首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
In the present study, a 2-D finite-element method (FEM) thermal-fluid-stress model has been developed and validated for the twin roll casting (TRC) of AZ31 magnesium alloy. The model was then used to quantify how the thermo-mechanical history experienced by the strip during TRC would change as the equipment was scaled up from a laboratory size (roll diameter = 355 mm) to a pilot scale (roll diameter = 600 mm) and to an industrial scale (roll diameter = 1150 mm) machine. The model predictions showed that the thermal history and solidification cooling rate experienced by the strip are not affected significantly by caster scale-up. However, the mechanical history experienced by the strip did change remarkably depending on the roll diameters. Casting with bigger rolls led to the development of higher stress levels at the strip surface. The roll separating force/mm width of strip was also predicted to increase significantly when the TRC was scaled to larger sizes. Using the model predicted results, the effect of both casting speed and roll diameter was integrated into an empirical equation to predict the exit temperature and the roll separating force for AZ31. Using this approach, a TRC process map was generated for AZ31 which included roll diameter and casting speed.  相似文献   

2.
The objective of this research is to investigate the mechanical properties including bonding, tensile strength, and impact resistance of pure copper welded using friction stir welding (FSW) method and compare them with that of tungsten inert gas (TIG) welding. Micro-hardness tests are performed on pure copper, TIG welded copper and FSW welded copper to determine the effect of heat on the hardness of welded coppers. Tensile strength tests and notch tensile strength tests are performed to determine the mechanical properties of different weld process.In this experiment, it is found that the notch tensile strength and the notch strength ratio for FSW (212 MPa, 1.10) are significantly higher than those (190 MPa, 1.02) of TIG welding. For the impact tests, the weld zone and heat-affected zone energy absorption values for FSW (2.87 J, 2.25 J) are higher than those (1.32 J, 0 J) of TIG welding. XRD tests are performed to determine components of copper before and after welding process for TIG and FSW.  相似文献   

3.
The results of experiments on twin-roll casting of aluminum–steel clad strips are presented. For the first time this energy-saving production technology for a clad material of this metals combination was implemented. Besides the experimental equipment and processing details, the results of metallographic, electron microprobe and transmission electron microscopy analysis of the aluminum–steel interface are shown. The pack rolling and deep-drawing tests of the twin-roll cast clad strips were performed to check their applicability for a further processing using plastic deformation. In addition adhesive strength of the bond was tested. The performed analysis have shown the formation of a continuous, thin and uniform layer of intermetallic phases on the materials interface of approx. 3 μm thickness having an adhesive strength over 70 MPa.  相似文献   

4.
The surface characteristics of a machined product strongly influence its functional performance. During machining, the grain size of the surface is frequently modified, thus the properties of the machined surface are different to that of the original bulk material. These changes must be taken into account when modeling the surface integrity effects resulting from machining. In the present work, grain size changes induced during turning of AA7075-T651 (160 HV) alloy are modeled using the Finite Element (FE) method and a user subroutine is implemented in the FE code to describe the microstructural change and to simulate the dynamic recrystallization, with the consequent formation of new grains. In particular, a procedure utilizing the Zener–Hollomon and Hall–Petch equations is implemented in the user subroutine to predict the evolution of the material grain size and the surface hardness when varying the cutting speeds (180–720 m/min) and tool nose radii (0.4–1.2 mm). All simulations were performed for dry cutting conditions using uncoated carbide tools. The effectiveness of the proposed FE model was demonstrated through its capability to predict grain size evolution and hardness modification from the bulk material to machined surface. The model is validated by comparing the predicted results with those experimentally observed.  相似文献   

5.
A modified method of severe plastic deformation (SPD) entitled constrained groove pressing-cross route (CGP-CR) was introduced for imposing a high magnitude of equivalent strain of about 2.32 per pass on the sheet form samples. The major benefit of this improved route compared to previous common route was the more homogeneity of strain in the rolling (RD) and transverse (TD) directions of sheets. In this study, low carbon steel samples were used for examination of evolutions in microstructure and mechanical properties during SPD via CGP-CR process. Mechanical properties improvement were measured by tensile and macro hardness tests. The results indicate that CGP-CR process can effectively improve tensile strength; and also, yield stress and hardness of as-received low carbon steel samples were improved up to about 100% after two deformation passes. Also, high magnitude of inhomogeneity can be observed in hardness distribution through first pass of the process which diminishes in the subsequent passes. Microstructural evolutions during process were monitored by optical microscopy observations and X-ray diffraction analysis. The results demonstrate that initial ferritic microstructure with grain size of about 30 μm was refined to a 225 nm cell structure after two passes of CGP-CR process.  相似文献   

