首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The ability of Section 404 of the Clean Water Act to act as an effective, efficient, and equitable land-use planning tool was assessed through a survey of Section 404 permits in Wisconsin. In a six-month period of permitting, the 404 program reduced wetland losses in the state by 15%. Several factors were examined that may affect permit decisions; these factors are water dependency, alternatives, project type, wetland type, and public or agency comments. Only the water dependency of the project had a statistically significant effect on permit decisions, although development projects that were perceived to provide public good were more likely to be permitted. Environmental impacts of a proposed fill project were not adequately assessed in any of the permit decisions. Because of the way Section 404 is interpreted and administered by the US Army Corps of Engineers, increasing net benefits and achieving an equitable distribution of those benefits is difficult. The corps does not perform any functional evaluations of wetlands nor do they attempt to measure economic value and environmental impacts. In addition, the 404 review process is, in effect, inaccessible to the public. The de facto interpretations of the Section 404 regulations and a lack of program funding and trained personnel all contribute to the program's ineffectiveness.  相似文献   

2.
Both permit requirements and ecological assessments have been used to evaluate mitigation success. This analysis combines these two approaches to evaluate mitigation required under Section 404 of the United States Clean Water Act (CWA) and Section 10 of the Rivers and Harbors Act, which allow developers to provide compensatory mitigation for unavoidable impacts to wetlands. This study reviewed permit files and conducted field assessments of mitigation sites to evaluate the effectiveness of mitigation required by the US Army Corps of Engineers for all permits issued in Orange County, California from 1979 through 1993. The 535 permit actions approved during this period allowed 157 ha of impacts. Mitigation was required on 70 of these actions, with 152 ha of enhanced, restored, and created habitat required for 136 ha of impacts. In 15 permit actions, no mitigation project was constructed, but in only two cases was the originally permitted project built; the two cases resulted in an unmitigated loss of 1.6 ha. Of the remaining 55 sites, 55% were successful at meeting the permit conditions while 11% failed to do so. Based on a qualitative assessment of habitat quality, only 16% of the sites could be considered successful and 26% were considered failures. Thus, of the 126 ha of habitat lost due to the 55 projects, only 26 ha of mitigation was considered successful. The low success rate was not due to poor enforcement, although nearly half of the projects did not comply with all permit conditions. Mitigation success could best be improved by requiring mitigation plans to have performance standards based on habitat functions.  相似文献   

3.
The effects of permitting decisions made under Section 404 of the Clean Water Act for which compensatory mitigation was required were examined. Information was compiled on permits issued in Oregon (January 1977–January 1987) and Washington (1980–1986). Data on the type of project permitted, wetland impacted, and mitigation project were collected and analyzed. The records of the Portland and Seattle District Offices of the US Army Corps of Engineers and of Environmental Protection Agency Region X were the primary sources of information. The 58 permits issued during the years of concern in Oregon document impacts to 82 wetlands and the creation of 80. The total area of wetland impacted was 74 ha while 42 ha were created, resulting in a net loss of 32 ha or 43%. The 35 permits issued in Washington document impacts to 72 wetlands and the creation of 52. The total area of wetland impacted was 61 ha while 45 ha were created, resulting in a net loss of 16 ha or 26%. In both states, the number of permits requiring compensation increased with time. The area of the impacted and created wetlands tended to be ≤0.40 ha. Permitted activity occurred primarily west of the Cascade Mountains and in the vicinity of urban centers. Estuarine and palustrine wetlands were impacted and created most frequently. The wetland types created most often were not always the same as those impacted; therefore, local gains and losses of certain types occurred. In both states the greatest net loss in area was in freshwater marshes. This study illustrates how Section 404 permit data might be used in managing a regional wetland resource. However, because the data readily available were either incomplete or of poor quality, the process of gathering information was very labor intensive. Since similar analyses would be useful to resource managers and scientists from other areas, development of an up-to-date standardized data base is recommended.  相似文献   

