首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
朱禹寰  陈冰  张雅铷  刘晓  李光耀  舍静  陈强 《环境科学》2023,44(7):3669-3675
准确判断臭氧(O3)生成敏感性对O3污染成因分析和防控对策的制定至关重要.首次利用响应曲面方法设计最优试验方案,基于盒子模式模拟结果,快速量化O3对其前体物变化的响应.结果表明,CO对O3有正贡献,NOx和VOCs与O3呈现显著非线性关系,当φ(VOCs)与[φ(NOx)-13.75]比值大于4.17时,为NOx控制区,小于4.17时,为VOCs控制区;烯烃为影响O3生成的关键VOCs组分,当φ(烯烃)与[φ(NOx)-15]比值小于1.10且φ(烯烃)<35×10-9时,烯烃有利于O3的生成.响应曲面法在多因素和其交互作用对O3生成影响的研究中取得了良好效果,为高效判断O3敏感性提供了新的思路和方法.  相似文献   

2.
天津武清大气挥发性有机物光化学污染特征及来源   总被引:7,自引:2,他引:5  
大气VOCs(挥发性有机物)是臭氧的重要前体物之一,研究其光化学污染特征和来源对控制近地面臭氧污染具有重要意义. 于2006年8月10日—9月18日在天津郊区武清采用在线监测的方法,同步观测了VOCs、O3和NO2等气态污染物,以及温度和紫外辐射等气象因子. 对9月10—15日臭氧浓度较高时段VOCs的浓度水平、化学反应活性、臭氧生成潜势和来源进行了分析. 结果表明:天津郊区武清环境空气中VOCs体积混合比平均浓度为24.6×10-9;VOCs主要由烷烃和烯烃组成,机动车排放、轻烃工艺、生物排放、沼气和碳氢溶剂是其重要来源. 根据等效丙烯浓度和MIR方法评估,烯烃对臭氧光化学产生的贡献占主导性地位,其中异戊二烯、丙烯、二甲苯和甲苯是臭氧生成潜势较大的物种. 通过与天津城区比较发现,郊区与城区的大气VOCs不仅组成不同,而且化学活性物种也不同.   相似文献   

3.
周胜  黄报远  陈慧英  林少雄 《环境工程》2020,38(1):42-47,92
系统分析了珠三角城市群PM2.5、O3和挥发性有机物(VOCs)的污染特征,并筛选出对二次有机气溶胶(SOA)和O3影响较大的敏感性组分。结果显示:珠三角城市群PM2.5和O3浓度的季节变化具有明显差异,PM2.5和O3分别在1月和10月出现浓度最高值。珠三角城市群VOCs主要以烷烃为主,占比为64.2%,其次为芳香烃和烯烃,含量较高的组分为丁烷、异戊烷、异丁烷和环己烷。SOA生成潜势贡献主要以芳香烃为主,占比为78.5%,其中甲苯、间,对-二甲苯和乙苯的SOA生成潜势最大。O3生成潜势主要以烯烃为主,占比为42.3%,其次为芳香烃(34.2%)和烷烃(23.5%),其中丙烯、异戊二烯和1-丁烯的O3生成潜势最大。为有效缓解珠三角城市群PM2.5和O3污染,建议优先对机动车尾气、溶剂挥发、涂料使用和石化行业的VOCs敏感组分进行控制。  相似文献   

4.
天津武清地区夏季臭氧光化学研究   总被引:10,自引:6,他引:4  
利用2006年8月10日—9月18日的监测数据,分析天津市武清区光化学污染特征. 结果表明:监测期间φ(O3)的小时均值累积共有26 h超标,超标率为2.7%;光化学污染发生时,ρ(NOx)和挥发性有机物(VOCs)的反应活性都有所升高,其中ρ(NO2)平均约升高了20 μg/m3, VOCs的反应活性增加了42%,但是臭氧对于ρ(NOx)的增加更加敏感. 计算VOCs等效丙烯浓度,发现邻二甲苯的臭氧生成潜势最高. 烯烃的光化学反应活性最强,其次是单环芳烃和烷烃.   相似文献   

