首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The importance of salinity experienced during embryonic development and initial larval biomass on larval growth was studied in the South American estuarine crab Chasmagnathus granulata. Ovigerous females were maintained at three salinities (15, 20, and 32‰) from egg laying to hatching of zoea l. Larvae from all treatments were reared under constant conditions of photoperiod (12∶12), temperature (18°C), and salinity (first instar at 20‰, subsequent instars at 32‰). Biomass was measured as dry weight, carbon, and nitrogen content per individual at egg laying, hatching of zoea l, premoult zoea l, and zoea 4, and in 8-day-old megalopa. From hatching to premoult zoea 4, biomass was higher for larvae from prehatching salinities of 15 and 32‰. There was a significant positive correlation between biomass at hatching and at premoult zoea l and zoea 4. Accumulated biomass during zoeal stages tended to be higher for larvae from broods with higher biomass at hatching, although this trend was not always significant. Zoea 4 either directly metamorphosed to megalopa or moulted to zoea 5, following, respectively, a short or long developmental pathway. The proportion of zoea 4 that followed the long pathway was negatively correlated with biomass of zoeal stages. Biomass at hatching was correlated with biomass of megalopae developed through the short pathway, although it was not correlated with the accumulated biomass at this stage. Megalopae developed through the long pathway (i.e. metamorphosed from zoeae 5) had higher biomass than those from the short pathway. The present results suggest that prehatching salinity and initial egg and larval biomass can be very important for larval growth. Published online: 9 August 2002  相似文献   

2.
Larvae were hatched from ovigerous Dungeness crabs, Cancer magister, collected from Puget Sound Basin, Washington, USA, in April, 1986, and the effects of temperature on rates of survival and development were studied for each of the five zoeal stages both in small batch-culture and in individual culture. Culture method had little effect on the results at 10°, 15°, and 20°C. Increased mortality was measured at all stages at 20°C, with 100% mortality occurring during the terminal fifth stage. Fifth stage larvae may also show higher mortality at 15°C than at 10°C. Stage duration varied inversely with temperature at all stages, although differences between 10° and 15°C were greater than between 15° and 20°C. The results indicate that survival and stage duration are independent of the values for the previous and subsequent stages, that variability among larvae in instar duration increases with temperature, and that the terminal fifth zoeal stage is the most sensitive to temperature stress. Duration of a late zoeal instar is not related to its earlier development rate nor can early development rates be used to predict whether individual zoeae will successfully develop to the megalopa. Measurements of megalopa dry weights indicate no differences due either to previous culture temperatures or to total time to the megalopa. Predictive models of larval transport that require estimates of larval duration should account for both changes in temperature response that can affect individual stage duration, and variability among individuals in stage duration that can influence the degree of larval dispersion.  相似文献   

3.
Ovigerous mud crabs, Rhithropanopeus harrisii, were collected from the Petaluma River (San Francisco Bay Estuarine System, California, USA) and from Sykes Creek (Indian River Lagoon System, Florida, USA) during the summer of 1984 and during February 1985, respectively. Their zoeae were reared in factorial combinations of temperature (20°, 25° or 30°C) and salinity (2, 5, 10, 15, 20, 25, or 30%.). Survival and megalopal dry weight were maximal over a far larger range of temperature-salinity combinations for the Florida population. Absolute values of the two parameters were also greater for this group. Temperature dominated effects on duration of zoeal development in both populations. California zoeae developed more slowly at any of the temperatures tested compared with those from Florida. The pattern of all three indices was markedly different under non-optimal conditions. Putatively adaptive modification of survival, development rate and growth of zoeae is evident in response to prevailing environmental conditions which are, in part, a function of latitudinal position. Even though populations in the Petaluma River, California, are less capable of reaching maximal performance under the prevailing physical regimes than the Florida population, they still can live in habitats where physical conditions exclude competitors and predators.  相似文献   