4.
ABSTRACT: The role of environmental mitigation in permitting decisions under Section 404 of the Clean Water Act and the National Environmental Policy Act is examined, addressing the extent to which compensatory mitigation is acceptable. The role of mitigation is examined both generically and specifically: first in the requirements of the Clean Water Act and NEPA, and then in the case study of the proposed Two Forks Dam. In both cases, the paper describes dual purposes of environmental protection legislation and mitigation: to protect the biophysical environment and maintain associated human values. Mitigation is found to be sometimes necessary and acceptable as compensation for unavoidable impacts of project development. However, the Two Forks case exemplifies that compensatory mitigation has also been employed as a mechanism to facilitate project development when practicable alternatives entailing less environmental impact are available. Acceptance of compensatory mitigation in such cases violates both the Guidelines of the Clean Water Act and the intent of that Act and NEPA to protect the biophysical environment and human welfare. A recent memorandum of agreement between the Corps and the EPA clarifies this policy, and suggests that permit applications which rely on compensatory mitigation when impacts are available may be denied.  相似文献   

5.
As early as the passage of the 1972 Federal Water Pollution Control Act the U.S. government has sought to protect the nation’s water resources through regulatory tools. While there has been a large amount of research on wetlands and wetland mitigation, very little is known about the impact of Section 404 permitting on water quantity. This research examines the impact of Section 404 permit types on peak annual streamflow in Coastal Texas from 1996 to 2003. Results of cross-sectional time-series regression analyses indicate that all four permit types have positive and significant effects on peak streamflow. These effects also vary by permit type, with Individual permits having the highest per-permit impact on peak annual flow.  相似文献   

6.
Caruso, Brian S. and Joshua Haynes, 2011. Biophysical‐Regulatory Classification and Profiling of Streams Across Management Units and Ecoregions. Journal of the American Water Resources Association (JAWRA) 00(0):1‐22. DOI: 10.1111/j.1752‐1688.2010.00522.x Abstract: Aquatic resources management in the United States (U.S.) under Clean Water Act Section 404 has become more complex after recent Supreme Court decisions and U.S. Army Corps of Engineers and Environmental Protection Agency (USEPA) guidance. Many intermittent/ephemeral and headwater streams may not be jurisdictional if they lack a significant nexus with navigable waters. Streams in semiarid USEPA Region 8 were classified based on hydrologic permanence and stream order using National Hydrography Dataset (NHD) Plus and GIS to provide information across broad spatial scales to aid with jurisdictional determinations (JDs). Four classes were developed for profiling across management units and ecoregions. Based on medium‐resolution NHDPlus data, intermittent streams comprise >¾, and first order streams constitute >½ of the total stream length in Region 8. Mountain states and ecoregions have the largest percentage of perennial first order streams, whereas the Dakotas, plains, and desert ecoregions have the greatest percentages of intermittent first order and intermittent higher order streams. In the Upper Colorado River Basin, >50% of reaches are intermittent first order, and 9% are perennial first order. NHDPlus data can significantly underestimate the length of headwater and intermittent streams, but can still be a valuable tool to help develop stream classes and for regional JD planning and analysis. Refinement of the stream classes using high resolution NHD data and other key catchment parameters can improve their utility for JDs.  相似文献   

7.
To test the effectiveness of the 404 permit program in preventing a net loss of wetland resources, 75 Section 404 projects permitted in the years 1987–1989 and located in a portion of southern California were evaluated. From this group of projects, 80.47 ha of wetlands were affected by Section 404 permits and the Army Corps of Engineers required 111.62 ha of wetland mitigation. To verify the successful completion of each mitigation project, all 75 project sites were visited and evaluated based on the amount of dead vegetation, growth and coverage, and the number of invasive species. Based on the field verification results, the actual amount of completed mitigation area was 77.33 ha, resulting in a net loss of 3.14 ha of wetland resources in the years 1987–1989. By comparing the types of wetlands lost to the types of wetlands mitigated, it is apparent that, in particular, freshwater wetlands are experiencing a disproportionately greater loss of area and that riparian woodland wetlands are most often used in mitigation efforts. The net result of these accumulated actions is an overall substitution of wetland types throughout the region. Results also indicate that, typically, large-scale mitigation projects are more successful compared to smaller projects and that successful compliance efforts are not evenly distributed throughout the region. We recommend that better monitoring, mitigation in-kind, mitigation banking, and planning on a regional or watershed scale could greatly improve the effectiveness of the Section 404 permitting program.  相似文献   