5.
为明确某石化工业区VOCs浓度特征及活性物种,利用法国Chromatotec公司生产的airmo VOC expert C2-C6和airmo VOC expert C6-C12分析仪联用系统在2018年夏季对该工业区VOCs进行连续监测.结果表明:①研究期间,石化工业区φ(TVOCs)(57种VOCs物种体积分数之和)为93.7×10-9±87.5×10-9,其中烯烃占比最高,达44.9%,当φ(TVOCs)日均值越高时烯烃占比越高.体积分数较高的物种主要为低碳烯烃、低碳烷烃、正己烷、甲苯和苯.②石化工业区φ(TVOCs)呈显著的夜高昼低变化特征,且各组分变化趋势相近,其中烯烃变幅高于其他组分.③各排放物质中对O3生成贡献较大的主要是乙烯、丙烯、顺-2-丁烯、甲苯等物质,而对二次有机气溶胶生成贡献较大的主要是甲苯、异丙苯、间/对二甲苯等物质.④通过PMF解析发现,石化工业区内催化裂化及裂解、催化重整及废水废液处理、油储设施溢散的贡献率分别为51.7%、34.8%、13.5%.⑤降低石化工业区VOCs活性可以明显降低O3超标率,若同时降低VOCs活性与φ(NOx)可更有效地降低O3超标率.研究显示,石化工业区VOCs排放强度较大,应对催化裂化及裂解等重点排放单元,以及乙烯、丙烯和甲苯等活性物质的排放进行控制,降低VOCs整体活性,并协同控制区域内NOx排放,从而减少O3污染.   相似文献   

6.
杭州湾北岸上海段石化集中区臭氧重污染过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州湾O3污染的形成机制,采用在线监测系统对杭州湾北岸上海段石化集中区O3及其前体物开展了为期1个月(2019年5月)的同步连续观测.采用OZIPR(臭氧等值线研究)模型分析O3生成的敏感性.在O3重度污染期间,利用PMF(正定矩阵因子分解)模型对O3前体物——VOCs进行源解析,采用臭氧生成潜势及气团老化分别估算了VOCs的反应活性和化学消耗.结果表明:①2019年5月杭州湾北岸上海段石化集中区O3的IAQI(空气质量分指数)优良率仅为61.3%,ρ(O3)第90%分位值为173.0 μg/m3.5月22日、23日发生重度O3污染,O3日最大8 h滑动平均值分别为(284.4±19.2)(282.0±14.2)μg/m3,分别超过GB 3095—2012《环境空气质量标准》二级标准限值(160 μg/m3)的77.75%和76.25%.②O3的生成受VOCs控制,降低VOCs的排放可在一定程度上降低O3的生成,降低NOx的排放反而会促进O3的生成.③O3重度污染期间,VOCs主要来自化工区排放(72.35%)和机动车尾气排放(27.65%).④O3重度污染期间,烯烃、炔烃及芳香烃对O3生成的贡献率之和在80.00%以上,其中丙烯、乙烯和甲苯的贡献率分别为29.97%、15.60%和14.16%;芳香烃及烯烃和炔烃是最主要的VOCs化学消耗物种,其中φ(丙烯)、φ(乙烯)和φ(1,2,4-三甲苯)的消耗量分别为13.57×10-9、4.93×10-9和3.55×10-9.研究显示,杭州湾北岸上海段5月O3的生成受化工区影响显著,丙烯与乙烯是O3重污染期间关键的O3前体物.   相似文献   

7.
孙雪松  张蕊  王裕  聂滕 《环境科学》2023,44(2):691-698
为深入了解挥发性有机物(VOCs)对臭氧(O3)污染的影响,基于北京市2019年秋季VOCs和O3高时间分辨率在线监测数据,开展O3污染情况下VOCs浓度水平、组成变化和臭氧生成潜势(OFP)研究.结果表明,大气φ(VOCs)平均值为(22.22±10.10)×10-9,其中,烷烃是体积分数最大的组分,占总VOCs的55.65%,其次是含氧有机物(OVOCs)和烯烃,分别占总VOCs的16.23%和8.13%.观测期间,北京市城区O3共出现3次污染过程,O3污染日和清洁日φ(VOCs)平均值分别为(26.22±12.52)×10-9和(16.37±7.19)×10-9,污染日VOCs体积分数比清洁日高60.17%.臭氧生成潜势(OFP)分析结果显示,污染日OFP为113.63μg·m-3,比清洁日增加56.55%,OVOCs和芳香烃对OFP的贡献率分别增加6.51%和1.55%,而烯烃的贡献...  相似文献   