6.
This paper presents an economic evaluation of three typical recycling processes for the five main types of waste electronic home appliances (EHA) (TV set, refrigerator, washing machine, air conditioner and personal computer) in Beijing, the capital of China. The main purpose is to identify the formal management framework with economic feasibility for the waste EHA generated in large municipalities of China. It is found that the advanced technologies, which have mechanical processing units, should be introduced to recover more valuable materials from the waste appliances. Net revenues with a range of 90–240 RMB (Chinese currency unit, 1.0 USD  8.0 RMB) per unit, depend on the type of appliance, could be expected in case of using the most complicated procedures which can separate both metals and plastics from the shredded mixtures. However, the recycling of waste refrigerator and waste washing machine will, respectively, spend about 100 and 6 RMB per unit if solely by simple manual dismantling. Revenues from recycling of the other three types of appliances are positive but quite low in this case. Although positive revenues could be achieved from the isolated evaluation of recycling, the entire management system, which also covers the phases of collection and transportation, is economically infeasible if the waste appliances are bought from the households still at current prices. Based on a survey of the householder's attitude to the cost for waste EHA management, which was conducted earlier, the practical way to construct a formal management system for waste EHA in Beijing is to reduce the citizen's traditional expectation to the values of waste appliances and encourage their transfer to the formal collection system at lower prices.  相似文献   

7.
‘Formiguers’ are structures similar to charcoal-kilns that were used to burn piles of biomass with a soil cover in order to produce fertilizers for agricultural plots. Their use was widespread in Spain up to the 1960s and similar structures are still in use in India and Bhutan. Our objective was to study the effects of the ‘formiguer’ on its soil cover in terms of changes in nutrient availability. We built an experimental 0.5-m3 ‘formiguer’ with 68 kg of plant material with a 12% moisture content and 550 kg of soil with a 16% moisture content. The content of organic carbon and mineral nitrogen decreased in the soil cover as a result of burning. After aerobic incubation all samples had a similar content of mineral nitrogen. Exchangeable potassium and total and labile phosphorus increased after burning as a result of the soil cover mixing with the ashes of the biomass as the ‘formiguer’ collapsed during burning in the first two cases, while mineralization of organic compounds produced the increase in labile phosphorus. This input of nutrients for the agricultural plots occurs at a net loss of 0.4–2.5 Mg organic C ha?1. Very small amounts of charcoal were produced and this may be the reason for their low occurrence in soils today. Burning of ‘formiguers’ required the harvest of vegetation from a considerable forest area (10–25 ha per hectare of agricultural land) and represented a significant disturbance of these systems.  相似文献   

