首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
不同营养水平下沉水植物的抑藻效应   总被引:1,自引:0,他引:1  
控制水体的营养盐浓度,尤其是磷浓度,可以控制藻类水华的发生.然而,经济成本很高.相对藻类而言,沉水植物对水体营养盐升高敏感性更低,且沉水植物的存在可以改变藻类的群落结构和生长速率.为探讨沉水植物在营养盐与蓝藻水华控制关系中的作用,本研究探讨了有无水生植物存在下,不同营养盐浓度(磷浓度分别为0.025、0.05、0.1 mg·L~(-1),对应地表水Ⅲ~Ⅴ类)下蓝藻水华暴发(chlorophyll-a10μg·L~(-1))的频率、强度和持续时间.结果表明,初始藻浓度为5μg·L~(-1)和10μg·L~(-1)情况下,3种磷浓度下都会发生水华,磷浓度的升高会导致蓝藻水华暴发的强度和持续时间增加.然而,在加入水生植物金鱼藻后,初始藻浓度为5μg·L~(-1)的条件下,没有形成水华.初始藻浓度为10μg·L~(-1)的条件下,各处理组在实验初始时会形成短暂水华,之后,各处理组的叶绿素a浓度均低于10μg·L~(-1),显示蓝藻生长受到抑制.因此,沉水植物存在情况下,在营养盐较高的水体,蓝藻水华也不会发生.  相似文献   

2.
组合型生态浮床对上覆水和沉积物之间氮磷的影响   总被引:1,自引:0,他引:1  
在天鹅湖水体中构建以水生植物和陆生喜水植物为实验植物,浮法控制器、水循环增氧系统和造浪-输送系统为辅助设备的组合型生态浮床.组合型生态浮床运行期间改变了水体的理化环境,影响了上覆水-沉积物中氮磷形态的迁移转化,跟踪监测在组合型生态浮床影响下上覆水和沉积物TN、NH4+-N和TP含量的浓度变化规律,探讨了在组合型生态浮床作用下,DO、Eh、pH对上覆水和沉积物中营养盐的影响,以及上覆水和沉积物中氮磷之间以及和各环境因子之间的相互关系.结果表明,实验期间上覆水中TN、NH4+-N和TP的去除率分别达到61.92%、63.09%和80.0%.沉积物中TN和NH4+-N的去除率分别达到23.79%和37.04%,沉积物中TP含量上升了43.71%.组合型生态浮床对上覆水环境因子如DO、Eh、pH等产生不同程度的影响,处理区上覆水中DO和Eh均高于对照区,DO由原来的8.7~8.9 mg·L-1上升到9.3~10.4 mg·L-1,Eh由原来的163~178 mV上升到191~198 mV,通过提高上覆水中DO和Eh有效抑制沉积物磷的释放并促进沉积物对上覆水中磷的吸附.pH的波动性较小,维持在7.51~8.32之间,并未促进沉积物磷释放.上覆水中TN、TP和NH4+-N以及与沉积物中的TN、NH4+-N之间呈极显著正相关,与沉积物中的TP极显著负相关;pH与上覆水和沉积物中的TN、TP和NH4+-N都无相关性;上覆水中的DO与Eh显著正相关,与沉积物中的TP显著负相关.  相似文献   

3.
温榆河是北京市重要的生态廊道.本研究基于历史文献资料和现场调查,比较分析了2006、2011和2018年温榆河水环境质量与浮游植物群落结构的时空变化,探讨了浮游植物群落变化与水温T、溶解氧DO、pH和营养盐之间的相互关系.结果表明,温榆河水环境质量总体好转,经历了重度污染→污染遏制→水质改善过程,水污染物已从NH_4~+-N为主转向TN为主.NH_4~+-N、TN的平均浓度和平均超标倍数从2011年的15. 52~19. 16 mg·L~(-1)、9. 34~8. 58倍和20. 21~19. 58 mg·L~(-1)、12. 47~8. 79倍降低到2018年的1. 93~2. 66 mg·L~(-1)、0. 29~0. 33倍和5. 66~6. 79 mg·L~(-1)、2. 77~2. 39倍,并且温榆河和支流清河的DO和NH_4~+-N浓度已基本达到水功能区划目标.与水质改善过程相对应,浮游植物群落的物种种类大幅增加,经历了绿藻门(Chlorophyta)→蓝藻门(Cyanophyta)→硅藻门(Bacillariophyta)物种为主的变化过程,Shannon-Wiener多样性指数(H')、均匀度Pielou指数(J)有所改善,但依然存在高耐污绝对优势物种小环藻(Cyclotella)和直链藻(Melosira)等,且2018年温榆河依旧处于中富营养化状态.统计分析结果表明,DO、pH、NH_4~+-N、TN和TP是影响温榆河流域浮游植物多样性和蓝藻、硅藻及其他藻类密度的主要因素.  相似文献   