8.
张蕊  孙雪松  王裕  王飞  罗志云 《环境科学》2023,44(4):1954-1961
为深入了解臭氧(O3)污染高发季节大气挥发性有机物(VOCs)对O3生成的影响,基于北京市2019年夏季VOCs和O3高时间分辨率在线监测数据,开展VOCs变化规律、组成特征和臭氧生成潜势(OFP)研究.结果表明,大气φ(VOCs)平均值为(25.12±10.11)×10-9,其中,烷烃是体积分数最大的组分,占总VOCs的40.41%,其次是含氧有机物(OVOCs)和烯/炔烃,分别占总VOCs的25.28%和12.90%. VOCs体积分数日变化呈双峰型,早高峰出现在06:00~08:00,烯/炔烃占比明显增加,表明机动车排放对VOCs贡献显著,而午后VOCs体积分数降低,期间OVOCs占比呈现上升趋势,下午的光化学反应和气象要素对VOCs体积分数和组成影响较大.北京市城区夏季OFP为154.64μg·m-3,贡献率较高的组分是芳香烃、 OVOCs和烯/炔烃,正己醛、乙烯和间/对-二甲苯等是关键活性物种,削减机动车、溶剂使用和餐饮源排放是北京市城区夏季控制O3  相似文献   

9.
为了解黄河三角洲区域细颗粒物(PM2.5)和臭氧(O3)大气复合污染特征和成因,本文利用2021年和2022年夏秋季黄河三角洲中心城市东营市、滨州市的挥发性有机物(VOCs)连续观测数据及常规污染物数据,识别对O3和二次有机气溶胶(SOA)生成有显著贡献的VOCs物种并对VOCs进行来源解析,同时利用基于观测的化学盒子模型探讨O3的生成敏感性.结果表明:(1)黄河三角洲地区PM2.5和O3浓度“双高”的大气复合污染主要出现在秋季,夏季东营市和滨州市首要污染物均为O3,距离入海口越远的站点O3超标天占比越高;秋季东营市和滨州市首要污染物均为PM2.5,且超标情况相近.(2)烯烃和含氧挥发性有机物(OVOCs)对臭氧生成潜势(OFP)的贡献大,优势物种为乙醛;芳香烃对SOA生成潜势(SOAFP)的贡献大,优势物种为1,2,3-三甲苯.(3)东营市夏秋季O3生成均处于VOCs...  相似文献   

10.
2022年8月成都和重庆呈现显著的臭氧(O3)污染差异,成都O3污染天高达20 d,重庆无O3污染天,本文从前体物排放水平和气象条件分析此差异的影响因素.结果表明:(1)成都52种挥发性有机物(VOCs)(包含26种烷烃、 16种芳香烃和10种烯烃)的总体积分数(18.8×10-9)是重庆(6.6×10-9)的2.8倍,总O3生成潜势(OFP=51.2×10-9)是重庆(25.0×10-9)的2.0倍,总·OH损耗速率(L·OH=3.9 s-1)是重庆(2.3 s-1)的1.7倍.成都OFP前3是乙烯、间/对-二甲苯和异戊二烯;重庆OFP前3是异戊二烯、乙烯和丙烯.重庆仅烯烃对O3的贡献率是60.7%,而成都烯烃和芳香烃的OFP分别是重庆的1.6倍和2.9倍.综上,成都VOCs总体积分数、大气光化学活性和O3  相似文献   