4.
The developmental stages from megalopa to third crab of the blue crab Callinectes sapidus Rathbun were tested in 12 combinations of cadmium (0, 50, and 150 ppb) and salinity (10, 20, 30, and 40) at 25°C. A reduction in survival and a significant delay in development from megalopa to third crab occurred within each salinity regime in 50 ppb compared with the control. Comparison of the delay in development within each salinity regime revealed that the sublethal effect of cadmium was most pronounced in the salinities normally preferred by C. sapidus. A similar comparison within each cadmium concentration, however, showed that the developmental time from megalopa to third crab was approximately the same irrespective of salinity. The developmental stages from hatch to first crab of the mud-crab Rhithropanopeus harrisii (Gould) were examined in 63 combinations of cadmium (0, 50, and 150 ppb), salinity (10, 20, and 30), constant temperature (20°, 25°, 30°, and 35°C) and cycling temperature (20° to 25°C, 25° to 30°C, and 30° to 35°C). The results indicated that cycling temperatures may have a stimulating effect on survival of the larvae compared to constant temperatures, both in the presence and in the absence of cadmium. Effects of cadmium and salinity and their interaction on the survival of the larvae from zoeae to megalopa were documented at most of the temperatures by analyses of variance. The zoeal larvae were more susceptible to cadmium than the megalopa. Effects of different combinations of cadmium and salinity on the duration of larval development were assessed by a t-test.  相似文献   

5.
The difference in morphology between zoeae of Cancer magister Dana from Alaskan and Californian waters was documented to determine if the morphological variation is attributable to environmental influences. First-stage zoeae from Alaska have significantly longer carapace spines than zoeae from central California. The dorsal, rostral and lateral carapace spines were 14, 14 and 29% longer, respectively, in the Alaskan zoeae. The effect of temperature was tested on zoeal morphology as it is an obvious environmental difference between Alaskan and Californian waters. Ovigerous female crabs collected in southeastern Alaska in 1984 were held at 1°, 5°, 10° and 15° C until hatching occurred. Eggs were sampled seven times during the incubation period, and relative mortality, egg diameter and development stage were measured. All of the crabs and eggs at 1° C died before hatching occurred. Egg mortality averaged less than 2% in the other temperature treatments. Egg diameter increased significantly over the incubation period for all temperatures. Developmental rate of the embryos was inversely related to temperature. Hatching first occurred in 42 d at 15° C, 60 at 10° C and 160 d at 5° C. Newly hatched zoeae were collected and body length, dorsal, rostral and lateral carapace spines were measured. Significant differences existed between all temperatures for all spine lengths, with longer spines occurring at lower temperatures. Zoeal body lengths were also significantly different between the three temperatures. The results of this study question the use of spine lengths to distinguish similar larval species.  相似文献   

6.
Zoeae of the mud crabRhithropanopeus harrisii (Gould) were exposed continuously throughout larval development to factorial combinations of salinity, temperature and specific aromatic hydrocarbon concentrations. Salinities and temperatures were 5, 15, or 25 and 20°, 25°, or 30°C, respectively. Either phenanthrene or naphthalene was tested separately at respective concentrations of 0, 100, 150 or 200 ppb and 0, 125, 250 or 500 ppb. Phenanthrene was much more toxic than naphthalene. Naphthalene was not acutely toxic at any physical factor combination-naphthalene concentration tested. Both compounds caused the highest mortality at low salinities. The time course of mortality due to phenanthrene exposure showed that ecdysis between the first and second zoeal stage was the most sensitive period for the larvae exposed to aqueous hydrocarbons. Phenanthrene-exposed larvae had a decreased development rate, but the naphthalene-exposed larvae developed faster than the controls.  相似文献   