4.
太湖蓝藻水华衰亡对沉积物氮、磷释放的影响   总被引:26,自引:11,他引:15  
在太湖草型区、藻型区及河口区采集原状泥柱进行加藻培养实验,监测培养过程中溶解氧(DO)、总氮(TN)、总磷(TP)、氨氮(NH4+-N)、磷酸根(PO43--P)等相关指标的变化.结果表明,蔽光培养导致加藻体系中蓝藻大量死亡,形成水体极度缺氧环境(DO接近0),沉积物氮、磷释放量改变,上覆水NH4+-N、PO43--P...  相似文献   

5.
白洋淀沉积物氨氮释放通量研究   总被引:10,自引:3,他引:7  
白洋淀沼泽化趋势不断加重,本文分析了沉积物氨氮释放风险与水质效应,评估沉积物中氨氮交换通量对上覆水体水质产生的重要影响.结果表明:白洋淀淀区表层水氨氮(NH_4~+-N)平均浓度在0.0~0.49 mg·L~(-1)之间,硝氮(NO_3~--N)平均浓度维持在0.09~0.20 mg·L~(-1),总氮(TN)浓度范围为1.40~4.52 mg·L~(-1),淀区水质在V类水平和劣V类水平.沉积物NH_4~+-N的平均含量在61.1~160.6 mg·kg~(-1),NO_3~--N含量整体平均值较低,范围在4.3~9.0 mg·kg~(-1),TN含量平均值在1555~4400 mg·kg~(-1)之间.整个白洋淀淀区表层沉积物孔隙水中NH_4~+-N浓度明显高于上覆水浓度,NH_4~+-N存在从沉积物向上覆水释放的风险.淀区沉积物-水界面潜在NH_4~+-N扩散通量范围为-9.3~38.3 mg·m~(-2)·d~(-1),NH_4~+-N潜在内源释放风险非常高.烧车淀区、南刘庄区、圈头区的潜在NH_4~+-N平均释放通量达到10.0 mg·m~(-2)·d~(-1)以上.为了避免白洋淀沼泽化过程加快,水质氮污染需要采取相应措施进行有效控制,而控制沉积物NH_4~+-N的内源释放是其中的关键环节.  相似文献   

6.
本研究通过实地调查及原位柱芯静态培养实验,分析了瘦西湖上覆水和沉积物氮、磷污染负荷空间分布格局,估算了内源氮、磷释放通量.结果表明:①瘦西湖上覆水中总氮(TN)、总磷(TP)、氨氮(NH~+_4-N)的浓度区间分别为1.5~2.9、0.05~0.11、0.2~1.7 mg·L~(-1),TN是影响上覆水水质的主要因子;②沉积物TN、TP的含量范围分别为500~4500、100~3700 mg·kg~(-1),空间上呈现TN含量从扬州闸下至二十四桥逐渐增加而TP含量先升后降的趋势;③内源释放模拟结果显示,瘦西湖沉积物NH~+_4-N、NO~-_3-N、NO~-_2-N及PO_4~(3-)-P的释放速率分别为35.3~90.1、30.2~80.6、0.95~5.10、7.2~58.8 mg·m~(-2)·d~(-1),其氮、磷释放速率相较于国内外类似研究呈现较高水平,表明瘦西湖沉积物是其上覆水体氮、磷污染负荷的一个重要潜在来源.  相似文献   