8.
ABSTRACT: This paper describes how a hydrologic model proved to be a valuable tool to help interested parties understand impacts to four threatened and endangered fish species in the Upper Colorado River. In 1994, the Ute Water Conservancy District initiated permitting and design of the Plateau Creek pipeline replacement. The project was considered a major Federal action and therefore subject to the National Environmental Policy Act. Under Section 7 of the Endangered Species Act, the U.S. Fish and Wildlife Service (USFWS) entered the process to develop a Biological Opinion (BO) and determined that the project could potentially impact the endangered fish in the 15‐mile reach of the Colorado River. The Section 7 consultation was directed by a Core Committee comprised of stakeholders in the Upper Colorado River watershed. Hydrologic modeling became the evaluation tool for comparing flow reductions to USFWS target recovery flows and defining make‐up flow requirements to meet those targets. The Colorado River Recovery Implementation Program was designated to provide the make‐up flows. The USFWS released a final BO in December 1997, approving diversions through 2015. An Environmental Impact Statement for the project was completed and the Record of Decision was issued by the Bureau of Land Management in early 1998.  相似文献   

9.
Toxic blooms of golden alga (Prymnesium parvum) have caused substantial ecological and economic harm in freshwater and marine systems throughout the world. In North America, toxic blooms have impacted freshwater systems including large reservoirs. Management of water chemistry is one proposed option for golden alga control in these systems. The main objective of this study was to assess physicochemical characteristics of water that influence golden alga presence, abundance, and toxicity in the Upper Colorado River basin (UCR) in Texas. The UCR contains reservoirs that have experienced repeated blooms and other reservoirs where golden alga is present but has not been toxic. We quantified golden alga abundance (hemocytometer counts), ichthyotoxicity (bioassay), and water chemistry (surface grab samples) at three impacted reservoirs on the Colorado River; two reference reservoirs on the Concho River; and three sites at the confluence of these rivers. Sampling occurred monthly from January 2010 to July 2011. Impacted sites were characterized by higher specific conductance, calcium and magnesium hardness, and fluoride than reference and confluence sites. At impacted sites, golden alga abundance and toxicity were positively associated with salinity‐related variables and blooms peaked at ~10°C and generally did not occur above 20°C. Overall, these findings suggest management of land and water use to reduce hardness or salinity could produce unfavorable conditions for golden alga.  相似文献   

10.
ABSTRACT: Analyses of cumulative impacts to riparian systems is an important yet elusive goal. Previous analyses have focused on comparing the number of hectares impacted to the number of hectares restored, without addressing the loss of riparian function or the effect of the spatial distribution of impacts. This paper presents an analysis of the spatial distribution of development‐related impacts to riparian ecosystems, that were authorized under Section 404 of the Clean Water Act. Impacts on habitat structure, contiguity, and landscape context were evaluated using functional indices scaled to regional reference sites. Impact sites were mapped using GIS and analyzed for spatial associations. Positive spatial autocorrelation (i.e. clustering of impact sites) resulted from the piecemeal approach to impact assessment, which failed to prevent cumulative impacts. Numerous small projects in close proximity have resulted in adverse impacts to entire stream reaches or have fragmented the aquatic resources to a point where overall functional capacity is impaired. Additionally, the ecological functions of unaffected areas have been diminished due to their proximity to degraded areas. A proactive approach to managing cumulative impacts is currently being used in Orange County, California as part of a Corps of Engineers sponsored Special Area Management Plan (SAMP). The SAMP process is evaluating the ecological conditions and physical processes of the study watersheds and attempting to plan future development in a manner that will guard against cumulative impacts.  相似文献   