8.
In tropical mountainous regions of South East Asia, intensive cultivation of annual crops on steep slopes makes the area prone to erosion resulting in decreasing soil fertility. Sediment deposition in the valleys, however, can enhance soil fertility, depending on the quality of the sediments, and influence crop productivity. The aim of the study was to assess (i) the spatio-temporal variation in grain yield along two rice terrace cascades in the uplands of northern Viet Nam, (ii) possible linkage of sediment deposition with the observed variation in grain yield, and (iii) whether spatial variation in soil water or nitrogen availability influenced the obtained yields masking the effect of inherent soil fertility using carbon isotope (13C) discrimination and 15N natural abundance techniques. In order to evaluate the impact of seasonal conditions, fertilizer use and sediment quality on rice performance, 15N and 13C stable isotope compositions of rice leaves and grains taken after harvest were examined and combined with soil fertility information and rice performance using multivariate statistics. The observed grain yields for the non-fertilized fields, averaged over both cascades, accounted for 4.0 ± 1.4 Mg ha?1 and 6.6 ± 2.5 Mg ha?1 in the spring and summer crop, respectively, while for the fertilized fields, grain yields of 6.5 ± 2.1 Mg ha?1 and 6.9 ± 2.1 Mg ha?1 were obtained. In general, the spatial variation of rice grain yield was strongly and significantly linked to sediment induced soil fertility and textural changes, such as soil organic carbon (r 0.34/0.77 for Cascades 1 and 2, respectively) and sand fraction (r ?0.88/?0.34). However, the observed seasonal alteration in topsoil quality, due to sediment deposition over two cropping cycles, was not sufficient to fully account for spatial variability in rice productivity. Spatial variability in soil water availability, assessed through 13C discrimination, was mainly present in the spring crop and was linearly related to the distance from the irrigation channel, and overshadowed in Cascade 2 the expected yield trends based on sediment deposition. Although δ15N signatures in plants indicated sufficient N uptake, grain yields were not found to be always significantly influenced by fertilizer application. These results showed the importance of integrating sediment enrichment in paddy fields within soil fertility analysis. Furthermore, where the effect of inherent soil fertility on rice productivity is masked by soil water or nitrogen availability, the use of 13C and 15N stable isotopes and its integration with conventional techniques showed potential to enhance the understanding of the influence of erosion – sedimentation and nutrient fluxes on crop productivity, at toposequence level.  相似文献   

9.
Crop simulation models are frequently used to estimate the impact of climate change on crop production. However, few studies have evaluated the model performance in ways that most researchers practiced in climate impact studies. In this article, we examined the reliability of the EPIC model in simulating grain sorghum (Sorghum bicolor (L.) Moench) yields in the U.S. Great Plains under different climate scenarios, namely in years with normal or extreme temperature and precipitation. We also investigated model uncertainties introduced by input data that are not site-specific but commonly used or available for climate change studies. Historical field trial data of sorghum at the Mead Experimental Center, NE, were used for model evaluations. The results showed that overall model reliability was about 56%. The mean absolute relative error (absRE) was about 29%. The degree of accuracy and reliability varied with climate-classes and nitrogen (N)-treatments. The largest bias occurred in drought years (RE = ?25%) and the most unreliable results were found in N-0 treatment (reliability = 32%). There was more than 69% probability that input-data-induced uncertainties were limited to less than 20% of absRE. Our results support the application of the EPIC model to climate change impact studies in the U.S. Great Plains. However, efforts are needed to improve the accuracy in simulating crop responses to extreme water- and nitrogen-stressed conditions.  相似文献   

10.
Maintaining a reasonably low cutting tool wear when producing forming tools is a general challenge in the development of new forming tool materials. The tool life of a hot forming tool steel (H13) has been significantly improved by reducing its Si-content from 1.0 to 0.06 wt.%. However, this modified H13 (MH13) also displays a reduced cutting tool life due to higher cutting forces and a stronger tendency to form built up layers (BUE) on the cutting edge. This paper explains why.Gleeble tests of MH13 revealed a significantly higher flow stress in the 820–900 °C temperature interval in MH13 compared to H13. Thermo-Calc simulations showed that when reducing the Si-content from 1.0 to 0.06 wt.% the initial temperature for ferrite-to-austenite transformation (A1) was reduced from 900 °C to 820 °C. Knowing that austenite has totally different mechanical and thermal properties than ferrite, the difference in A1 between the two steels explains the higher cutting forces and higher tendency for BUE-formation. The conclusion is that the difference in machinability between H13 and MH13 is primarily related to their difference in A1.An attempt was also made to find a new tool material composition that can combine the wear resistance of MH13 and the good machinability of H13. Thermo-Calc simulations were performed with slightly modified alloying content without changing its properties as a good forming tool material, with the aim to increase A1. For instance, reducing the Mn content from 0.5 to 0.05 wt.% proved to increase A1 from 820 to 850 °C.  相似文献   