7.
“引黄入呼”取水口动态性水环境容量计算   总被引:1,自引:0,他引:1  
针对黄河呼和浩特段沿线水体持续污染为"引黄入呼"取水口带来的水环境质量问题,采用MIKE三维水动力和水质耦合模型,进行了"引黄入呼"取水口水环境容量动态性研究,这对取水口水安全与上游排污能力协调、稳定推进呼和浩特市饮用水的健康运行具有重要意义.结果表明:按照90%供水保证率进行计算,黄河呼和浩特段"引黄入呼"取水口处可以满足"引黄入呼"取水需求,流量剩余量在结冰枯水期可达5250%,丰水期可达42500%;黄河呼和浩特段"引黄入呼"取水口处DO、NH_4~+-N、NO_3~-、BOD、TP、FC、COD均可满足《地表水环境质量标准》(GB3838—2002)Ⅲ类标准中的相关限值,整体水体状况良好,都具有一定的容量,NH_4~+-N、NO_3~-、BOD、TP、FC剩余容量较大,COD容量较小但DO容量较大,经分析,目前没有富营养化、藻类大量繁殖等不良趋势发生,短时间内容量较为稳定;DO、NO_3~-、FC、TP水环境容量通年较为平稳,分别在1.97 mg·L~(-1)、6.25 mg·L~(-1)、9327个·g-1、0.12 mg·L~(-1)附近波动;NH_4~+-N、BOD、COD最小水环境容量分别出现在4月(0.27 mg·L~(-1))、9月(0.70 mg·L~(-1))、6月(0.20 mg·L~(-1)),最大水环境容量均出现在7月,分别为0.72、2.80、7.57 mg·L~(-1).  相似文献   

8.
蓝藻水华对太湖水柱反硝化作用的影响   总被引:5,自引:4,他引:1  
反硝化作用是湖泊水体最主要的脱氮过程,对减轻湖泊的氮素污染和富营养化控制具有重要意义.蓝藻水华暴发和衰亡可能会通过改变水体氮素循环途径及微环境来促使反硝化作用直接在水柱中发生,加速氮的去除.为了验证这一假设,取太湖湖水添加不同生物量的蓝藻和连续10 d的NO_3~--N、PO_4~(3-)-P营养盐,进行蓝藻生长与降解对反硝化影响的模拟实验,测定蓝藻水华期水体藻类生物量和各形态氮浓度的动态变化,同时利用~(15)N同位素添加培养结合膜进样质谱仪(MIMS)实时定量测定反硝化速率.结果表明,蓝藻在生长期吸收氮素转变为颗粒氮,在衰亡期藻细胞通过降解矿化释放了大量的NH_4~+-N,继而转化为NO_3~--N,为反硝化作用提供底物,是大幅度促进水体反硝化作用的关键;反硝化速率(以N2计,下同)最高达到(1 614. 52±301. 57)μmol·(m~2·h)~(-1),是同时期最低蓝藻生物量组反硝化速率[(534. 45±242. 18)μmol·(m~2·h)~(-1)]的3倍,实验结束时添加初始蓝藻生物量倍数最高组的TN去除率达最高(40. 02%),是未添加蓝藻组TN去除率(17. 72%)的2. 26倍,说明蓝藻堆积会显著促进反硝化作用的强度,加速水体氮素的去除.蓝藻衰亡时反硝化速率的快慢受NH_4~+浓度的影响显著,表明附着在藻团的微生物的耦合硝化-反硝化作用是氮盐去除的主要途径.本研究结果表明,水华蓝藻生长期快速吸收氮素转变为颗粒氮,蓝藻死亡降解后通过耦合硝化-反硝化作用加速氮素去除,这可能是太湖夏季氮素浓度降低的原因之一.  相似文献   

9.
蓝藻水华对沉积物-水界面氮交换的影响   总被引:1,自引:0,他引:1  
为了解蓝藻水华对浅水富营养化湖泊沉积物-水界面氮交换的影响,2013年9月在太湖梅梁湾采集沉积物与上覆水进行加藻培养实验。培养过程中监测温度、p H、溶解氧(DO)、总氮(TN)、氨氮(NH4+-N)、硝氮(NO3--N)。结果表明:培养过程中加藻组铵态氮、硝氮和总氮的变化分别在1.73~11.45、0.16~1.10、12.05~20.34 mg/L之间,显著高于对照组。培养后加藻组与对照组氮组分的变化差异明显。蓝藻水华衰亡显著降低DO浓度和ORP值,造成水体极度缺氧环境(DO接近0),促进沉积物和上覆水体的氮素交换。  相似文献   

