Nitrate concentrations were elevated from the first year until the 7th year after the dieback. Total NO3 --N losses by seepage until the 7th year after the dieback equalled 543 kg N ha-1. Aluminium fluxesafter the dieback were enhanced in the mineral soil from 55 to 503 mmolc m-2 a-1 (average of 8 yr), K+ fluxes from 8 to 37 mmolc m-2 a-1, and Mg2+ fluxes from 13 to 35 mmolc m-2 a-1. The consequences for the nutritional status of the ecosystem, the hydrosphere, and forest management are discussed in the paper.  相似文献   

8.
Extremely high emissions of S and N compounds in Central Europe (both 280 mmol m-2 yr-1) declined by 70and 35%, respectively, during the last decade. Decreaseddeposition rates of SO4 -2, NO3 -, and NH4 + in the region paralleled emission declines. The reduction in atmospheric inputs of S and N to mountain ecosystemshas resulted in a pronounced reversal of acidification in the Tatra Mountains and Bohemian Forest lakes. Between the 1987–1990and 1997–1999 periods, concentrations of SO4 -2 and NO3 - decreased (average ± standard deviation) by 22±7 and 12±7 mol L-1, respectively, in theTatra Mountains, and by 19±7 and 15±10 mol L-1, respectively, in the Bohemian Forest. Their decrease was compensated in part (1) by a decrease in Ca2+ + Mg2+ (17±7 mol L-1) and H+ (4±6 mol L-1), and an increase in HCO3 -(10±10 mol L-1) in the Tatra Mountains lakes, and (2) by a decrease in Al (7±4 mol L-1), Ca2+ + Mg2+ (9±6 mol L-1), and H+ (6±5 mol L-1), in Bohemian Forest lakes. Despite the rapid decline in lake water concentrations of SO4 -2 and NO3 - in response to reduced S and N emissions, their present concentrations in some lakes are higher than predictionsbased on observed concentrations at comparable emission rates during development of acidification. This hysteresis in chemical reversal from acidification has delayed biological recovery of the lakes. The only unequivocal sign of biological recovery hasbeen observed in erné Lake (Bohemian Forest) where a cladoceran species Ceriodaphnia quadrangular has recentlyreached its pre-acidification abundance.  相似文献   

9.
Amounts of readily soluble nutrients on asphalt parking lot surfaceswere measured at four locations in metropolitan Phoenix, Arizona, U.S.A. Using a rainfall simulator, short intense rainfall events were generated to simulate `first flush' runoff. Samples were collected from 0.3 m2 sections of asphalt at 8 to 10 sites on each of four parkinglots, during the pre-monsoon season in June-July 1998 and analyzed for dissolved NO3 --N, NH4 +-N, soluble reactive phosphate (SRP), and dissolved organic carbon (DOC). Runoff concentrations varied considerably for NO3 --N and NH4 +-N (between 0.1 and 115.8 mg L-1) and DOC (26.1 to 295.7 mg L-1), but less so for SRP (0.1 to 1.0 mg L-1), representing average surface loadings of 191.3, 532.2, and 1.8 mg m-2 respectively. Compared with similar data collected from undeveloped desert soil surfaces outside the city, loadings of NO3 --N and NH4 +-N on asphalt surfaces were greater by factors of 91 and 13, respectively. In contrast, SRP loads showed little difference between asphalt and desert surfaces. Nutrient fluxes in runoff from a storm that occurred shortly after the experiments were used to estimate input-output budgets for 3 of the lots under study. Measured outputs of DOC and SRP were similar to those predicted using rainfall and experimentally determined surface loadings, but for NH4 +-N and particularly for NO3 --N, estimated rainfall inputs and surface runoff were significantly higher than exports in runoff. This suggests that parking lots may be important sites for nutrient accumulation and temporary storage in arid urban catchments.  相似文献   