11.
Current political conditions, primarily budgetary uncertainty, and the related reluctance to make funding commitments for future generations, have raised questions about the costs of conservation and environmental protection that have not previously been asked. As Federal investments are scrutinized and budgets become ever more constrained, the costs associated with environmental requirements could begin to be of greater importance and to influence decisions on Federal projects. In response to concerns about the U.S. Army Corps of Engineers (Corps) spending under the Endangered Species Act (P.L. 93-205) (ESA), a limited investigation was performed to determine the accuracy of reported Corps expenditures. The investigation showed that, for particular groups of species, actual conservation costs for threatened and endangered species may be twice the amounts previously reported in the annual ESA expenditure reporting to the U.S. Fish and Wildlife Service. In light of this finding, the Corps has sought a means to provide more accurate and consistent reporting of expenditures for addressing threatened and endangered species. A Species Costs Template (template) has been developed to identify the types and magnitude of costs related to the ESA and to counteract the impediments (legal, institutional, and practical) to underreporting costs. The template will be used by the Corps for reporting ESA costs beginning with Fiscal Year 2005 (FY05) (reported in January 2006). Five broad categories of expenditures (effects determination costs, ESA protection and conservation costs, equipment costs, opportunity costs, and other species costs) are identified by the template.  相似文献   

12.
ABSTRACT: The U.S. Endangered Species Act (ESA) restricts federal agencies from carrying out actions that jeopardize the continued existence of any endangered species. The U.S. Supreme Court has emphasized that the language of the ESA and its amendments permits few exceptions to the requirement to give endangered species the highest priority. This paper estimates economic costs associated with one measure for increasing instream flows to meet critical habitat requirements of the endangered Rio Grande silvery minnow. Impacts are derived from an integrated regional model of the hydrology, economics, and institutions of the upper Rio Grande Basin in Colorado, New Mexico, Texas, and Mexico. One proposal for providing minimum streamflows to protect the silvery minnow from extinction would provide guaranteed year round streamflows of at least 50 cubic feet per second in the San Acacia reach of the upper Rio Grande. These added flows can be accomplished through reduced surface diversions by New Mexico water users in dry years when flows would otherwise be reduced below the critical level required by the minnow. Based on a 44‐year simulation of future inflows to the basin, we find that some agricultural users suffer damages, but New Mexico water users as a whole do not incur damages from a policy that reduces stream depletions sufficiently to provide habitat for the minnow. The same policy actually benefits downstream users, producing average annual benefits of over $200,000 per year for west Texas agriculture, and over $1 million for El Paso municipal and industrial water users, respectively. Economic impacts of instream flow deliveries for the minnow are highest in drought years.  相似文献   

13.
Cumulative impact analysis is examined from a conceptual decision-making perspective, focusing on its implicit and explicit purposes as suggested within the policy and procedures for environmental impact analysis of the National Environmental Policy Act of 1969 (NEPA) and its implementing regulations. In this article it is also linked to different evaluation and decision-making conventions, contrasting a regulatory context with a comprehensive planning framework. The specific problems that make the application of cumulative impact analysis a virtually intractable evaluation requirement are discussed in connection with the federal regulation of wetlands uses. The relatively familiar US Army Corps of Engineers' (the Corps) permit program, in conjunction with the Environmental Protection Agency's (EPA) responsibilities in managing its share of the Section 404 regulatory program requirements, is used throughout as the realistic context for highlighting certain pragmatic evaluation aspects of cumulative impact assessment.To understand the purposes of cumulative impact analysis (CIA), a key distinction must be made between the implied comprehensive and multiobjective evaluation purposes of CIA, promoted through the principles and policies contained in NEPA, and the more commonly conducted and limited assessment of cumulative effects (ACE), which focuses largely on the ecological effects of human actions. Based on current evaluation practices within the Corps' and EPA's permit programs, it is shown that the commonly used screening approach to regulating wetlands uses is not compatible with the purposes of CIA, nor is the environmental impact statement (EIS) an appropriate vehicle for evaluating the variety of objectives and trade-offs needed as part of CIA. A heuristic model that incorporates the basic elements of CIA is developed, including the idea of trade-offs among social, economic, and environmental protection goals carried out within the context of environmental carrying capacity.  相似文献   