10.
藻类聚集区春夏季易发生黑臭(俗称"湖泛",也称"黑水团")现象,而在太湖北部区域趋向常态化发展现象。该文主要利用室内实验装置,通过设置高中低3种藻华聚集程度(处理1、2、3的藻细胞添加量分别为2 000、5 000、8 000 g/m~2)模拟实验研究了动态条件下黑水团发生过程中上覆水体重营养盐的变化。结果表明:在实验进行3d后上覆水体中溶解氧(DO)含量降低到2 mg/L以下,高藻华聚集模拟水体中NH_4~+-N含量增加到14 mg/L以上,PO_4~(3-)-P含量增加到0.20 mg/L,TN、TP含量分别高达15 mg/L、2.0 mg/L,水体中叶绿素含量呈现快速下降趋势,实验进行到3d后,其含量下降为1 500 mg/m~3,水体浑浊度增加,COD含量从50 mg/L快速上升为120 mg/L。表明大量藻细胞在聚集后受温度等影响下出现快速死亡、水体缺氧,造成藻华聚集区易出现黑水团现象,对水体生态环境带来严重影响。  相似文献   

11.
程海湖夏冬季浮游植物群落结构与富营养化状况研究   总被引:3,自引:0,他引:3  
为了解程海湖浮游植物群落特征及其富营养化现状,对程海湖的水体理化指标和浮游植物群落结构进行了系统调查,分析了夏、冬季节程海湖水质状况、浮游植物群落结构特征及其与环境因子之间的关系,并运用综合营养状态指数法和藻类生物学法评价了程海湖的营养状态.结果表明,调研期间程海湖氮、磷浓度较高,水体中总磷(TP)浓度为0.03~0.19 mg·L~(-1),总氮(TN)为0.38~3.08 mg·L~(-1),综合营养状态指数(TLI)在49.3~54.4之间波动,已经达到轻度富营养水平;藻密度变化范围为1.54×10~6~1.65×10~7个·L~(-1),已超过常规湖泊的水华暴发阈值范围;浮游植物以蓝藻、绿藻为主,Shannon-Wiener多样性指数大多数为1~3,Pielou均匀度指数为0.18~0.72,部分时间段藻类多样性偏低,呈现出典型的蓝藻门为优势的富营养化状态,亟需对其进行生态保护与管理.  相似文献   

12.
望雪  程豹  杨正健  刘德富  徐雅倩 《环境科学》2018,39(5):2126-2134
为分析澜沧江梯级水库建设对澜沧江流域沉积物-水界面交换过程的影响,于2016年2~3月对澜沧江云南段间隙水-上覆水氮、磷营养盐进行了调查与分析.结果表明,澜沧江自然河道沉积物间隙水总氮(TN)均值为15.254 mg·L~(-1),显著高于水库均值6.577 mg·L~(-1);但其总磷(TP)均值为0.654 mg·L~(-1),低于水库区域的1.432 mg·L~(-1).澜沧江流域沉积物间隙水氮、磷浓度均高于上覆水浓度,上覆水-间隙水垂向TN浓度在表层沉积物处达到最大值,且自然河道总溶解氮(DTN)扩散通量均值为2.117 mg·(m~2·d)~(-1),高于水库的均值0.785 mg·(m~2·d)~(-1);但其总溶解磷(DTP)扩散通量为0.044 mg·(m~2·d)~(-1),低于水库的均值0.053 mg·(m~2·d)~(-1),上覆水氮盐主要来源于沉积物间隙水.澜沧江梯级水库建设导致的沉积物组成差异与水体扰动差异是间隙水-上覆水界面交换差异的主要原因.  相似文献   