10.
A solution containing 35SO4 2- and 3H2O was applied to four plots (5 × 5 m) in a boreal coniferous forest in the Laflamme Lake watershed, Québec, under two contrasting conditions: in summer (plots 1 and 2), and on the snowpack before snowmelt (plots 3 and 4). The transit of both these tracers in the soil solution was then followed through a network of soil lysimeters located at different depths. Four months after the summer application, 3H2O had infiltrated the whole soil profile at plot 1, while 35SO4 2- was only observed in the LFH and Bhf horizons. A 35SO4 2- budget calculated from mid-August to November indicated that 89 and 10.6% of the added 35SO4 2- was retained within the LFH and the Bhf layers, respectively. Fifteen months later, the added 35SO4 2- was distributed in the following proportions within the soil horizons: LFH (73.7%), Bhf (11.8%) and Bf (12.8%), for a total retention rate of 98.3%. The superficial penetration of 3H2O at plot 2 was indicative of a major lateral water movement that prevented the calculation of a 35SO4 2- budget. This situation also was observed at plot 4 during snowmelt. At plot 3, 3H2O moved freely through the soil profile and a significant fraction of the added 35SO4 2- reached the B horizons, where it was presumably adsorbed on aluminum (Al) and ferric (Fe) oxides. The 35SO4 2- budget for plot 3 from March to November indicated that 87% of the added 35SO4 2- was retained within the soil profile, with most being retained in the B horizons (LFH = 33.1%, Bhf = 33.1%, Bf = 20.8%). The contrasting retention patterns of 35SO4 2- within the soil profile following the summer addition and snowmelt likely was caused by the contrastingsoil temperatures and soil solution residence times within the differentsoil layers. The persistence of 35SO4 2- in the soil solution of the entire profile long after the initial tracer infiltration, and the relative temporal stability of specific activity of SO4 2-, point to the establishment of an isotopic equilibrium between the added 35SO4 and the active S-containing reservoirs within a given soil horizon. Overall, the results clearly illustrate the very strong potential for 35SO4 2- retention and recycling in forest soils.  相似文献   

11.
Concentrations and isotopic compositions of NO3 - from the Oldman River (OMR) and some of its tributaries (Alberta, Canada) have been determined on a monthly basis since December 2000 to assess temporal and spatial variations of riverine NO3 - sources within the OMR basin. For the OMR sites, NO3 --N concentrations reached up to 0.34 mg L-1, δ15N-NO3 - values varied between –0.3 and +13.8‰, and δ18O-NO3 - values ranged from –10.0 to +5.7‰. For the tributary sites, NO3 --N concentrations were as high as 8.81 mg L-1, δ15N-NO3 - values varied between –2.5 and +23.4‰, and δ18O-NO3 - values ranged from –15.2 to +3.4‰. Tributaries in the western, relatively pristine forested part of the watershed add predominantlyNO3 - to the OMR with δ15N-NO3 - values near +2‰ indicative of soil nitrification. In contrast, tributariesin the eastern agriculturally-urban-industrially-used part of the basin contribute NO3 - with δ15N-NO3 - valuesof about +16‰ indicative of manure and/or sewage derived NO3 -. This difference in δ15N-NO3 - values of tributaries was found to be independent of the season, but rather indicates a spatial change in the NO3 - source, which correlates with land use changes within the OMR basin. As a consequence of tributary influx, δ15N-NO3 - values in the Oldman River increased from <+3‰ to >+6‰ in the downstream direction (W to E), although [NO3 --N] increased only moderately (generally <0.5 mg L-1). This study demonstrates the usefulness of δ15N-NO3 - and δ18O-NO3 - values in identifying the addition of anthropogenic NO3 - to riverine systems.  相似文献   

12.
Since 1985, monitoring activities have been conducted in a networkof 43 lakes comprising the Québec portion of the Long-Range Transport of Airborne Pollutants (LRTAP) program. The results to date indicate that Québec lakes generally are responding positively to the generalized decline in precipitation sulfate (SO4 2-), with 40 of the 43 lakes now showing steep declines in SO4 2- concentrations. The drop in SO4 2- was associated with a significant decrease in Ca2+ concentrations in 77% of the lakes (67% for Mg2+ concentrations). Overall, the acid-neutralizing capacity was increasing in 19 lakes and decreasing only in three, while 21 lakes showed no temporal trends. Compared with previous trend studies of the LRTAP-Québec network for the period of 1985–1993, the longer period (1985–1999) shows a clear improvement, with the proportion of lakes that were acidifying changing from 24 to 7% and with the proportion of lakes that were recovering changing from 16 to 35%. These observations suggest that the recent drop in SO4 2- deposition in the northeastern U.S. and eastern Canada was significant enough to allow chemical recovery for a significant proportion of Québec lakes.  相似文献   

