首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gram-negative psychrophilic bacterium, with potential for biodegradation of long-chain n-alkanes was isolated from ice samples collected in Spitzbergen, Denmark. On the basis of results of biochemical and morphological tests and sequence analysis of 16S rRNA, the strain was identified as Pseudomonas frederiksbergensis. In this work, a short-chain NAD+-dependent alcohol dehydrogenase (alcDH) (Accession number: AAR13804) from the P. frederiksbergensis was cloned and transformed in E. coli BL21 (3DE) competent cells. The alcDH activity was highest in the crude extract of cells induced with 1.0 mM IPTG. The recombinant alcDH enzyme was purified to 93.4% homogeneity using three consecutive purification steps including ammonium sulphate, Q-Sepharose Fast Flow column and gel filtration chromatography employing Superdex 200 10/30 HR column. Enzyme enrichment and yield levels of 31.4 folds and 25.5%, respectively, were achieved. While the subunit molecular mass of the enzyme was determined on SDS-PAGE to be ~38 kDa, the aggregated native form of the enzyme had a molecular mass of ~238 kDa by gel filtration analysis. Reaction conditions optima for the recombinant alcDH were determined with propan-1-ol as the substrate. While the optimum pH was 9, the optimum temperature was 35 °C. The alcDH enzyme exhibited moderate thermal stability with half-lives of 150 min at 55 °C, 27 min at 65 °C and 8 min at 75 °C. Results for kinetic parameters indicated that the apparent K m value for alcDH with propan-1-ol as the substrate was found to be 1.42 mM and the V max value was 0.63 mmol mg−1 min−1. Experimental evidence revealed that the recombinant alcDH exhibited a wide range of substrate specificity, with higher levels of specific activity for aliphatic alcohols as compared to secondary alcohols. Taken together, the present study highlights the potential of alcDH as a member of cold-adapted enzymes in several key biotechnological applications including environmental bioremediation and biotransformations. It is envisaged that, with the ongoing screening of microorganisms and metagenomes, directed evolution approaches and the subsequent overexpression of recombinant proteins, more enzymes will be found that are suitable for bioremediation purposes.  相似文献   

2.
Copolymers of aniline and o-phenylenediamine/kaolinite composites were synthesized by 5:1 molar ratios of the respective monomers with different percentages of nanoclay via modified in situ chemical co-polymerization. The results were verified by measuring the FT-IR and UV–vis absorption spectra for PANI-o-PDA/kaolinite composites. The thermal behaviour of the copolymer and composites was studied. PANI-o-PDA/kaolinite composites were thermally more stable than pure copolymer. Surface morphology of copolymer composites was recorded at different magnification power by SEM which revealed whitish micrometric beads distributed all over the field with particle size in the range of 0.122–0.233 μm. This work demonstrates that the PANI-o-PDA/kaolinite composites particles can be considered as potential adsorbents for hazardous and toxic metal ions of water from lake El-Manzala, Egypt. All of Cd(II), Cu(II), and Pb(II) posed dangerous health risk to the local population via fish consumption.  相似文献   

3.
Experiments were performed in order to investigate the possibility for the development of catalysts for low-temperature selective catalytic reduction (SCR) using municipal waste char and RDF byproduct. Physical and chemical activations, using water, and HCl and KOH, were employed to increase the catalytic activities. The characteristics of the activated catalysts were investigated using N2 adsorption–desorption and FT-IR. The catalysts activated chemically using basic treatment showed higher NO x removal efficiencies than those activated physically or chemically using acidic treatment. The de-NO x performance of the activated catalysts was dependent on the chemical properties, such as oxygen functional groups as well as physical properties, such as specific surface area and pore volume. In order to investigate the effect of MnO x , which has been reported to be efficient for the removal of NO x in low-temperature SCR processes, the chemically activated catalyst was impregnated with manganese. The Mn-impregnated catalyst had the highest NO x conversion at all of the temperatures tested in this study.  相似文献   