13.
为揭示白洋淀夏季入淀区上覆水-间隙水氮磷营养盐相互作用,本研究于2019年7月对白洋淀主要6条入淀河流取样,通过分析上覆水、间隙水水质特征以及营养盐在沉积物-水界面的扩散通量,评估了营养盐扩散对沉积物与上覆水的影响.结果表明白洋淀水质呈弱碱性;溶解氧(DO)含量较低,为沉积物内源污染物的释放提供了厌氧环境;氨氮(NH4+-N)浓度在0.35~1.76mg·L-1,作为主要给水来源的潴龙河淀区最高;硝氮(NO3--N)浓度在0.75~1.97mg·L-1;溶解性总氮(TDN)浓度在0.99~2.70mg·L-1,位于自然区的S2瀑河含量最高;溶解性总磷(TDP)浓度在0.03~0.15mg·L-1,靠近居民区的白沟引河含量最高.间隙水氨氮浓度在5.24~10.64mg·L-1,是上覆水体的10倍,内源污染严重;硝氮浓度在0.36~0.79mg·L-1;溶解性总氮浓度在5.36~12.02mg·L-1,是上覆水体的5倍;溶解性总磷浓度在0.03~0.3mg·L-1.应用综合污染指数法对水质进行评价发现间隙水污染程度远高于上覆水,各采样点呈现出严重污染状态.对NH4+-N、TDN和TDP进行交换通量分析显示,NH4+-N的扩散通量在1.71~7.43mg·(m2·d)-1,作为保定市纳污河流的府河采样点内源氨氮向上覆水扩散速率最快;TDN的扩散通量除白沟引河较低,其余5个采样点均值达到9.11mg·(m2·d)-1,夏季水体中溶解氧含量较低且沉积物-水界面TDN浓度差较大,导致沉积物中含氮营养盐在厌氧条件下大量释放到上覆水中,对水质造成严重污染;萍河采样点TDP的扩散通量是负值表示上覆水体的磷污染物向沉积物聚集的状态,剩余5个采样点的扩散通量范围在0.03~0.16mg·(m2·d)-1,表现出磷营养盐向上覆水释放的状态.扩散通量显示内源污染物是上覆水污染物的重要来源,为有效治理入淀区水质,沉积物氮磷营养盐的清淤处理迫在眉睫.  相似文献   

14.
三峡库区规模化顺坡沟垄果园氮、磷输出过程及流失负荷   总被引:4,自引:0,他引:4  
严坤  王玉宽  刘勤  徐佩  闫洋洋 《环境科学》2020,41(8):3646-3656
通过对三峡库区顺坡垄沟构型的规模化柑橘园集水区次降雨过程径流氮、磷进行动态监测,分析典型降雨事件氮和磷流失负荷,并探讨了规模化柑橘种植对土壤氮磷流失及入库河流水环境的影响.结果表明:①顺坡沟垄柑橘园集水区径流氮和磷年流失负荷分别为13.43 kg·(hm~2·a)~(-1)和1.26 kg·(hm~2·a)~(-1),春季施肥及强降雨冲刷是集水区污染物高负荷的主要原因;②集水区全年总氮(TN)和总磷(TP)的EMC为8.49 mg·L~(-1)和0.87 mg·L~(-1),超过发生水体富营养化含量标准;③春季施肥后的2场典型降雨中,长历时暴雨径流硝态氮(NN)和溶解态磷(DP)负荷为4.94 kg·hm~(-2)和0.28 kg·hm~(-2),分别占TN和TP流失负荷的92.90%和64.69%;短历时大雨径流NN和DP负荷为0.52 kg·hm~(-2)和0.05 kg·hm~(-2),分别占TN和TP的65.92%和74.88%,溶解态氮和磷是顺坡沟垄坡面果园径流氮和磷流失的主要途径;④集水区氮磷流失表现出显著的"初始冲刷效应",初期20%的地表径流流失了58.0%的TN, 57.0%的DN, 58.5%的NN, 79.0%的AN, 62.0%的TP, 63.5%的DP和60.0%的PP,控制初期地表径流对降低入库径流养分具有重要作用.  相似文献   