7.
Effects of the juvenile hormone (JH) mimic hydroprene (Altozar®: ZR-512), which exhibits high activity against Lepidoptera, were studied on the larval development of the mud-crab Rhithropanopeus harrisii (Gould) (Brachyura: Xanthidae). Larvae reared in 20 S at 3 cycles of temperature of 20° to 25°C, 25° to 30°C and 30° to 35°C, were exposed to 0.01, 0.1 and 0.5 ppm hydroprene from hatching to the first crab stage. Larvae were also exposed to 0.1 and 0.5 ppm hydroprene only from the megalopa stage to the first crab stage. When larvae were treated with hydroprene throughout larval life, survival was significantly reduced with increasing concentrations of the compound at all temperature cycles. Synergistic effect between hydroprene and temperature on survival of zoeal larvae was not observed. On the average there was 11% less survival in the zoeal stages at the 0.01 ppm concentration. of hydroprene than in the control, an additional reduction of 13% occurred at 0.1 ppm, and finally there was a further decrease of 46% at 0.5 ppm hydroprene. Significant decrease in survival in the megalopa stage occurred only in the 0.5 ppm concentration of hydroprene at the lowest temperature cycle when larvae were exposed to the compound from hatching. When larvae were treated with hydroprene only within the megalopa stage, a significant reduction in survival was not observed. First-stage zoeae were the most sensitive of the larval stages to hydroprene. Duration of zoeal development was significantly delayed at 0.5 ppm hydroprene at the two lower temperature cycles, whereas in the megalopa stage the delay began at the 0.1 ppm level at all 3 temperature cycles when larvae were exposed to hydroprene from hatching. A significant delay was also observed at 0.1 ppm hydroprene at the two lower cycles when larvae were exposed to hydroprene only in the megalopa stage; at 30° to 35°C a significant delay was observed only at the 0.5 ppm level. The results show that metamorphosis to the first crab stage was not inhibited at the 0.5 ppm level of hydroprene or lower. Reduction in survival and increase in duration of larval development were presumably related to stress conditions caused by hydroprene. The results also suggest an interaction between temperature and hydroprene on survival of megalopa larvae and duration of larval development.  相似文献   

8.
Temperature and salinity affected both length of larval development and mortality inNecora puber collected in the Ría de A Coruña during December 1984 and January 1985. Development time decreased considerably with increased temperature. This decrease was sharper when temperature increased from 15° to 20°C than when it increased from 20° to 25°C. At 35S, average development took 48, 32 and 28 d at 15°, 20° and 25°C, respectively. At the three salinities tested (25, 30 and 35), larval development was completed only at 15°C, at 20°C/30 and 35S, and at 25°C/35S. Development times at 15° and 20°C were highly significantly different at both 35 and 30S (P 0.01). However, there were no significant differences between development times at 20° and 25°C (P > 0.05). Within any one specific temperature series, no significant difference was observed between the salinity values tested (P > 0.05). The duration of each of the five zoeal stages was similar within each and the same temperature/salinity combination, whereas the duration of the megalop was twice as long as any of the zoeal stages. The combination of the lowest temperature (15°C) and the highest salinity (35) tested resulted in the greatest larval survival of 28%. Highest mortality occurred at 25°C, at which temperature development was completed only at 35S. A sharp drop in larval survival was observed in the transition period Zoea V — megalop in all combinations of temperature and salinity tested. Within the limits of tolerance to temperature and salinity, the former effected more pronounced differences in the duration of larval development, while salinity appeared to constitute a limiting factor for survival.  相似文献   

9.
Effects of 0.01, 0.1 and 1.0 ppm methoprene (Altosid®: ZR-515), a juvenile hormone (JH) mimic which shows high activity against some economically important insect pests, especially Diptera, were tested on larvae of the mud-crab Rhithropanopeus harrisii (Gould) (Brachyura: Xanthidae) from hatching to the first crab stage under optimum and stress conditions of a number of salinities and cyclic temperatures. There was a significant reduction in survival of zoeal larvae with increasing concentrations of methoprene in nearly all combinations of salinity and temperature. On the average there was 9% less survival in the 0.01 ppm concentration of methoprene than in the control, and in the 0.1 ppm concentration the survival was further reduced by another 16%. At 1.0 ppm methoprene no larvae survived beyond the first zoeal stage under optimum conditions or under stressful combinations of salinity and temperature. Except at 0.2 ppm in 27.5% S, survival of the megalopa was not significantly reduced in 0.01 or 0.1 ppm methoprene in any salinity or temperature, although the percentage of abnormal megalopa increased under stress conditions. The first zoeal stage was the most sensitive of the larval stages to methoprene as well as to salinity and temperature stress. The duration of zoeal development was significantly lengthened with an increase in concentration of methoprene under nearly all conditions of salinity and temperature. The JH mimic had, however, no significant effect on the duration of megalopa development. A significant synergism between methoprene, salinity and temperature was not observed. It can be concluded from the results that methoprene does not inhibit metamophosis of R. harrisii larvae at the 0.1 ppm level or lower. Reduction in survival of zoeal stages and increased duration of zoeal development with increasing concentrations of methoprene are presumably related to stress.  相似文献   