11.
为了解挥发性有机物(VOCs)对深圳市城区臭氧(O3)生成的影响,探究O3污染的防控策略,基于莲花站在线观测数据对2018年秋季O3污染过程中VOCs对O3生成影响进行量化研究.在分析O3污染特征的基础上,基于观测的模型分析了O3原位生成特征,识别了影响O3生成的关键VOCs组分,并量化了其对O3生成的影响.结果表明:①深圳市城区秋季O3污染过程具有高温低湿的特征,主导风向主要为持续偏北风影响型、海陆风影响型和无明显主风型,其中海陆风影响型和无明显主风型受传输影响导致φ(O3)在傍晚后呈居高不下的特征.②不同主导风向类型下,深圳市城区O3化学生成的建模结果具有一致性.污染日O3最大小时净生成速率平均值为12.85×10-9 h-1,HO2·+NO和RO2·+NO两种途径对O3生成的贡献率分别为57.9%~60.2%和39.8%~42.1%.③深圳市城区O3生成受VOCs控制,其中植物源ISO(异戊二烯)和人为源VOCs组分中的XYM(间/对-二甲苯)、TOL(甲苯等其他芳香烃)、HC8(高碳数烷烃)、OLT(直链烯烃)是影响O3生成的五大关键组分.④φ(ISO)和φ(AHC)(AHC为人为源VOCs)单独下降20%,φ(O3)小时峰值分别下降6.2%和28.0%,其中AHC组分中以φ(XYM)降低带来的φ(O3)下降效果最显著,降幅为10.1%.研究显示:人为源VOCs组分体积分数的下降对降低φ(O3)有显著效果,建议以二甲苯类物种来源为重要管控对象,特别是机动车排放与溶剂使用源;同时,建议加强醛酮类VOCs的监测与研究,为O3的污染治理及污染源的精细化管控提供依据.   相似文献   

12.
为探究热带地区环境空气中挥发性有机物(VOCs)的污染特征,利用三亚市2019年VOCs在线监测数据,全面分析了VOCs的污染特征、来源以及对O3的影响.结果表明:①总挥发性有机物(TVOCs)日均体积分数范围为2.05×10-9~19.74×10-9,且以烷烃(71.4%)和烯烃(20.5%)为主.②VOCs优势物种丙烷、正丁烷、乙烷、异丁烷、乙烯、乙炔、苯和甲苯的体积分数日变化均呈早晚双峰的特征;φ(异戊二烯)呈白天显著高于夜间的特征,其季节性变化规律与光照变化基本一致.③对臭氧生成潜势(OFP)贡献最大的是烯烃(70.6%),其中异戊二烯的OFP贡献率(41.9%)最大,其次是烷烃(19.9%).④春夏季φ(NO2)和φ(VOCs)均较低,难以通过光化学反应生成较高的φ(O3),秋冬季φ(O3)显著升高主要与东北方向污染物传输有关.⑤正交矩阵因子模型(PMF)解析结果表明,VOCs来源分别为交通源(46.52%)、溶剂使用源(18.25%)、植物源(12.36%)、工业源(11.99%)和燃烧源(10.88%).研究显示,三亚市环境空气中φ(VOCs)受交通源排放影响较大,应加强管制以削减环境空气中VOCs活性较大的物种,从而减少O3的生成.   相似文献   

13.
姜华  常宏咪 《环境科学研究》2021,34(7):1576-1582
为揭示我国近地面臭氧的污染特征,甄别导致高浓度臭氧形成的关键影响因素,该文在探究我国重点区域近年来O3污染特征的基础上,对O3污染成因进行了初步分析.结果表明:①近年来我国O3污染呈缓慢上升态势,2019年夏季异常高温、干旱的极端天气导致O3污染偏重.京津冀及周边地区等重点区域O3浓度明显高于欧美等发达国家和地区.②从时间上看,我国O3污染主要出现在夏季及其前后,O3浓度峰值一般出现在午后.从空间上看,O3污染主要集中在京津冀及周边、汾渭平原和苏皖鲁豫交界地区,其次是长三角和珠三角区域,成渝和长江中游地区O3污染也逐渐凸显.我国O3污染程度主要以轻度污染为主,重点区域O3和PM2.5污染时空分异性特征明显.③前体物方面,我国NOx和人为源VOCs的排放量总体处于高位,京津冀及周边地区和长三角为全国NOx和VOCs排放强度较大的区域.近地表大气O3形成机理复杂,O3浓度与前体物VOCs和NOx均呈复杂的非线性响应关系.气候变化和气象因素对O3污染影响显著,O3及其前体物在区域和城市之间存在相互输送影响.研究显示,我国臭氧污染形势严峻,未来针对臭氧污染防控应加强对多时空尺度下不同区域臭氧污染的形成机理与主导因素的研究.   相似文献   