15.
湖泊沉积物既是氮磷等营养物质的储存库,也是水体营养盐的二次污染源,可以缓冲水体氮磷浓度变化,进而影响水体营养盐的生物可利用性和藻类生长.本文以太湖梅梁湾为研究对象,通过模拟实验研究沉积物参与下外源氮磷脉冲式输入对水体营养盐浓度和藻类生长的影响,并阐明氮磷在沉积物、水和藻类间的迁移转化及再分配过程.结果表明,当以0.30 mg·(L·d)~(-1)的速率脉冲式输入氮时,实验组(有沉积物)水体氮浓度远低于相应的对照组(无沉积物),沉积物参与下水体氮约以0.144~0.156 mg·(L·d)~(-1)的速率脱除,根据单位面积估算水体脱氮速率约为40.793~44.193 mg·(m~2·d)~(-1),脱氮量约占外源氮的48%~52%;而相应对照组水体约以0.021~0.039 mg·(L·d)~(-1)的速率脱氮,脱氮量仅占外源氮的7%~13%,可见沉积物-水界面作为浅水湖泊反硝化等脱氮过程的主要场所,对减轻湖泊氮负荷具有重要贡献.当以0.015 mg·(L·d)~(-1)的速率脉冲式输入磷时,沉积物表现出明显的"汇"效应,约52%~58%外源磷以2.210~2.422 mg·(m~2·d)~(-1)的速率汇入沉积物,其余约23%~26%外源磷被藻类吸收,约20%~22%则以溶解态存在水体,可见沉积物的参与能有效地缓冲水体磷浓度对外源磷的响应.无外源输入时,沉积物充当磷源,以约0.310~0.468 mg·(m~2·d)~(-1)的速率释放磷供给藻类生长.薄膜梯度扩散技术(ZrO-Chelex DGT)原位高分辨分析显示,沉积物间隙水中有效态磷浓度远高于上覆水,并与二价铁显著相关,表明受铁结合态磷的影响,沉积物-水界面氧化还原状况发生改变会造成内源磷的大量释放.总的说来,在外源得到有效控制时,沉积物中的磷可以缓慢释放进入上覆水中并供给藻类生长,延滞水体对外源控制的响应.因此,在湖泊蓝藻水华治理时,氮磷协调治理可以起到更快的治理效果.  相似文献   

16.
溶解氧对Biolak型A2O工艺脱氮除磷性能的影响   总被引:1,自引:0,他引:1  
通过对Biolak型A2O工艺处理生活污水工程应用的研究,考察了好氧段溶解氧(DO)浓度对该工艺脱氮除磷的影响.试验结果表明,DO浓度变化对系统COD、NH+4-N处理效果的影响不大,而对系统总氮及总磷的去除效果影响显著.当DO浓度控制在0.80~1.50 mg·L-1之间时,系统总氮去除效果最佳,可以达到69.5%,系统好氧段可实现同步硝化反硝化除氮.通过对系统氮进行物料衡算发现,23.7%的总氮通过好氧段多级A/O反硝化脱氮去除.当DO浓度为1.00~3.00 mg·L-1时,总磷(TP)去除率较高,可以达到74.0%.DO浓度控制在1.00~1.50 mg·L-1之间时,系统脱氮除磷效果最佳,此时TN、TP的去除率分别为68.9%、73.7%,二级生化处理段出水TN、TP分别为12.02、0.95 mg·L-1.  相似文献   

17.
富营养化饮用水源地山仔水库限制性营养元素研究   总被引:4,自引:0,他引:4  
世界范围内关于水体富营养化的研究表明,流域尺度上营养盐的控制和削减是修复富营养化水体的关键措施,甄别水体限制性营养元素进而采取相应的控制措施是修复富营养化水体的有效途径.本文在时空格局上分析了富营养化饮用水源地山仔水库的限制性营养元素.结果表明,2003—2012年,山仔水库初级生产力的关键限制性营养元素为磷.秋、冬、春季,水体总磷浓度在0.02~0.09 mg·L-1左右,TN/TP原子比值在35~72之间,表明TP浓度相对低,磷为限制性营养元素;夏季表层水TP浓度在0.06~0.13 mg·L-1左右,TN/TP原子比值在11~13之间,表层水溶解性磷的浓度较低,磷主要蓄积在藻细胞内,由于温跃层的存在,底层释放的磷无法向表层水补给,故溶解态磷相对缺乏.总之季节变化对磷的限制性作用有显著影响.通过对山仔水库2003—2012年水体TP浓度和叶绿素a浓度相关性分析得出,修复水体需要控制的TP浓度阈值为0.028 mg·L-1.根据上述结果综合分析了已采取修复措施的效果,从而进一步提出了山仔水库富营养化的修复策略.  相似文献   

