首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sample of 58 occupied homes in Rochester, NY, most of which incorporated special builder-designed weatherization components, were studied to assess (1) the effectiveness of construction techniques designed to reduce air leakage; (2) the indoor air quality and air-exchange rates in selected airtight houses, and (3) the impact on indoor air quality of mechanical ventilation systems employing air-to-air heat exchangers. The “specific leakage area” was measured in each house using the fan pressurization technique. Houses built with polyethylene vapor barriers and joint-sealing were as a group 50% tighter than a similar group of houses without such components. Mechanical ventilation systems with air-to-air heat exchangers were installed in nine relatively airtight houses, some of which had gas stoves and/or tobacco smoking occupants. Air-exchange rates and indoor concentrations of radon (Rn), formaldehyde (HCHO), nitrogen dioxide (NO2), and humidity were measured in each house for 1-week periods with and without mechanical ventilation. More detailed measurements, including concentrations of carbon monoxide and inhalable particulates, were made in two of these houses by a mobile laboratory. In all nine houses, air-exchange rates were relatively low (0.2–0.5 ach) without mechanical ventilation, and yet indoor concentrations of Rn, HCHO, and NO2 were below existing guidelines. Mechanical ventilation systems were effective in further reducing indoor contaminant concentrations. We conclude that when contaminant source strengths are low, acceptable indoor air quality can be compatible with low air-exchange rates.  相似文献   

2.
Radon concentrations in dwellings vary by more than two orders of magnitude. Predicting where and when concentrations are likely to be high requires studying the variability of the contributors to radon in buildings. Among common sources, geological factors (water supply and substrate) are the most variable, whereas building materials are much less variable. Ventillation variation among houses is generally responsible for radon variations comparable to those introduced by building materials, but it is more significant at lower ventilation rates. In some regions with relatively high proportions of houses with elevated radon concentrations, mappable geological factors are associated with most cases of high radon concentrations. However, a priori identification of rock types likely to be implicated is likely to be successful in only a few cases.  相似文献   

3.
The aim of this work was to make a comparison of indoor radon concentrations in dwellings and in soil air in the area of two geological formations in the Suwa?ki region (Poland). The mean arithmetic airborne concentration was found to be the highest (301 Bq m (-3)) in the basements of buildings in the gravel and sand areas, whereas in the boulder clay areas it reached 587 Bq m (-3). Out of 54 measurements of radon concentrations performed at the ground floor, in eight cases concentrations were found to exceed 200 Bq m (-3) - permissible radon level in new-built houses in Poland and in three cases these values were even higher than 400 Bq m (-3). The highest radon levels were noted in houses with earthen basement floors and with direct entrance from the basement to rooms or kitchens. The mean arithmetic radon concentration in the soil air in the sandy and gravel formations was 39.7 kBq m (-3) and in clay formation it was 26.5 kBq m (-3). Higher radon levels were also found in the water obtained from household wells reaching 8367 Bq m (-3) as compared with tap water (2690 Bqm (-3)). The mean indoor concentration for the whole area under study was found to be 169.4 Bq m (-3), which is higher than the mean value for Poland (49.1 Bq m (-3)) by a factor of 3.5.  相似文献   

4.
The measurement campaigns have been done in the rural community of Niska Banja, a spa town located in southern Serbia, to evaluate population exposure to natural radioactivity. After a screening survey in 200 houses, annual radon and thoron concentrations were measured in 34 houses, and in 2004 a detailed investigation was carried out at six houses with elevated indoor radon concentrations. The paper presents the results of these detailed measurements. The complementary techniques were applied to determine radon and thoron concentrations in indoor air, in soil gas, radon exhalation from soil, soil permeability, and indoor and outdoor gamma doses. Soil and water samples were collected and analysed in the laboratory. Indoor radon and thoron concentrations were found to be more than 1kBqm(-3) and 200Bqm(-3), respectively. Extremely high concentrations of soil-gas radon (>2000kBqm(-3)) and radon exhalation rates (1.5mBqm(-2)s(-1)) were observed. These results will be utilised to set up the methodology for a more systematic investigation.  相似文献   

5.
The seasonal variation of 222Rn concentrations in the air of tunnels constructed during World War II at Nagano City has been investigated. The determination of 222Rn concentrations in tunnel air was performed using a solid-state nuclear track detector technique. The monthly radon concentrations changed smoothly, decreasing towards winter and increasing towards summer, and it was found that the concentrations strongly correlate with the temperature difference between the inside and the outside of the tunnel. In the innermost areas of the tunnel, the maximum concentration was observed in July, its value being about 6500 Bq m (-3). The concentrations of radon in the tunnel air decrease exponentially towards the openings of the tunnel, which indicates that the radon concentration in the tunnel is basically governed by diffusion and mixing of radon gas with air. These observations lead to the conclusion that the seasonal variation of the radon concentration in the tunnel air is mainly caused by a convection current due to a stack effect induced by the temperature difference between the tunnel air and the outside air.  相似文献   