10.
We exposed zoeae of the mud crab Rhithropanopeus harrisii to either bis(tri-n-butyltin) oxide (TBT) or di-n-butyltin dichloride (DBT). Experiments were repeated with zoeae from females collected from the Petaluma River, California in June–August 1983 and 1984 or from Sykes Creek, Florida (USA) in February 1985. Using probit analysis, we calculated LC50 values for exposure lasting the duration of zoeal development. Tributyltin was 54 to 65 times more toxic than dibutyltin, the lower value characterizing the response of Florida zoeae. Increases in duration of zoeal development and reduction of dry weights of megalops, both sublethal responses, were dose-dependent for the two populations. However, zoeae from Florida consistently had shorter duration of zoeal development and higher megalopal weights at metamorphosis, indicating less sensitivity to an identical exposure to either organotin compound. The results of these experiments show that dibutyltin, a putative degradation product of tributyltin, is less toxic than the parent compound. In addition, early life-history stages of two populations may have significantly different responses to xenobiotic stress which, in the case of brachyuran larvae, is evident in a differential reduction of survival and growth and an increase in duration of zoeal development.  相似文献   

11.
The tolerances of the first zoeal stage of the crab Scylla serrata (Forskal) have been investigated in 64 different temperature-salinity combinations. Exposure to temperatures above 25°C or to salinities below 17.5 caused considerable mortality; therefore, zoeae are unsuited to estuarine conditions. The larvae can tolerate temperatures down to 5°C is they are inactive below 10°C. It is suggested that 10°C is probably a lower limit and that female crabs which migrate to sea to release their eggs do not enter water with a temperature below 12°C. Hydrological conditions along the south-east coast of Africa indicate that females would, therefore, migrate less than 10 km offshore.  相似文献   

12.
T. Trask 《Marine Biology》1974,27(1):63-74
The larval development of Cancer anthonyi Rathbun (Decapoda, Brachyura) is described from laboratory rearing experiments. The external anatomy of the various larval stages is illustrated. A prezoeal stage, 5 zoeal stages and 1 megalopa stage were identified. At 17.5°C it took an average of 32.5 days for the first-stage zoeae to develop through the fifth zoeal stage and molt to the megalopa stage. The general internal anatomy of C. anthonyi larvae is discussed, and a drawing of a parasagittal section of a megalopa-stage larva is included.  相似文献   

13.
Snow carb Chionoecetes opilio zoea I and zoea II larvae, hatched from females in a controlled mating experiment, were reared in the laboratory at 10.1 °C and 28.0 salinity, to resolve the patterns of growth (dry weight [DW]) and change in energy reserves (triacylglycerols [TAG]) within a given moult cycle. The patterns of growth and change in TAG reserves were similar in each zoeal stage. Following hatching or a moult, the zoeae entered a phase of rapid size increase, i.e. high daily growth rates (5.5 to 12.8% DWd-1), for 1/3 to 2/5 of the duration of the moult cycle. During the same period, the zoeae accumulated TAG reserves until a maximum (TAG DW-1) was reached at the end of the phase of rapid growth. The period of high growth rates and of TAG accumulation is interpreted as the required time for the zoeae to reach a point in development [i.e. point of reserves saturation (PRS); Anger and Dawirs (1981)] where sufficient growth and energy reserves allow moulting to the next stage. Following the phase of rapid growth and TAG accumulation, the zoeae entered a phase of low daily growth rates (0 to 1% DWd-1) during which the TAG reserves decreased to a minimum at the end of the phase. Prior to, and during the moult to zoea II, a phase of negative growth was observed in the zoea I larvae. We conclude that measurement of zoeal size and TAG content, along with morphometric criteria (e.g. epidermal retraction), can be used to assess growth and nutritional condition of C. opilio zoeal stages from the sea.  相似文献   