14.
利用近5a深圳西部城区(大学城)大气臭氧(O3)在线监测数据,结合深圳大学城超级站大气复合污染综合观测,获取了大气O3演变趋势,并探究O3超标日气象条件及其前体物的组成变化以期掌握大气O3超标成因.结果表明,深圳大学城大气O3日最大8h平均体积分数上升速度达1.1×10-9/a,超标率达到6%以上.高温低湿的气象条件更容易促进大气O3生成,高温时光化学反应强烈有利于O3的本地生成,而低湿可能不利于O3的湿去除从而导致污染积累.挥发性有机物(VOCs)不同组分在O3超标日上升幅度(70%~95%)明显高于NOx(28%),且O3高值浓度分布在高VOCs低NOx区域,说明深圳大学城大气O3生成主要受VOCs控制.O3超标日的甲苯与苯比值(T/B)在夜间超过10表明可能存在大量工业排放;而含氧挥发性有机物(OVOCs)在午间(12:00~14:00)的消耗相较于非超标日高出了1倍左右,表明工业活动排放的OVOCs对白天O3生成可能贡献显著.  相似文献   

15.
“十四五”期间加强对PM2.5和臭氧(O3)共同前体物VOCs的有效管控,对于我国持续改善环境空气质量非常关键,但目前人为源VOCs管控仍然是我国大气环境管理中的短板,我国亟待构建有效的人为源VOCs管控机制. 美国自20世纪50年代开始关注人为源VOCs管控,历经70多年取得了较为明显的成效. 学习借鉴美国人为源VOCs管控经验将有利于推动我国人为源VOCs的管控. 本文全面梳理了美国人为源VOCs的管控历程,总结其成效与经验,结合对我国自2000年以来人为源VOCs的管控状况与所存在不足的分析,提出“十四五”期间我国人为源VOCs管控建议. 研究发现,美国在人为源VOCs管控中,通过逐渐厘清VOCs的定义、认清VOCs与O3、PM2.5污染间的联系,逐步推进VOCs管控工作,逐渐形成了集科学认识、技术支撑、政策支持与公众参与为一体的有效的VOCs管控体系,因而在人为源VOCs排放量降低及有毒有害污染物、O3、PM2.5浓度降低方面取得了较为显著的成效. 目前我国人为源VOCs管控在管控框架、基础支撑、制度保障等方面均存在不足,为有效推进我国“十四五”期间人为源VOCs的管控,建议加强以下工作:①优化管控体系;②提升基础能力;③完善制度保障;④促进创新发展;⑤调动公众参与.   相似文献   

16.
张涵  姜华  高健  李红 《环境科学研究》2022,35(3):611-620
近年来,我国总体上呈现出PM2.5浓度显著降低,臭氧(O3)浓度波动上升的趋势,对我国大气复合污染协同治理提出了严峻的挑战. 厘清PM2.5与O3污染形成机制,对于制定PM2.5与O3协同治理策略具有重要意义. 本文在较为全面地梳理现有研究基础上,分析了PM2.5与O3污染的形成机制及影响二者关联性的因素,介绍了PM2.5与O3协同防控治理的内涵与思路. 结果表明:PM2.5与O3浓度呈高度非线性关系,二者相关性受光照辐射强度、光照时长、风速、相对湿度、地表边界层高度以及经度差异等外界环境因素影响. PM2.5与O3的协同控制应主要从控制反应前体物排放着手,主要包括管控NOx、VOCs、HONO、NH3以及人为氯等排放. 研究显示:目前我国在PM2.5与O3协同防控中存在基础科学研究不足和污染控制管理不完善的问题,在未来还需要重视多个尺度和空间维度的PM2.5与O3复合污染机理研究、模拟试验研究和预测演变研究,为制定更加准确、量化、高效的控制对策提供支撑;同时,需要加强前体物排放管理力度,完善国家级、省级层面的联防联控机制以及加快科研成果转化,为未来治理PM2.5与O3复合污染提供经验支持.   相似文献   