11.
Evaluation of adaptive management options is very crucial for successfully dealing with negative climate change impacts. Research objectives of this study were (1) to determine the proper N application rate for current practice, (2) to select a range of synthetic wheat (Triticum aestivum L.) cultivars to expand the existing wheat cultivar pool for adaptation purpose, (3) to quantify the potential impacts of climate change on wheat grain yield and (4) to evaluate the effectiveness of three common management options such as early sowing, changing N application rate and use of different wheat cultivars derived in (2) and given in the APSIM-Wheat model package in dealing with the projected negative impacts for Keith, South Australia. The APSIM-Wheat model was used to achieve these objectives. It was found that 75 kg ha?1 N application at sowing for current situation is appropriate for the study location. This provided a non-limiting N supply condition for climate change impact and adaptation evaluation. Negative impacts of climate change on wheat grain yield were projected under both high (?15%) and low (?10%) plant available water capacity conditions. Neither changes in N application level nor in wheat cultivar alone nor their synergistic effects could offset the negative climate change impact. It was found that early sowing is an effective adaptation strategy when initial soil water was reset at 25 mm at sowing but this may be hard to realise especially since a drier environment is projected.  相似文献   

12.
Dung heaps provide a large, spatial and temporal variable, source of the greenhouse gas N2O. In this paper emission rates measured by static and flow through chamber methods, which enclose only a small area of the heap, were compared with Gaussian plume and tracer ratio methods, which measure the emissions from the entire dung heap. The dung heap was a 300 m3 heap, composed of material from nearby cattle sheds. From the flow through and static chambers it was estimated that the dung heap emitted 315 and 51 g N2ON m−3 day−1, respectively. The spatial variability between the chambers and chamber methods was large. Standard deviations of the mean fluxes were >75% of the average flux. The smaller emissions were measured on the slopes of the heap and the larger emissions on the ridge. The plume of N2O was measured downwind of the dung heap by (1) tunable diode laser spectroscopy and calculation of the N2O source strength of the heap using Gaussian plume theory and (2) tracer ratio method releasing SF6 from the heap summit and capture in Tedlar bags downwind with subsequent analysis by gas chromatography. The Gaussian plume theory calculated an average N2O source strength of 5.3 g N2ON m−3 day−1 (1.4–6.7 g N2ON m−3 day−1). The tracer ratio method calculated a slightly larger average emission rate of 14.4 g N2ON m−3 day−1 (7.4–38.6 g N2ON m−3 day−1). Both methods were successfully validated by point release of SF6 and N2O, which suggests that the micrometeorological methods provided a good estimate of the source strength of the heap, whereas the few chamber measurements overestimated its source strength.  相似文献   

13.
《Journal of Cleaner Production》2007,15(13-14):1271-1286
The analysis of industrial energy usage indicates that low temperature processes (20  200 °C) are used in nearly all industrial sectors. In principle there is the potential to use solar thermal energy in these lower temperature processes thus, reducing the environmental impact of burning fossil fuels. Using the model of an Austrian dairy plant, this research investigated the potential for, and the economic viability of, using solar energy heat processes in industry.Some industrial sectors such as food, chemistry, plastic processing, textile industry, building materials industry and business establishments can be identified as potential sectors for the application of solar energy heat processes. When assessing the (economic) feasibility of solar thermal energy, the investigation of these industries’ energy systems has to focus on an integrated analysis of cooling and heating demands and to take into account competing technologies. Amongst these are heat integration, cogeneration, new technologies and heat pumps. Pinch analysis was used to investigate industrial energy systems and heat integration possibilities and proved to be a viable tool. Working from the basis of energy balances, Sankey diagrams, pinch analysis and environmental cost accounting, a newly developed investigation tool was applied in the case study of an Austrian dairy plant. This enabled a fast optimization of the system. Two different options for the integration of solar thermal energy into the production line were calculated, option 1 with a solar field of 1000 m2 and option 2 with a solar field of 1500 m2. Natural gas savings of 85,000 for option 1 and 109,000 m3/a for option 2 can be achieved, resulting in a reduction of 170 tons of CO2 per year, or 218 tons for options 1 and 2 respectively. Based upon option 1, return on investment is realised after less than three years of implementation. This research thus, indicates promising technical and economical feasibility of using solar thermal energy for industrial processes and provides an important step towards sustainable zero emission production in industry.  相似文献   