4.
The current study is interested in evaluating the decay of cotton, Whatman and chemical pulp caused by Trichoderma harzianum and Paecilomyces variotii. The structural changes of the paper were evaluated by Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The SEM results show differences in hyphae colonization and paper decay patterns between studied species under the current study; P. variotii caused an eroded structure in the cotton (cavity forming), whereas the initial T. harzianum colonization produced rupture and erosion (soft-rot decay type II) for the three types of paper ,the gaps were elongated with sharp pointed ends, which consisted either of individual cavities or in chains. Moreover, FTIR results confirmed that there a relationship could be observed between fungal decay and crystalline cellulose content because the intensity of peaks at 1335 and 1111 cm?1 significantly decreased due to the fungal decay. Furthermore, the intensity of O–H stretching absorption slightly decreased, and this may be attributed to hydrolysis of cellulose molecules.  相似文献   

5.
Groundwater below an operating manufacturing facility in Portland, Oregon, was impacted by chlorinated volatile organic compounds (CVOCs), with concentrations indicative of a dense, nonaqueous‐phase liquid (DNAPL) release. The downgradient plume stretched under the adjacent Willamette River, intersecting zones of legacy impacts from a former manufactured gas plant (MGP). An evaluation of source‐area and downgradient plume treatment remedies identified in situ bioremediation as most likely to be effective for the CVOC plume, while leaving the legacy impacts for other responsible parties. With multiple commercially available products to choose from, the team developed and implemented a bench test to identify the most appropriate technology, which was further evaluated in a field pilot study. The results of the testing demonstrated conclusively that bioremediation enhanced by in situ chemical reduction (ISCR) using EHC® and KB‐1® was most appropriate for this site, providing outstanding results. The following describes the implementation and results of the tests. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
From the point of view of a sustainable and environment-friendly society based on the recycling of material resources, it is preferable to utilize waste gypsum as a substitute for lime, which is currently produced by the calcination of limestone. In the present work, the reductive decomposition of CaSO4 was investigated under an atmosphere of CO: 2 vol%, CO2: 30 vol%, with N2 as a carrier gas without and with the addition of SiO2, Al2O3, or Fe2O3. It was found that the decomposition temperature of CaSO4 was significantly reduced from 1673 K to 1223 K when only 5 wt% Fe2O3 was added to CaSO4. In the case of the addition of SiO2 or Al2O3 to CaSO4, the decomposition temperature was reduced from 1673 K to 1623 K. This was due to the formation of composite oxides (calcium ferrite, calcium silicate, or calcium aluminate) during the reaction of CaSO4 with the additives at a lower temperature. In addition, the formation of unfavorable product CaS was inhibited in the presence of 5 wt% Fe2O3, and this inhibition effect further increased as the addition of Fe2O3 was increased. In contrast, no significant effect on the inhibition of CaS formation was observed on the addition of SiO2 or Al2O3.  相似文献   

7.
This study investigated the application of bamboo as a natural composite, in which its potential as a composite material had been examined for 2–6 layers. In precise, the woven bamboo (BW) formed the culm fiber composite with an average of 0.5 mm thickness and 5.0 mm width strip. In addition, this study looked into a specific type of bamboo species known as Gigantochloa Scortechinii (Buluh Semantan), which can be found in Malaysia. This laminated plain BW, which had been reinforced with epoxy (EP), was developed by applying the hand lay-up technique. After that, the specimens were characterized via mechanical analyses, for instance, tensile, flexural, hardness, and impact tests. As a result, the 2-layer BW had displayed rather excellent results chiefly due to the incorporation of epoxy composite, although this is exceptional hardness value.  相似文献   