18.
福建省九龙江江东库区沉积物微藻分布研究   总被引:1,自引:0,他引:1  
沉积物既是营养盐的储存库,也是藻类的休眠场所.本研究以九龙江北溪江东水库为研究对象,于2011年4月、6月、9月、12月采集表层沉积物,对其营养盐含量、表层沉积物微藻分布及丰度进行分析.结果表明,沉积物大部分为粉砂质粘壤土,该区域沉积物总碳含量为9140.2~17760.4 mg·kg~(-1),总氮含量为950.0~1600.4 mg·kg~(-1),总磷含量为483.7~856.2 mg·kg~(-1).库区表层沉积物微藻细胞丰度范围在7.41×105~2.17×106cells·g~(-1)底泥(以干重计),主要为硅藻门和绿藻门,分别占微藻比例的45.52%~86.42%和5.96%~35.55%.沉积物微藻总丰度与上覆水体浮游植物总丰度及隐藻、裸藻丰度呈显著负相关,反映了沉积物微藻对上覆水体浮游植物的影响.沉积物中蓝藻、隐藻、甲藻孢囊丰度分别与水温呈显著负相关,分别与溶解氧呈显著正相关,因而冬季沉积物中有相对高的微藻丰度.沉积物微藻丰度与含水率、粉粒分别呈显著性正相关,反映了沉积物微藻沿着水流方向的积累.  相似文献   

19.
巢湖西部河口区沉积物氮磷分布特征与原位扩散通量估算   总被引:1,自引:0,他引:1  
选取巢湖西部重污染入湖河口区,研究表层沉积物氮磷污染特征,并运用Fick定律估算沉积物-水界面氮磷原位扩散通量.结果表明:南淝河、派河、十五里河河口表层沉积物总氮平均含量达到2208.17 mg·kg~(-1),氮形态以有机氮为主,占比达到90%以上.表层沉积物总磷平均含量为704.59 mg·kg~(-1),其中铁铝结合磷、活性有机磷和钙镁结合磷分别占比27%、28%和18%.河口区水体氨氮浓度从上覆水到孔隙水中总体呈上升趋势,沉积物表层(0~5 cm)孔隙水中氨氮平均浓度为25.42 mg·L~(-1),是上覆水中的7倍.沉积物孔隙水中硝氮与正磷酸盐浓度在垂向上随深度的增加呈先上升后降低的趋势,在沉积物-水界面附近达到浓度最高值.3个河口沉积物孔隙水中氮磷营养盐均向上覆水扩散,其中氨氮扩散通量分别为25.87、74.85与18.08 mg·m~(-2)·d~(-1).硝氮与正磷酸盐扩散通量较低,范围分别在1.38~2.78和0.011~0.024 mg·m~(-2)·d~(-1)之间.总体上看,巢湖西部河流入湖河口区表层沉积物氮污染严重,且存在较高的氮磷营养盐释放风险,应是巢湖富营养化控制过程中重点关注的区域.  相似文献   

20.
三峡前置库汉丰湖正式运行后,水体由河流形态转变为兼具湖泊、河流特征的特殊形态,导致水体生物地球化学过程发生较大变化.为探究汉丰湖氮磷营养盐时空分布特征及其影响因素,在汉丰湖面设定7个采样点,于2018年1~12月对汉丰湖各点位分层采样,监测营养盐和Chl-a等指标变化.结果表明,汉丰湖上中下层水体垂直混合较均匀,营养盐浓度差异不显著(P0.05).TN浓度在1~9月呈波动减小趋势, 10~12月逐渐增加,月平均浓度为1.52 mg·L~(-1).NO~-_2-N浓度在1~4月波动减小, 5~6月急剧增大, 7~12月波动减小,月平均浓度为0.05 mg·L~(-1).NO~-_3-N浓度表现为1~6月逐渐降低, 7~12月逐渐增加的趋势.NH~+_4-N浓度在7月最高,为0.44 mg·L~(-1),其余月份变化不明显,月平均值为0.09 mg·L~(-1).TP、DP和SRP浓度全年呈现波动变化,增减趋势不明显,其平均浓度分别为0.17、 0.11和0.05 mg·L~(-1).汉丰湖磷盐主要来源于上游的南河和桃溪河,且大体呈现出由上游镇东大丘至下游调节坝递减的趋势.各营养盐中,TP为汉丰湖藻类生长的决定性因子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号