14.
This paper reports an investigation into the effects of nanosecond laser processing parameters on the geometry of microchannels fabricated from polymethylmethacrylate (PMMA). The Nd:YAG solid-state pulsed laser has a wavelength of 1064 nm and a measured maximum power of 4.15 W. The laser processing parameters are varied in a scanning speed range of 400–800 pulses/mm, a pulse frequency range of 5–11 Hz, a Q-switch delay time range of 170–180 μs. Main effects plots and microchannel images are utilized to identify the effects of the process parameters for improving material removal rate and surface quality simultaneously for laser micromachining of microchannels in PMMA polymer. It is observed that channel width and depth decreased linearly with increasing Q-switch delay time (hence average power) and increased non-linearly with higher scanning rates and not much affected by the increase in pulse frequency.  相似文献   

15.
The evolution of mechanical components into smaller size generating a need for microwelding of these components using laser which offers better control as compared to arc and plasma processing. The present article describes the numerical simulation of laser micro-spot welding using finite element method. A two dimensional Gaussian distributed surface heat flux as a function of time is used to perform a sequentially coupled thermal and mechanical analysis. The model is used for simulating laser micro-spot welding of stainless steel sheet under different power conditions and configurations of mechanical constraints. The temperature dependent physical properties of SS304 have been considered for the simulation and an isotropic strain hardening model has been used. The simulated weld bead dimensions have been compared with experimental results and temperature profiles have been calculated. The maximum deformation of 0.02 mm is obtained with maximum laser power of 75 W. The thermal stress is more inducing factor to temperature induced residual stresses and plastic strain as compared to mechanical constraints. The plastic strain changes significantly by displacement constraints as compared to residual stress.  相似文献   

16.
Continuous land application of biosolids in a beneficial-use program changes trace-element availability to plants over time. Consequently, what regression model, if any, could best predict wheat (Triticum aestivum L.) grain concentrations in a biosolids-amended dryland agroecosystem? We calculated paraboloid, linear, quadratic, and exponential-rise-to-a maximum equations for grain Ba, Cd, Cu, Mn, Mo, Ni, P, and Zn concentration versus number of biosolids applications and/or soil NH4HCO3-dithethylenetriaminepentaacetic acid (AB-DTPA) extract concentrations for two sites that had each received six applications of Littleton/Englewood, CO, USA Wastewater Treatment Facility biosolids. The paraboloid-regression models were superior (higher R2 values, lower S.E. of the estimate) to other models. Soils classified the same as the Weld soil (used in this study) at the family level (fine, smectitic, mesic Aridic Argiustolls) encompass 25 soil series in 10 US states with an aerial extent of 2.3 × 106 ha. The paraboloid-regression model approach probably would be applicable to these similarly classified soils.  相似文献   

17.
One-year winter wheat–summer maize rotation is the most popular double cropping system in north-central China, and this highly productive system is an important source of nitrous oxide (N2O) and nitric oxide (NO) emissions due to the high fertilizer N and irrigation water inputs. To sustain the high crop production and mitigate the detrimental impacts of N2O and NO emissions, improved management practices are extensively applied. The aim of this study is therefore to evaluate the effects of an improved management practice of irrigation, fertilization and crop straw on grain yield and N2O and NO emissions for a wheat–maize rotation field in northern China. Using automated and manual chamber measuring systems, we monitored N2O and NO fluxes for the conventional (CT, 2007–2008), improved (IT, 2007–2008), straw-amended (WS, 2008–2009), straw-not-amended (NS, 2008–2009), and no N-fertilizer treatments (WS–NN, 2008–2009), respectively, for one rotation-year. The grain yields were determined for CT and IT for three rotation-years (2005–2008) and for WS, NS and WS–NN for one rotation-year (2008–2009). The improved management of irrigation and fertilization reduced the annual N fertilization rate and irrigation amount by 17% and 30%, respectively; increased the maize yield by 7–14%; and significantly decreased the N2O and NO emissions by 7% (p < 0.05) and 29% (p < 0.01), respectively. The incorporation of wheat straw increased the cumulative N2O and NO emissions in the following maize season by 58% (p < 0.01) and 13%, respectively, whereas the effects of maize straw application were not remarkable. The N2O and NO emission factors of applied N were 2.32 ± 2.32% and 0.42 ± 1.69% for wheat straw and 0.67 ± 0.23% and 0.54 ± 0.15% for chemical N-fertilizers, respectively. Compared to conventional management practices using high application rates of irrigation water and chemical N-fertilizer as well as the field burning of crop straw, the improved management strategy presented here has obvious environmentally positive effects on grain yield and mitigation of N2O and NO emissions.  相似文献   