8.
Remediation of chlorinated solvent DNAPL sites often meets with mixed results. This can be attributed to the diametrically opposed nature of the impacts, where the disparate dissolved‐phase plume is more manageable than the localized, high‐concentration source area. A wide range of technologies are available for downgradient plume management, but the relative mass of contaminants in a DNAPL source area generally requires treatment for such technologies to be effective over the long term. In many cases, the characteristics of DNAPL source zones (e.g., depth, soil heterogeneity, structural limitations) limit the available options. The following describes the successful full‐scale implementation of in situ chemical reduction (ISCR) enhanced bioremediation of a TCE DNAPL source zone. In this demonstration, concentrations of TCE were rapidly reduced to below the maximum contaminant level (MCL) in less than six months following implementation. The results described herein suggest that ISCR‐enhanced bioremediation is a viable remedial alternative for chlorinated solvent source zones. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Iron‐Osorb® is a solid composite material of swellable organosilica with embedded nanoscale zero‐valent iron that was formulated to extract and dechlorinate solvents in groundwater. The unique feature of the highly porous organosilica is its strong affinity for chlorinated solvents, such as trichloroethylene (TCE), while being impervious to dissolved solids. The swellable matrix is able to release ethane after dechlorination and return to the initial state. Iron‐Osorb® was determined to be highly effective in reducing TCE concentrations in bench‐scale experiments. The material was tested in a series of three pilot scale tests for in situ remediation of TCE in conjunction with the Ohio Environmental Protection Agency at a site in central Ohio. Results of these tests indicate that TCE levels were reduced for a period of time after injection, then leveled out or bounced back, presumably due to depletion of zero‐valent iron. Use of tracer materials and soil corings indicate that Iron‐Osorb® traveled distances of at least 20 feet from the injection point during soil augmentation. The material appears to remain in place once the injection fluid is diluted into the surrounding groundwater. Overall, the technology is promising as a remediation method to treat dilute plumes or create diffuse permeable reactive barriers. Keys to future implementation include developing injection mechanisms that optimize soil distribution of the material and making the system long‐lasting to allow for continual treatment of contaminants emanating from the soil matrix. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
The continuous increase in generation of solid wastes and gradual declining of fossil fuels necessities the development of sustainable conversion technologies. Recent studies have shown that the addition of biomass with hydrogen-rich co-reactants (plastics) altogether enhances the quality of bio-fuels using pyrolysis process. It was observed that red mud (which is produced as by-product in Bayer process) was used as a catalyst in few conversion process. In this study, pyrolysis of biomass (Pterospermum acerifolium) and waste plastic mixture with activated red-mud catalyst was investigated using thermo-gravimetric analysis. The kinetic parameters (activation energy and pre-exponential factor) of this process were determined using distributed activation energy model (DAEM). The DAEM was effectively applied to decide the activation energy (E) and pre-exponential factor (A) for each sample at various conversions during the catalytic co-pyrolysis. The biomass, plastic, biomass–plastic, and biomass–plastic–catalyst exhibited activation energies in the ranges of 78–268, 172–218, 67–307, and 202–292 kJ/mol, respectively.  相似文献   

11.
Polysaccharides were isolated from nopals mucilage pulp and peel of Opuntia Ficus Indica (OFI) and Opuntia litoralis (OL) by aqueous extraction and purified by ultrafiltration. Studying the glycosyl residue composition, these polysaccharides were assumed to be rhamnogalacturonan I (RG-I). The macromolecular features of these compounds have been characterized by SEC/MALLS and by low shear viscosimetry. In the present work, we have undertaken a comparative study about different polysaccharides resulting from OFI and OL growing in different area. This comparison is to see the influence of the geographical area in which these two plants push on the mechanism of retention of water by the different polysaccharides extract. The polysaccharides resulting from the nopal peels of the two plants are highly methylated (>70%), thus they are much more hydrophobic especially for peels of OFI growing in the desert area than those resulting from pulps. Consequently, they probably prevent the evaporation of water in nopals by increasing their water retention capacity. Prickly pear nopals of OFI and OL contain a significant amount of water (>80%), carbohydrates (75% compared to the soluble matter), proteins (8% compared to the soluble matter) and salt (17% compared to the soluble matter). Thus, they represent an important source of water and alimentation especially in the arid and semi-arid areas.  相似文献   

12.
Poly(dl-lactic acid) or PLA is a biodegradable polymer. It has received much attention since it plays an important role in resolving the global warming problem. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported as having PLA depolymerase potential and being applicable to PLA biodegradation, which was used in this work. Therefore, this research demonstrates the important basic knowledge on the biological degradation process by the crude PLA-degrading enzyme from strain T16-1. Its re-polymerization was evaluated. The optimization of PLA degradation by statistical methods based on central composite design was determined. Approximately 6700 mg/l PLA powder was degraded by the crude enzyme under optimized conditions: an initial enzyme activity of 200 U/ml, incubated at 60 °C for 24 h released 6843 mg/l lactic acid with 82% conversion, which was similar to the commercial enzyme proteinase K (81%). The degradable products were re-polymerized repeatedly by using commercial lipase as a catalyst under a nitrogen atmosphere for 6 h. A PLA oligomer was achieved with a molecular weight of 378 Da (n = 5). This is the first report to demonstrate the high efficiency of the enzyme to degrade 100% of PLA powder and to show the biological recycling process of PLA, which is promising for the treatment and utilization of biodegradable plastic wastes in the future.  相似文献   