13.
Beier  C.  Rasmussen  L.  Pilegaard  K.  Ambus  P.  Mikkelsen  T.  Jensen  N. O.  Kjøller  A.  Priemé  A.  Ladekarl  U. L. 《Water, Air, & Soil Pollution: Focus》2001,1(1-2):187-195
The fluxes of the major nitrogen compounds havebeen investigated in many ecosystem studies over the world.However, only in few studies has attention been drawn to theimportance of the fluxes of minor gaseous nitrogen compoundsto complete the nitrogen cycle. In Denmark a detailed study onthe nitrogen cycle in an old beech forest has been implementedin 1997 at Gyrstinge near Sorø, Zealand. The study includesthe fluxes of the gases NO, N2O and water mediatedtransport of NO3 - and NH4 +. Measurementsof the fluxes of the gaseous compounds are performed withmicro-meteorological methods (eddy-correlation and gradient)and with chambers. Water mediated fluxes encompass rain,throughfall, stem-flow and leaching from the root zone. Thehydrological model is verified by TDR measurements. The findings show that the total water mediated N input tothe forest floor with throughfall and stemflow was 25.6 kg Nha-1 yr -1, and open field wet deposition withprecipitation was 19.0 kg N ha-1 yr -1. The internalcycling of N in the ecosystem measured as turnover oflitterfall and plant uptake was 100 kg N ha-1 yr -1and 14 kg N ha-1 yr -1, respectively. The fluxes ofthe gaseous N compounds NO and N2O were of minorimportance for the total N turnover in the forest, NOxemission being <1 kg N ha-1 yr -1 and N2Oemission from the soil being 0.5 kg N ha-1 yr -1 withno significant difference between wet and dry soils.Concentrations of NO3 - and NH4 + in thesoil solution beneath the rooting zone are very small andconsequently the N leaching is almost negligible. It isconcluded that the nitrogen mass balance of this old beechforest ecosystem mainly is controlled by the input by dry andwet deposition and a large internal N cycle with a fast litterturnover. The nitrogen input tothe forest ecosystem which currently exceeds the critical loadby 5 kg N ha-1 yr -1is mainly accumulated in the soil and no significant nitrateleaching is occurring.  相似文献   

14.
Experiments were conducted using a bubbling reactor to investigate nitrogen oxide absorption in the calcium sulfite slurry. The effects of CaSO3 concentration, NO2/NO mole ratio and O2 concentrations on NO2 and SO2 absorption efficiencies were investigated. Five types of additives, including MgSO4, Na2SO4, FeSO4, MgSO4/Na2SO4 and FeSO4/Na2SO4, had been evaluated for enhancing NO2 absorption in CaSO3 slurry. Results showed that CaSO3 concentration had significant impact on NO2 and SO2 absorption efficiencies, and the highest absorption efficiencies of SO2 and NO2 could reach about 99.5 and 75.0 %, respectively. Furthermore, the NO2 absorption was closely related to the NO2/NO mole ratio, and the existence of NO2 in flue gas may promote NO absorption. The presence of O2 in simulated flue gas was disadvantage for NO x removal because it can oxidize sulfite to sulfate. It was worth pointing out that FeSO4/Na2SO4 was the best additive among those investigated additives, as the NO2 removal efficiency was significantly increased from 74.8 to 95.0 %. IC and in situ FTIR results suggest that the main products were NO3 ? and NO2 ? in liquid phase and N2O, N2O5 and HNO3 in gas phase during the CaSO3 absorption process.  相似文献   