18.
There is an increasing world wide demand for energy crops and animal manures for biogas production. To meet these demands, this research project aimed at optimising anaerobic digestion of maize and dairy cattle manures. Methane production was measured for 60 days in 1 l eudiometer batch digesters at 38 °C. Manure received from dairy cows with medium milk yield that were fed a well balanced diet produced the highest specific methane yield of 166.3 Nl CH4 kg VS−1. Thirteen early to late ripening maize varieties were grown on several locations in Austria. Late ripening varieties produced more biomass than medium or early ripening varieties. On fertile locations in Austria more than 30 Mg VS ha−1 can be produced. The methane yield declined as the crop approaches full ripeness. With late ripening maize varieties, yields ranged between 312 and 365 Nl CH4 kg VS−1 (milk ripeness) and 268–286 Nl CH4 kg VS−1 (full ripeness). Silaging increased the methane yield by about 25% compared to green, non-conserved maize. Maize (Zea mays L.) is optimally harvested, when the product from specific methane yield and VS yield per hectare reaches a maximum. With early to medium ripening varieties (FAO 240–390), the optimum harvesting time is at the “end of wax ripeness”. Late ripening varieties (FAO ca. 600) may be harvested later, towards “full ripeness”. Maximum methane yield per hectare from late ripening maize varieties ranged between 7100 and 9000 Nm3 CH4 ha−1. Early and medium ripening varieties yielded 5300–8500 Nm3 CH4 ha−1 when grown in favourable regions. The highest methane yield per hectare was achieved from digestion of whole maize crops. Digestion of corns only or of corn cob mix resulted in a reduction in methane yield per hectare of 70 and 43%, respectively. From the digestion experiments a multiple linear regression equation, the Methane Energy Value Model, was derived that estimates methane production from the composition of maize. It is a helpful tool to optimise biogas production from energy crops. The Methane Energy Value Model requires further validation and refinement.  相似文献   

19.
At present glass fibre reinforced plastic (GRP) waste recycling worldwide is very limited due to its intrinsic thermoset properties, lack of characterisation data and non availability of viable recycling and recovery routes. In the present study, efforts were made to recycle GRP waste powder and fibre in concrete and cement composites and assess its quality to comply with the British standards for use in construction applications. Results revealed that the mean compressive strength of concrete composites using 5%–50% GRP waste powder under water curing varied from 37 N/mm2 to 19 N/mm2. Increase in the concentration of GRP waste decreased the compressive strength. However, increase in curing duration (14–180 days) resulted in improving the compressive strength of concrete with 5% GRP application to 45.75 N/mm2. Moreover, the density of concrete with 50% GRP waste was reduced by about 12% as compared to the control sample. The bending strength in terms of modules of rupture (MOR) of 12 mm thickness cement composites developed using 5% GRP waste fibre attained 16.5 N/mm2. The findings of this work pave the way for further GRP waste recycling in precast construction products for use in various applications.  相似文献   

20.
The development of cladding through microwave radiation is recently explored and very few, initial studies were reported elsewhere. In order to explore more viability of process, (EWAC (Ni based) + 20% Cr23C6 powder) composite cladding has been developed on substrate austenitic stainless steel (SS-316). The experiments were conducted in domestic microwave oven and the clad of thickness, approximate 500 m has been developed by the exposure of microwave radiation at frequency 2.45 GHz for duration of 360 s. Typical clads cross sections of composite clads showed good metallurgical bonding with the substrate by partial dilution. The back scattered electron image of clad cross section showed the reinforced chromium carbide (Cr23C6) particles are uniformly distributed and well embedded in the Ni based matrix. The developed clad is free from visible solidification cracking and has significantly less porosity which is of the order of 0.90%. The XRD pattern of the developed clad showed the presence of FeNi3, NiSi and Cr23C6 phases. The average Vicker's microhardness of developed clad was observed as 425 ± 140 Hv.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号