6.
This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.  相似文献   

7.
The seasonal variation of 222Rn concentrations in the air of tunnels constructed during World War II at Nagano City has been investigated. The determination of 222Rn concentrations in tunnel air was performed using a solid-state nuclear track detector technique. The monthly radon concentrations changed smoothly, decreasing towards winter and increasing towards summer, and it was found that the concentrations strongly correlate with the temperature difference between the inside and the outside of the tunnel. In the innermost areas of the tunnel, the maximum concentration was observed in July, its value being about 6500 Bq m (-3). The concentrations of radon in the tunnel air decrease exponentially towards the openings of the tunnel, which indicates that the radon concentration in the tunnel is basically governed by diffusion and mixing of radon gas with air. These observations lead to the conclusion that the seasonal variation of the radon concentration in the tunnel air is mainly caused by a convection current due to a stack effect induced by the temperature difference between the tunnel air and the outside air.  相似文献   

8.
This study investigates the contribution of radon (222Rn)-bearing water to indoor 222Rn in thermal baths. The 222Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM10 and PM2.5) and carbon dioxide (CO2) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m−3 of 222Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which 222Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average 222Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor 222Rn levels were influenced by the 222Rn concentrations in the hot spring water and the bathing times. The average 222Rn transfer coefficients from water to air were 6.2 × 10−4-4.1 × 10−3. The 24-h average levels of CO2 and PM10 in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM2.5. Radon and PM10 levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants.  相似文献   

9.
In solar rockbed storage systems, heat is transferred during the day from the collector to a bed of pebbles, and released at night to warm the living space. When the rocks used for storage contain significant concentrations of uranium, 222Rn and its daughters may be released to the living area. A microcomputer model was used to simulate variations in air filtration rate and source strength through several days of operation. Source strengths were estimated from theoretical considerations and literature data. Resulting 222Rn and daughter concentrations were computed by solving system equations by fourth-order Runge-Kutta integration. During the day, when the living space is isolated from the radon source, interior 222Rn concentrations approach those of the outdoors. A nighttime steady-state concentration is approached about 6 h after heat discharge begins. Due to the dynamic nature of the simulation, equilibrium between 222Rn and its daughters is not reached. Time-weighted average nighttime exposures (6 p.m.–8 a.m.) for 10 simulation runs varied from 0.001 to 0.018 working level (WL). Comparison with one set of measurement data showed the model to overpredict concentrations but to approximate the 222Rn buildup rate well. Combinations of source strength, infiltration rate, and exterior radon concentration which would lead to exposures exceeding 0.02 WL were calculated.  相似文献   

10.
Any confined air volume holding radon (222Rn) gas bears a memory of past radon concentrations due to 210Pb (T1/2 = 22 y) and its progenies entrapped in all solid objects in the volume. The efforts of quantifying past radon exposures by means of the left-behind long-lived radon progenies started in 1987 with this author’s unsuccessful trials of removing 214Po from radon exposed glass objects. In this contribution the history and different techniques of assessing radon exposure to man in retrospect will be overviewed. The main focus will be on the implantation of alpha recoils into glass surfaces, but also potential traps in radon dwellings will be discussed. It is concluded that for a successful retrospective application, three crucial imperatives must be met, i.e. firstly, the object must persistently store a certain fraction of the created 210Pb atoms, secondly, be resistant over decades towards disturbances from the outside and thirdly, all 210Pb atoms analysed must originate from airborne radon only.For large-scale radon epidemiological studies, non-destructive and inexpensive measurement techniques are essential. Large-scale studies cannot be based on objects rarely found in dwellings or not available for measurements  相似文献   

11.
Instantaneous measurements of equilibrium equivalent concentration of radon (EEC(Rn)) were taken over a period of 1 year in 2004 in a typical house at Amritsar city, located in the northwest part of India. A method based on absolute beta counting subsequent to grab aerosol sampling was used. During that year, EEC(Rn) varied between 1.56B qm(-3) and 22.77B qm(-3) with average value of 8.76Bb qm(-3). EEC(Rn) decreased with the transition from winter to summer and vice versa, having a negative correlation with outdoor temperature. The use of mechanical ventilation, under normal living conditions during summer, caused an extra decrease in the concentrations. The variations with temperature and mechanical ventilation are discussed. Some major issues related to the uncertainties in dose calculations caused by the lack of knowledge of equilibrium factor and ignoring the effect of life style on the radon and its progeny concentrations are discussed.  相似文献   