15.
Nitrate leaching was measured over seven years of nitrogen (N) addition in a paired-catchment experiment in Alptal, central Switzerland (altitude: 1200 m, bulk N deposition: 12 kg ha-1 a-1). Two forested catchments (1500 m2 each) dominated by Picea abies) were delimited by trenches in the Gleysols. NH4NO3 was added to one of the catchments using sprinklers. During the first year, the N addition was labelled with 15N. Additionally, soil N transformationswere studied in replicated plots. Pre-treatment NO3 --N leaching was 4 kg ha-1 a-1 from both catchments, and remained between 2.5 and 4.8 kg ha-1 a-1 in the control catchment. The first year of treatment induced an additional leaching of 3.1 kg ha-1, almost 90% of which was labelled with 15N, indicating that it did not cycle through the large N pools of the ecosystem (soil organic matter and plants). These losses partly correspond to NO3 - from precipitation bypassing the soil due to preferential flow. During rain or snowmelt events, NO3 - concentration peaks as the water table is rising, indicating flushing from the soil. Nitrification occurs temporarily along the water flow paths in the soil and can be the source of NO3 - flushing. Its isotopic signature however, shows that this release mainly affects recently applied N, stored only between runoff events or up to a few weeks. At first, the ecosystem retained 90% of the added N (2/3 in the soil), but NO3 - losses increased from 10 to 30% within 7 yr, indicating that the ecosystem became progressively N saturated.  相似文献   

16.
Airborne particulate matter (PM) concentrations were measured in Iksan, a suburban area in South Korea during April, 2003. PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) and PM10 (particles with an aerodynamic diameter less than 10 μm) samples were collected, and the chemical characteristics of particles were examined for diurnal patterns, yellow dust/rainfall influences, and scavenging effects. Average concentrations of PM2.5 and PM10 mass measured were 37.3 ± 16.2 μg m−3 and 60.8 ± 29.5 μg m−3, respectively. The sum of ionic chemical species concentrations for PM2.5 and PM10 was 16.9 ± 7.3 and 23.1 ± 10.1 μg/m3, respectively. A significant reduction in PM mass concentrations during rainfall days was observed for coarse mode (PM2.5 − 10) particles, but less reduction was found for fine (PM2.5) mass concentration. SO4 2−, NH4 +, and K+ predominated in fine particulate mode, NO3 and Cl predominated in fine particle mode and coarse particle mode, but Na+, Mg2+, and Ca2+ mostly existed in coarse mode. The high concentration of ammonium due to local emissions and long-range transport neutralized sulfate and nitrate to ammonium sulfate and ammonium nitrate, which were major forms of airborne PM in Iksan. Average mass concentrations of PM10 in daytime and at night were 57.6 and 70.0 μg m−3, and those of PM2.5 were 35.4 and 42.5 μg m−3, respectively. NO3 and Cl in both PM2.5 and PM10 were about double at night than in the daytime, while the rest of the chemical species were equal or a little higher at night than in the daytime. The results suggest the formation of ammonium nitrate and chloride when high ammonia concentration and low air temperature are allowed. Backward air trajectory analyses showed that air masses arriving at the site during yellow dust period were transported from arid Chinese regions, which resulted in high concentrations of airborne PM mass concentrations. In the meantime, air mass trajectories during a rainfall period were mostly from the Pacific Ocean or the East China Sea, along with a relatively low PM concentration.  相似文献   

17.
Ecosystem dynamics in high-elevation watersheds are extremely sensitive to changes in chemical, energy, and water fluxes. Here we report information on yields of dissolved organic C, N, and P for the 1999 snowmelt runoff season from three high-elevation catchments in the Colorado Front Range, U.S.A.: Green Lake 4 (GL4) and Albion townsite (ALB) on North Boulder Creek and the Saddle Stream (SS), a tributary catchment dominated by alpine tundra. Dissolved organic carbon (DOC) concentrations in stream waters ranged from <1 to 10 mg C L-1, with the highest values occurring at the SS site. Dissolved organic nitrogen (DON) concentrations ranged from below detection limits to 0.28 mg N L-1 and were again highest at the tundra-dominatedsite. Dissolved organic phosphorus (DOP) concentrations were at or near detection limits throughout the season in all three catchments indicating a strong terrestrial retention of P. OnlyDOC showed a significant relationship to discharge. Yields of DOC in the three catchments ranged from 10.6 to 11.8 kg C ha-1 while yields of DON and DOP ranged from 0.32 to 0.41 and 0.02 to 0.08 kg ha-1, respectively. The relatively highyield of organic N and P relative to C from the highest elevationsite (GL4) was somewhat surprising and points to either: (1) a source of dissolved organic material (DOM) in the upper reaches of the catchment that is enriched in these nutrients or (2) theselective uptake and processing of organic N and P downstream ofthe sampling site. Additionally, seasonal changes in the relativeimportance of DOM precursor materials appear to result in changesin the N content of DOM at both the GL4 and ALB sites.  相似文献   