14.
Regulatory context for cumulative impact research   总被引:5,自引:0,他引:5  
Wetlands protection has become a topic of increased public attention and support, and regulation of wetlands loss under Section 404 of the Clean Water Act has received high priority within the US Environmental Protection Agency (EPA). Despite this, the nation is continuing to experience serious wetlands losses. This situation reflects the contentious nature of wetlands protection; it involves fundamental conflicts between environmental and development interests. Better information is needed to support regulatory decision making, including information on cumulative impacts. Currently, consideration of cumulative impacts, although required by various federal regulations, is limited. One reason is that most regulatory decisions are made on a permit-specific, site-specific basis, whereas cumulative impacts must be assessed on a broader, regional scale. In addition, scientific information and methods necessary to support cumulative impact assessment have been lacking. An anticipatory, planning-oriented framework to complement the existing site-specific permit review program is needed to support more effective consideration of cumulative impacts; such an effort is beginning to emerge. In addition, EPA is supporting research to provide better information on cumulative effects. It is recommended that the EPA program place initial emphasis on synthesis and analysis of existing information, on maximizing its use in decision making, and on information transfer. Recommended approaches include correlation of historic wetlands losses with loss of wetlands function and values, regional case studies, and development of indices of cumulative impact for use in permit review.Formerly Director, Office of Federal Activities, US Environmental Protection Agency  相似文献   

15.
Section 7(a)(2) of the Endangered Species Act directs federal agencies to ensure that their actions do not jeopardize the continued existence of endangered and threatened species. The US Fish and Wildlife Service (USFWS) issues jeopardy or nonjeopardy biological opinions on proposed federal actions that affect endangered and threatened species. We summarize several biological opinions issued by the USFWS to protect the threatened piping plover (Charadrius melodus). These opinions address federal actions involving hundreds of piping plovers on the Missouri River system and a few piping plover pairs on short stretches of Atlantic coast beach. Some of these opinions are decisive, but most allow the proposed action to proceed conditional upon a lengthy set of reasonable and prudent alternatives to protect the piping plover. These conditions may prove difficult to track and will add to the workload of the USFWS.  相似文献   

16.
Water development in the Green River Basin of Wyoming is projected to increase salinity downstream in the Green River and Colorado River, and thereby increase salinity costs to users of water from these two rivers. Despite these water quality and economic impacts to downstream water users, Wyoming will probably be able to develop its currently unused but allocated water supplies of the Green River Basin. The Colorado River Compact and Upper Colorado River Basin Compact are binding, and protect Wyoming's share of the Colorado River System waters for future use. The argument that water may be used to greater profit downstream is not sufficient to reduce Wyoming's allocation. In addition, the no-injury rule under the appropriation doctrine of law does not appear to protect prior downstream appropriations from increasing salinity in this case.  相似文献   

17.
The protection of wetlands and riparian areas has emerged as an important environmental planning issue. In the United States, several federal and state laws have been enacted to protect wetlands and riparian areas. Specifically, the federal Clean Water Act includes protection requirements in Sections 301 and 303 for state water quality standards, Section 401 for state certification of federal actions (projects, permits, and licenses), and Section 404 for dredge and fill permits. The Section 401 water quality state certification element has been called the “sleeping giant” of wetlands protection because it empowers state officials to veto or condition federally permitted or licensed activities that do not comply with state water quality standards. State officials have used this power infrequently. The purpose of this research was to analyze the effectiveness of state wetland and riparian programs. Contacts were established with officials in each state and in the national and regional offices of key federal agencies. Based on interviews and on a review of federal and state laws, state program effectiveness was analyzed. From this analysis, several problems and opportunities facing state wetland protection efforts are presented.  相似文献   