12.
Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).  相似文献   

13.
We have developed a simple and portable technique for measuring moderately high levels of 222Rn (t1/2=3.8d) in natural waters such as coastal water, groundwater, and river water. The water sample is carefully collected in a glass bottle, and the sample bottle is connected to a radon-in-air monitor in a closed air-loop mode. By purging air through the sample, radon is emanated from the water until a chemical equilibration is obtained between the two phases. The radon in the air loop is determined using the radon-in-air monitor. Then, the radon in water is calculated by a radon-partitioning factor between water and air for a measured water temperature. This technique is especially convenient for determination of 222Rn in natural waters on field sites, since it eliminates the preparation of He gas, cold traps, and alpha-scintillation cells and counter, which are required for traditional radon emanation methods.  相似文献   

14.
Significantly elevated radon concentrations were found in several adjacent houses in Clinton, New Jersey. The United States Environmental Protection Agency screened 56 of the houses and selected 10 for demonstration of radon-reduction techniques. Each of the 10 houses received an intensive radon diagnostic evaluation before a house-specific radon reduction plan was developed. Depressurization effects caused by temperature differentials and the operation of mechanical equipment were quantified. Before and after radon reduction plans were implemented, radon concentrations were determined by charcoal canisters and continuous radon monitors. A variety of sealing and subslab depressurization techniques were applied to the 10 houses. Radon concentrations were reduced by over 95% in all 10 houses. The cost of applying radon reduction techniques ranged from $1500 to $8500 per house. House construction characteristics were described which contributed to the high cost of radon reduction. In summary, the 10-house radon reduction demonstration in Clinton, New Jersey was successful in showing homeowners with similar house types some effective ways of reducing radon concentrations.  相似文献   

15.
The indoor air of 60 residences in and around a Maryland suburb of Washington, DC, was monitored in a pilot study to determine residential radon concentrations. In each residence, a radon grab sample was acquired in the living room, and, if possible, in the basement. Infiltration rates were determined by tracer gas dilution. To help standardize sampling conditions, each home remained closed up for 8 h prior to sampling and during analysis. Over 60% of the residences sampled showed air infiltration rates below 0.6 air changes per hour. Approximately 55% of all surveyed basements and 30% of all surveyed living areas displayed radon concentrations in excess of 4.0 nCi m−3. Assuming an equilibrium factor of 0.5, these radon levels may lead to working levels above the annual guidelines suggested by EPA for florida homes build on land reclaimed from phosphate mining.  相似文献   

16.
The scope for using Tellus Project airborne gamma-ray spectrometer and soil geochemical data to predict the probability of houses in Northern Ireland having high indoor radon concentrations is evaluated, in a pilot study in the southeast of the province, by comparing these data statistically with in-house radon measurements. There is generally good agreement between radon maps modelled from the airborne radiometric and soil geochemical data using multivariate linear regression analysis and conventional radon maps which depend solely on geological and indoor radon data. The radon maps based on the Tellus Project data identify some additional areas where the radon risk appears to be relatively high compared with the conventional radon maps. One of the ways of validating radon maps modelled on the Tellus Project data will be to carry out additional indoor measurements in these areas.  相似文献   

17.
Active soil ventilation techniques have been tested in 26 block-wall basement houses in eastern Pennsylvania with significantly elevated indoor radon concentrations, generally above 740 Bq/m3, and the results indicate that radon levels can be reduced substantially often below the U.S. Environmental Protection Agency (EPA) guideline of 148 Bq/m3, if effective suction can be drawn on the soil underneath the concrete slabs of these houses. Such effective suction appears achievable when either: 1) the house has a complete loop of drain tile around its footings for water drainage purposes, and suction is drawn on that loop; or 2) a sufficient number of suction pipes can be inserted at the proper locations into the crushed rock or the soil underneath the slab.  相似文献   

18.
This article points out the ability to map retrospective 222Rn concentrations by home stored CDs/DVDs. The method employs the high radon absorption ability of the polycarbonate material of CDs and DVDs and their track-etch properties. The principle steps for the application of the method are addressed. The possibility for individual a posteriori calibration is studied, demonstrating that better than 10% accuracy in retrospective measurements is potentially achievable. Results from retrospective measurements in three different regions are shown, demonstrating the potential of the method for large-scale radon mapping. Comparison with independently evaluated retrospective 222Rn concentrations in places with known radon history was made and very good correspondence was observed. The experience indicates that the method can be used for large scale retrospective radon mapping and its applications can be expanded towards mapping of radon concentrations in water and soil gas.  相似文献   

19.
High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.  相似文献   

20.
Measurements of Lake Huron water as supplied to the Midland location of the Dow Chemical Company over the period 1970–1981 show that a mean concentration of ≈ 3 pCi/L gross beta activity held relatively constant with a range of yearly mean values from 2 to 4 pCi/L and a range of individual values from 1 to 7 pCi/L. This is comparable to observed values for other Great Lakes' waterways reported in the litarature. There was no apparent seasonal fluctuation. Midland area river water for 1967–1981 show median values of 3 to 4 pCi/L and a range of 2 to 11 pCi/L, comparable to those reported in the literature from througout the United States. The observed activity concentrations in the water are well below the limits of the EPA drinking water standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号