18.
The process-based INCA model was applied to Dalelva Brook (3.2 km2) and the Bjerkreim River (685 km2) including several subcatchments, in order to test the model's ability to simulate streamwater nitrate (NO3 -) dynamics and output fluxes under highly contrasting climatic conditions and nitrogen (N) loading. The simulated runoff volumes and mean NO3 - concentrations at Dalelva and Bjerkreimwere within +2 to +10% of the measured average during 1993–1995 (–19 to +31% within individual years). INCA to a great extent also reproduced the observed streamwater flow dynamics at both study sites (coefficient of determination, r 2 > 0.70). Temporal variation of streamwater NO3 - during 1993–1995 was captured quite well by the model, especially at small catchments with a distinct seasonal NO3 - pattern (r 2 = 0.46–0.68). At the Bjerkreim River outlet, the relationship were somewhat weaker (r 2 = 0.26, p < 0.01). Despite a few situations where the model failed to capturethe streamwater NO3 - dynamics, INCA proved to be a quite robust tool for simulating NO3 - dynamics and output fluxes in the two study catchments.  相似文献   

19.
Weekly collections of samples of precipitation and hill cloudwater have been made at Holme Moss (530 m.a.s.l.) in the southernPennines covering a six-year period (1994–1999). In addition continuous meteorological measurements have been conducted at thesite for a five year period (1995–1999). The concentrations of major ions in the samples have been determined by ion chromatography. Analysis of ion concentrations as a function ofwind direction reveals that the ions with anthropogenic sources (SO4 , NO3 , NH4 +, H+) exhibit higher concentrations during easterly wind directions whilst the ions with predominantly marine origins (Na+, Cl, Ca++, Mg++, K+) have concentrations thatare not significantly dependant on wind direction. Precipitation and cloud deposition are strongly correlated to south-westerly wind directions with a secondary peak occurring for north-easterly directions. Fifty nine per cent of ion deposition by rain was found to occur during wind from the SSW to W sector.The average concentrations of ions in cloud water were found tobe much higher than those in rain (by factors of between 2.5 and4.2). It is thought that the high precipitation and annual deposition of ions by precipitation at Holme Moss is due in partto the enrichment of ion concentrations in precipitation by thescavenging of more concentrated cap cloud droplets (the `seeder-feeder effect'). Comparison with data from a nearby lower level site shows encouraging agreement with the scheme currently used in the U.K. deposition mapping procedure to incorporate the influence of orography on deposition by precipitation.  相似文献   

20.
In April 1998, two intense dust storms were generated in CentralAsia and transported eastward across East Asia (15 and 19 April). This article presents the chemical characterization ofHong Kong (HK) aerosols during the dust storms. During the 15 Aprildust storm, hourly respiratory suspended particles (RSP)(particle diameter smaller than 10 m) concentrationsmonitored at 7 sites in Hong Kong reached the peak valuessynchronously between 9 and 11 a.m. on 17 April, in which thehighest concentration was 267 g m-3. Analysis ofthe RSP samples showed that concentrations of crustalelements (Ba, Ca, Cd, Cr, Fe, Mg, K+) and anthropogenicspecies (As, Ni, Pb, Zn, NH4 +, NO3 -,SO4 2- and total carbon) were substantiallyenhanced. Enhancement of these species was more than afactor of 2 to 14 relative to the non dust period. The totalcarbon content was high, at 59 g m-3 (notincluding carbonate), and the enrichment factors of Asand Pb on 17 April were 122 and 117, respectively. Thisimplied that anthropogenic materials together with mineraldust were transported to HK from Mainland China. Based onmaterial balance calculations, mineral dust contributed41% to the observed RSP mass on 17 April, which was 2 times thatof the nondust sample (22%). From the 5-day backwardtrajectory analysis, this storm was transported directlyfrom Northwest China to HK. However, there was nocorresponding observation for the 19 April dust stormaerosol. Consequently, 15 April storm had stronger impact onHK's atmosphere than 19 April storm. Compared to the HK AirQuality Objective, 15 April dust storm did not cause seriousair pollution in HK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号