13.
To prepare a substrate for microbial conversion of xylose into xylitol, the culm of Sasa senanensis was hydrolyzed with dilute sulfuric acid. When the reaction temperature was fixed at 121°C, an optimum yield of xylose was obtained by treatment with 2% sulfuric acid for 1 h. An increase in the sulfuric acid concentration or a prolonged reaction time resulted in a decrease in the xylose yield. A fermentable substrate with a relatively high xylose concentration (36.7 g l−1) was obtained by hydrolysis with 2% sulfuric acid with a liquid-to-solid ratio of 5 g g−1. During hydrolysis at elevated temperatures, certain undesired byproducts were also generated, such as degradation products of solubilized sugars and lignin, which are potential inhibitors of microbial metabolism. These compounds were, however, successfully removed from the hydrolysate by treatment with activated char.  相似文献   

14.
Pectin is a natural biopolymer, and a major component of a complex heterogeneous polysaccharide found in the primary cell walls and middle lamella of plant tissues. This paper used pectin isolated from Cissampelos pareira (Krueo Ma Noy) leaves to prepare the matrix layer for nicotine transdermal patches. However, the patch was a brittle film, thus, deproteinized natural rubber latex (DNRL) was blended to improve flexibility of the patch. Here we present for the first time a preparation study exploring the suitability of isolated pectin blends to serve as drug carriers and the mechanism controlling the release patterns of nicotine. The hydrophilicity of the patches was found to decrease when increasing the DNRL ratio. Differential scanning calorimetry and X-ray diffraction experiments were used to characterize the interactions between the investigated drugs and the matrix polymers. In vitro studies showed that the isolated pectin blends were an effective matrix for controlled nicotine release. The release and permeation patterns of nicotine depend on the hydrophilicity of the patches. The kinetic models of nicotine were found to be a Higuchi model and zero order for in vitro release and skin permeation, respectively.  相似文献   

15.
This study presents a photochemical kinetics model to describe the degradation of water-soluble PVA (Polyvinyl Alcohol) polymer in a UV/H2O2 batch reactor. Under the effect of UV light, the photolysis of hydrogen peroxide into hydroxyl radicals can generate a series of polymer scission reactions. For a better understanding and analysis of the UV/H2O2 process in the cracking of the PVA macromolecules, a chemical reaction mechanism of the degradation process and a relevant photochemical kinetics model are developed to describe the disintegration of the polymer chains. Taking into account the probabilistic fragmentation of the polymer, the statistical moment approach is used to model the molar population balance of live and dead polymer chains. The model predicts the PVA molecular weight reduction, the acidity of the solution, and hydrogen peroxide residual. In addition to previously published data collected in this laboratory, a new set of experiments were conducted using a 500 mg/L PVA aqueous for different hydrogen peroxide/PVA ratios for model validation. Measurements of average molecular weights of the polymer, hydrogen peroxide concentrations and pH of the PVA solution were determinant factors in constructing a reliable photochemical model of the UV/H2O2 process. Experimental data showed a decrease in the PVA molecular weight and a buildup of the solution acidity. The experimental data also served to determine the kinetics rate constants of the PVA photochemical degradation and validate the model whose predictions are in good agreement with data. The model can provide a comprehensive understanding of the impact of the design and operational variables.  相似文献   

16.
Studies have shown that the copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] possesses favorable mechanical properties for use in medical supplies and products (e.g., sutures, scaffolds, bone plates). One of the major under-addressed issues associated with the use of biodegradable, bio-based PHA polymers in resorbable medical products is the correlation between the mechanical properties and the in vivo material degradation over time. In this study, P(HB-co-17 mol% HHx) matrices were mechanically tested after either incubation in cultures of human embryonic kidney cells (HEK) for in vitro degradation studies for up to 4 weeks, or inserted into Danio rerio (zebrafish) tissues for in vivo degradation studies for up to 7 weeks. The mechanical properties and scanning electron microscopy (SEM) images of the degraded materials were examined and later correlated to understand the degradation phenomenon. Our results show that Young’s modulus of P(HB-co-17 mol%HHx) during in vitro studies decreased from 3.26 to 2.42 GPa within 4 weeks, and in vivo breakdown resulted in a significant decrease in Young’s modulus with a decrease from 3.26 to 0.51 GPa and a mass loss of 59 % within 7 weeks. SEM images showed the development of pores and cracks on the surface of the material over time. Plasticization and recrystallization were observed and likely play a role in the alteration of mechanical properties.  相似文献   