18.
Wildman, Richard A., Jr. and Noelani A. Forde, 2012. Management of Water Shortage in the Colorado River Basin: Evaluating Current Policy and the Viability of Interstate Water Trading. Journal of the American Water Resources Association (JAWRA) 48(3): 411-422. DOI: 10.1111/j.1752-1688.2012.00665.x Abstract: The water of the Colorado River of the southwestern United States (U.S.) is presently used beyond its reliable supply, and the flow of this river is forecast to decrease significantly due to climate change. A recent interim report of the Colorado River Basin Water Supply and Demand Study is the first acknowledgment of these facts by U.S. federal water managers. In light of this new stance, we evaluate the current policy of adaptation to water shortages in the Colorado River Basin. We find that initial shortages will be borne only by the cities of Arizona and Nevada and farms in Arizona whereas the other Basin states have no incentive to reduce consumptive use. Furthermore, the development of a long-term plan is deferred until greater water scarcity exists. As a potential response to long-term water scarcity, we evaluate the viability of an interstate water market in the Colorado River Basin. We inform our analysis with newly available data from the Murray-Darling Basin of Australia, which has used interstate water trading to create vital flexibility during extreme aridity during recent years. We find that, despite substantial obstacles, an interstate water market is a compelling reform that could be used not only to adapt to increased water scarcity but also to preserve core elements of Colorado River Basin law.  相似文献   

19.
ABSTRACT: Arizona's water pollution control program is based on authorties of Arizona Revised Statutes and Public Law 92–500, the Federal Water Pollution Control Act Amendments of 1972. The primary areas of this program are monitoring, facility inspections, plan review, planning, discharge permits and grants for the construction of publicly-owned waste water treatment facilities. The discharge permit program deals with control of point-source discharges and is administered by the United States Environmental Protection Agency. The planning and construction grants programs are administered by the State Water Quality Control Council and are implemented by the Bureau of Water Quality Control, which serves as staff to the Council. There are several challenges that face the State in this program. First is the adaptation of the “eastern law” to deal with Arizona's water quality problems. Second is to address problems caused by a long history of “laissez-faire” environmental quality management. Third is a mutual cooperation and coordination among the many entities involved in water resources management. Areas of particular interest in the State's program is the process setting water quality standards and the involvement of people of diversified backgrounds in the field of areawide planning under Section 208 of the Federal Water Pollution Control Act, which is primarily concerned with non-point sources of water pollution.  相似文献   

20.
The San Francisco Bay Region of the California Regional Water Quality Control Board (SFB CRWQCB) and the San Francisco District of the US Army Corps of Engineers (US ACOE) are looking for an expeditious means to determine whether regulated wetland projects produce ecologically valuable systems and remain in compliance with their permits (i.e. fulfill their legal requirements) until project completion. A study was therefore undertaken in which 20 compensatory wetland mitigation projects in the San Francisco Bay Region were reviewed and assessed for both permit compliance and habitat function, and this was done using a rapid assessment method adapted for this purpose. Thus, in addition to determining compliance and function, a further goal of this study was to test the efficacy of the assessment method, which, if useful, could be applied not only to mitigation projects, but also to restoration projects and natural wetland systems. Survey results suggest that most projects permitted 5 or more years ago are in compliance with their permit conditions and are realizing their intended habitat functions. The larger restoration sites or those situated between existing wetland sites tend to be more successful and offer more benefits to wildlife than the smaller isolated ones. These results are consistent with regulatory experience suggesting that economies of scale could be realized both with (1) large scale regional wetland restoration sites, through which efforts are combined to control invasive species and share costs, and (2) coordinated efforts by regulatory agencies to track project information and to monitor the increasing number and size of mitigation and restoration sites. In regard to the assessment methods, we find that their value lies in providing a consistent protocol for evaluations, but that the ultimate assessment will rely heavily on professional judgment, regulatory experience, and the garnering of pre-assessment information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号