17.
为了探究珠江三角洲城市大气PM2.5和O3的协同污染特征,在深圳市大学城开展了秋季光化学反应活跃季大气污染加强观测.发现O3日最大8h平均值(O3_8h)和PM2.5在日间具有较强的正相关关系,且O3_8h与典型挥发性有机物(VOCs)甲醛的相关性显著高于NO2.利用气溶胶质谱仪在线测量了亚微米气溶胶化学组成,并利用正交矩阵因子模型(PMF)对其中有机气溶胶进行来源解析,解析出5类因子,其中二次有机气溶胶(SOA)占总有机物浓度的50%.通过对污染物之间的相关性分析发现,O3_8h和SOA具有良好的相关性,但与硝酸盐(NO3-)未表现出相关性,说明VOCs在深圳城区大气PM2.5和O3耦合生成过程中的作用比NOx明显,VOCs减排是深圳市协同控制PM2.5和O3污染的关键.  相似文献   

18.
利用MCCM(多尺度气象空气质量模式)对京津冀地区2008年6月严重光化学污染时段的近地面φ(NOx)和φ(O3)进行了模拟;同时,为了检验MCCM系统模拟φ(O3)时空分布的能力,将模拟的气象要素、φ(NOx)和φ(O3)与观测数据进行了比对,并利用验证后的模拟结果对该地区严重光化学污染时段O3时空分布特征进行研究. 结果表明:①MCCM模式可较好地反映气象场和污染物浓度场的时空分布特征. 气温、露点温度和气压的观测值与模拟值的相关系数分别为0.85、0.77和0.95;模拟的化学物种浓度的时空分布与观测结果基本相符. ②城市中心地区φ(NOx)较高,北京和天津城市地区的φ(NOx)甚至超过了30×10-9;京津冀平原大部分地区午后14:00φ(O3)的最大值超过了70×10-9;而太行山沿线φ(O3)的最大值超过了80×10-9. 结合气象要素的分析表明,午后φ(O3)在太行山沿线的高值与气压场和流场关系密切. ③利用判断O3生成敏感性指标——H2O2/HNO3(体积分数比)分析发现,φ(O3)日最大值和φ(总氧化剂)(总氧化剂=NO2+O3)平均值的高值区域与O3生成受NOx和VOCs协同控制的区域极为吻合. 因此,要达到降低区域的光化学污染,应以VOCs的消减为主,同时兼顾NOx的消减.   相似文献   

19.
采集太原市城区夏季VOCs样品并分析其浓度特征,使用参数修正法得到VOCs初始浓度,分析其来源及对O3生成的贡献.结果显示:太原市城区总VOCs平均浓度为48.13 μg/m3,烷烃(25.52 μg/m3)为主要组分.VOCs浓度呈明显日变化特征,在日间(10:00~14:00)光化学产生O3的关键时段浓度最低.油品挥发、机动车排放、燃煤、植物排放与液化石油气/天燃气(LPG/NG)使用源对修正后环境VOCs的贡献分别为26.89%、25.55%、21.14%、14.99%、11.44%,对O3生成的贡献分别为21.44%、33.10%、24.07%、13.77%、7.62%.机动车为新鲜排放气团VOCs的重要来源,而油品挥发、燃煤的输送与本地积累是其他(混合、夜间与反应)气团VOCs的重要来源.机动车排放、油品挥发与燃煤为VOCs与O3生成的重要贡献源,控制此类源排放可减少太原市城区环境VOCs浓度并有效降低O3生成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号