17.
Different synthesis methods were applied to determine optimal conditions for polymerization of (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (l-lactide), in order to obtain poly(l-lactide) (PLLA). Bulk polymerizations (in vacuum sealed vessel, high pressure reactor and in microwave field) were performed with tin(II) 2-ethylhexanoate as the initiator. Synthesis in the vacuum sealed vessel was carried out at the temperature of 150 °C. To reduce the reaction time second polymerization process was carried out in the high pressure reactor at 100 °C and at the pressure of 138 kPa. The third type of rapid synthesis was done in the microwave reactor at 100 °C, using frequency of 2.45 GHz and power of 150 W at the temperature of 100 °C. The temperature in this method was controlled via infrared system for in-bulk measuring. The solution polymerization (with trifluoromethanesulfonic acid as initiator) was possible even at the temperature of 40 °C, yielding PLLA with narrow molecular weight distribution in a very short period of time (less than 6 h). The obtained polymers had the number-average molecular weights ranging from 43,000 to 178,000 g mol−1 (polydispersity index ranging from 1 to 3) according to the gel permeation chromatography measurements. The polymer structure was characterized by Fourier transform infrared and NMR spectroscopy. Thermal properties of the obtained polymers were investigated using thermogravimetry and differential scanning calorimetry.  相似文献   

18.
Microbial polyhydroxyalkonate such as homopolyester of poly(3-hydroxybutyrate) (PHB) was produced from cheese whey by Bacillus megaterium NCIM 5472. Due to their numerous potential industrial applications, the focus was given to competently enhance the amount of PHB produced. The amount of PHB produced from whole cheese whey, and ultrafiltered cheese whey was first compared, and after observing a rise in PHB production by using ultrafiltered cheese whey, cheese whey permeate was chosen for further analysis. The presence of PHB was then confirmed by GCMS. Since the main aim of the study was to increase the amount of PHB produced through batch fermentation, various process parameters like time, pH, C/N ratio, etc. were optimized. After optimization, it was found that B. megaterium NCIM 5472 was capable of accumulating 75.5% of PHB of its dry weight and a PHB yield of 8.29 g/L. The chemical structure of the polymer was further analyzed by using FTIR and NMR spectroscopy methods. Also, the physical and thermal properties were studied by using Differential scanning calorimetry and Thermogravimetric analysis. It was found that the polymer produced had excellent thermal stability, thus allowing the possibility to exploit its properties for industrial purposes such as adhesives, packaging materials, etc.  相似文献   

19.
Biodegradable polymers are considered a feasible option to minimize the environment impacts of high disposal of solid waste. Nevertheless, environmental safety of these materials is a few explored issue. In this context, this study evaluated ecotoxicological effects in soil of the biodegradable materials poly(lactic acid)-PLA, poly(butylene adipate co-terephthalate)-PBAT and their blends compatibilized with a chain extender. The tool used for this analysis was the bioassay with Allium cepa as test organism. The studied materials were not phytotoxic, cytotoxic, genotoxic nor mutagenic for meristematic cells of A. cepa.  相似文献   

20.
Haloferax mediterranei is an extremely halophilic archaeon that is able to synthesize polyhydroxyalkanoate (PHA) in high salt environment with low sterility demand. In this study, a mathematical model was validated and calibrated for describing the kinetic behavior of H. mediterranei at 15, 20, 25, and 35 °C in synthetic molasses wastewater. Results showed that the production of PHA by H. mediterranei, ranging from 390 to 620 mg h?1 L?1, was strongly dependent on the temperature. The specific growth rate (µ max), specific substrate utilization rate (q max), and specific decay rate (k d) of H. mediterranei increased with temperature following Arrhenius equation prediction. The estimated activation energy was 58.31, 25.59, and 22.38 kJ mol?1 for the process of cell growth, substrate utilization, and cell decay of H. mediterranei, respectively. The high temperature triggered the increased PHA storage even without nitrogen limitation. Thus, working at high temperatures seems a good strategy for improving the PHA productivity of H. mediterranei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号