14.
Metabolic-temperature responses of the developmental stages of the sublittoral crab Cancer irroratus cultured at 10° to 20°C daily cyclic and 15°C constant temperatures were determined. Generally, the metabolic rate increased with temperature in the lower range with Q10's (temperature coefficients) above 2, compensated in the midrange with Q10's between 1 and 2, and declined at the higher temperatures with Q10 values less than 1. For the larvae cultured at a constant temperature of 15°C, the compensatory response range narrowed with development from first zoeae to the later zoeal stages. In contrast, the compensatory response of the first zoeae, megalops, and crab stages within the range 10° to 25°C was interrupted by a zone of thermal sensitivity between 15° and 20°C for those individuals cultured in the 10° to 20°C cyclic regime. The compensatory response range is narrower for the third stage zoeae and broader for the second, fourth, and fifth stage zoeae. Metabolic rate-temperature (M-T) patterns of C. irroratus developmental stages cultured under the cyclic regime varied from those held at constant temperature by increased respiration and metabolic rate compensation between 20° and 25°C, and by an extension of the metabolically active range towards higher temperatures.  相似文献   

15.
M. Nagaraj 《Marine Biology》1988,99(3):353-358
The calanoid copepodEurytemora velox was collected from rock pools at Castletown, Isle of Man, UK. Its optimum environmental requirements, particularly temperature and salinity, were determined, with a view to its possible future use as living food in intensive fish and shellfish farming. The species was cultured in 21 different temperature and salinity combinations. Investigations covered a period of two years from December 1983 to December 1985. Complete development from hatching to adult stage was followed in 21 temperature and salinity combinations. Nauplii suffered relatively high mortalities, indicating the sensitivity of this development stage to variations in temperature and salinity. Highest nauplii survival was observed in the combinations 15°C with 25 and 20 S and 20°C with 20 S, the highest copepodite survival at 10°C and 20 S. Lower salinities were tolerated better at higher temperatures and higher salinities at lower temperatures. Development time varied with the temperature and salinity combinations. Lower salinities at the lower temperatures of 10° and 15°C and both lower and higher salinities at 20°C prolonged development, particularly of the naupliar stage. Highest Q5 values (i.e., rate of change of development with a 5 C° increase in temperature) were recorded for the naupliar stage. Statistical analysis indicated that salinity influences the survival of both nauplii and copepodites; however, this effect is not linear.  相似文献   

16.
Combined effects of temperature, salinity and nutrition on larval survival and growth of the European oyster Ostrea edulis L. were studied over a period of seven days in the laboratory. Larvae were obtained in August 1985 from oysters reared under field conditions on the Mediterranean coast. Four temperatures (15°, 20°, 25°, 30°C), four salinities (20, 25, 30, 35 S) and two levels of nutrition (fed or unfed) were used in the experimental design; the fed larvae received a mixed algal diet of Isochrysis galbana and Chaetoceros calcitrans forma pumilum at a concentration of 100 cells per microlitre. Larvae survived over a wide range of temperature and salinity; statistical analysis indicated that nutrition had the greatest effect on the development of O. edulis larvae, explaining 85 to 88% of the variance in growth. Compared with temperature, the effect of salinity was very slight, usually statistically insignificant. The combined effects of temperature and nutrition produced the only significant interaction. Growth of starved larvae seems to be independent of both temperature and salinity within the range of levels tested.  相似文献   

17.
Larvae of Lithodes antarcticus Jacquinot were reared in October, 1981 from hatching to the glaucothoe stage at 16 temperature/salinity combinations (5.5°; 7.5°; 9.5° and 13.5°C; 26, 29, 32 and 35 S) to determine optimal environmental conditions for larval development. The highest survival percentage was obtained in the culture at 7.5°C and diminished according to temperature increase or decrease. High temperature cultures significantly shorten the larval life duration, but produce large mortalities. At 5.5°C mortality occurred almost exclusively during the moult to glaucothoe stage. Higher survival percentages were obtained as salinity was increased. In the lowest salinity culture (26 S) no zoea reached the post-larvae stage at culture temperatures. The best T/S combination was obtained at 7.5°C and 35 S, with a survival percentage of 29%. The shortest zoeal developments were obtained at 32 S in all culture temperatures. Salinity also affects larvae coloration: there is a pigment concentration on erythrophores, which causes a color decrease.  相似文献   

18.
The combined effect of salinity, temperature and chronic exposure to water-soluble fractions (WSF) of a No. 2 fuel oil on the survival and development rate of embryos ofFundulus heteroclitus Walbaum are described. The embryos were exposed at 3 salinities (10, 20, 30 S) and 3 temperatures (20°, 25°, 30°C) to 3 different oil concentrations (15, 20, 25% WSF, equivalent to approx 0.28, 0.38 and 0.47 ppm total naphthalenes) and to one control without oil. The results were analyzed by responsesurface methodology. The lowest oil concentration was only mildly toxic to embryos under optimal salinity/temperature conditions, while the highest was extremely toxic in all factor combinations. Under optimal conditions, only the highest oil concentration resulted in more than 50% mortality. Under suboptimal conditions, especially high and low temperatures, all 3 oil concentrations caused greater than 50% mortality. The interactive effect of salinity and temperature on survival was greatest at the lowest oil concentration. Temperature had a marked effect and salinity only a slight effect on the developmental rate of the embryos. Exposure to the low oil concentration tended to increase the temperature sensitivity of developmental duration slightly. Generally, exposure to oil decreased the time interval between fertilization and hatching.  相似文献   

19.
Larvae of the bivalve molluso Adula californiensis (Phillippi, 1847) were reared for 3 days, from fertilization to veliger stage, at optimum conditions (15°C, 32.2 S), and then transferred to experimental temperatures and salinities for 22 more days to determine the effects of these factors on survival and growth. For larvae surviving to 25 days, maximum survival was estimated, by response-surface techniques, to occur at temperatures below 10°C and at salinities above 25. A comparison of 60% survival response contours for 3, 15 and 25-day old larvae indicated a progressive shift in temperature and salinity tolerance with age of larvae. The older larvae became more tolerant to reduced salinity, but less tolerant to high temperatures. Growth of the larvae over 25 days of culture was slight, and relatively independent of temperature and salinity conditions found in the environment. Oxygen consumption of 3-day old veliger larvae measured at various combinations of temperature and salinity generally increased from 7° to 18°C, and then sharply decreased from 18° to 21°C. A plateau of oxygen consumption from 9° to 15°C at 32.9 S indicated that the larvae are adapted to oceanic rather than estuarine conditions. A comparison of 25-day larval survival, mean length, and growth, with oxygen consumption of 3-day old veliger larvae indicated that high temperatures (15°C, and above) coupled with reduced salinities (26.1, and below) were unfavorable for prolonged larval life. Because of the lack of larval adaptations to estuarine conditions, larva survival and, hence, successful recruitment of this species within Yaquina Bay (Oregon, USA) depends upon the essentially oceanic conditions found only during the summer in the lower part of the Bay.  相似文献   

20.
The berried females of the Caribbean king crab Mithrax spinosissimus (Lamarck) used in this study were collected from canals on Big Pine Key, Sugarloaf Key and Lower Matecumbe Key (south Florida, USA) on 9 August, 8 October and 15 November 1986. Viable spawns hatched as first zoeae and molted to second zoeae within ca. 10 to 12 h. Most of the larvae reached the megalopa stage 1 d later, and molted to first crab 4 to 8 d after hatching (water temperature: 27.2° to 28.8°C). Low water temperature and/or early lack of food had a negative effect not only on stage duration, but also on the size of the early crab stages. Successful molt to first crabs occurred, however, in the absence of food. The growth rate (carapace length) between molts in early crab stages varied between ca. 20 and 30%. When provided with good water exchange, stocking density could be very high (>22 500 individuals m-2), with no increase in mortality. The highest mortality rate was recorded when the larvae molted to first crab, and the highest rates of survival were always recorded when feeding was not initiated until after 5 to 8 d after hatching. No cannibalism was observed among larvae, and cannibalism was low in early crab stages. The study indicates that to achieve viable hatches and high larval survival in rearing M. spinosissimus, a continuous and adequate supply of high-quality seawater is a prerequisite both in larviculture and in maintaining brooding females.Contribution No. 93, Department of Oceanography and Ocean Engineering, Florida Institute of Technology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号