首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
北京市典型餐饮企业油烟中醛酮类化合物污染特征   总被引:16,自引:8,他引:8  
程婧晨  崔彤  何万清  聂磊  王军玲  潘涛 《环境科学》2015,36(8):2743-2749
醛酮类化合物作为餐饮油烟的组成物质之一,是挥发性有机物(volatile organic compounds,VOCs)中化学反应活性较强的一类物质.但目前国内还没有针对餐饮源醛酮类化合物的排放特征进行较为系统的研究.为进一步明确餐饮源醛酮类化合物排放水平和控制现状,获取城市群餐饮源VOCs排放控制决策依据,本研究选取北京市8家不同类型的餐饮企业,采用涂布2,4-二硝基苯肼(DNPH)的硅胶采样管进行油烟样品采集,用超高效液相色谱(UPLC)对油烟样品中的醛酮类化合物进行测定.结果表明按基准风量折算后,8家餐饮企业排放的油烟中醛酮类化合物浓度高低依次是:烤鸭中式烧烤家常菜西式快餐学校食堂中式快餐川菜淮扬菜.餐饮企业油烟中醛酮类化合物(C1~C9)浓度水平范围为115.47~1 035.99μg·m-3.不同类型餐饮企业油烟中醛酮类化合物组分构成存在较为明显的差异,中式餐饮企业醛酮类化合物C1~C3物质所占比例均在40%以上.快餐类餐饮企业醛酮类化合物C4~C9所占比例明显高于其他类型餐饮企业.从醛酮类化合物控制现状来看,北京市目前主流高压静电式油烟净化器对醛酮类化合物的去除效果十分有限.  相似文献   

2.
张家界森林大气中醛酮类化合物浓度变化特征   总被引:6,自引:3,他引:3       下载免费PDF全文
为探究中亚热带森林大气中醛酮类化合物浓度变化特征,于2014年8月—2015年1月在张家界森林公园采用 EPA TO-11A方法对张家界森林大气中醛酮类化合物质量浓度进行了监测.结果表明:张家界森林大气中主要的醛酮类化合物为甲醛、乙醛、丙酮、丙醛和MACR(甲基丙烯醛),质量浓度分别为4.32、0.95、3.01、0.48和0.51 μg/m3.大气中ρ(甲醛)、 ρ(乙醛)和ρ(MACR)的季节变化特征很明显,夏季和秋季醛酮类化合物质量浓度较高,冬季醛酮类化合物质量浓度较低.此外,醛酮类化合物质量浓度日变化显著,除了10月、12月受人为因素影响较大外,其余月份醛酮质量浓度最大值通常出现在13:00—15:00.张家界森林大气中C1/C2(ρ(甲醛)/ρ(乙醛))为5.72,比城市地区(C1/C2为1左右)高,但比偏远森林地区(C1/C2为10左右)低.ρ(甲醛)与ρ(乙醛)、 ρ(MACR)均呈正相关且达到显著水平,而ρ(丙酮)与ρ(甲醛)、 ρ(乙醛)与ρ(MACR)的相关性差.与文献报道的加拿大Ontario、墨西哥Langmuir等地区对比,张家界森林大气中醛酮类化合物质量浓度较高,但明显低于北京、上海等城市地区.研究显示,张家界森林大气中甲醛、乙醛和MACR主要来自森林地区植物排放的VOCs光氧化生成,丙酮除了来自植物排放的有机物光氧化分解外,还有其他人为源,进一步说明了张家界森林大气中醛酮类化合物浓度变化主要受光化学反应等自然影响,但人为因素的影响也不容忽略.   相似文献   

3.
北京市大气和降雨中醛酮化合物的污染研究   总被引:14,自引:0,他引:14  
徐竹  庞小兵  牟玉静 《环境科学学报》2006,26(12):1948-1954
2005年6月到2005年8月在北京市区采用2,4-二硝基苯肼HPLC法测定了大气和降水中的醛酮类化合物.结果表明,大气醛酮类化合物中以丙酮的浓度最高,其次是甲醛、乙醛和丙醛,浓度分别是22.14、19.51、17.18、3.85μg·m-3,这4种化合物占大气醛酮总量的84.7%.分析大气中醛酮化合物浓度,结果表明,北京醛酮化合物污染主要来自人为源,并且甲醛、乙醛和丙醛具有相似的源和汇.通过对比晴朗和多云天气条件对醛酮浓度日变化的影响可知,夏季光化学反应是大气中醛酮的重要源.夏季降雨对大气中醛酮化合物浓度影响明显,降雨前后大气中醛酮污染物浓度日变化的对比研究说明,湿沉降是大气中醛酮污染物的重要汇.同时检测出雨水中含11种醛酮化合物,其中甲醛浓度最高为166.3μg·L-1,乙醛浓度为43.63μg·L-1,丙酮浓度为34.33μg·L-1.  相似文献   

4.
广州大气挥发性醛酮类化合物的污染特征及来源研究   总被引:5,自引:3,他引:2  
采用DNPH-HPLC-UV分析方法,研究了2006年广州夏季空气污染较严重日17种挥发性醛酮类化合物的污染特征及其初步来源.结果表明,广州大气中主要的醛酮类污染物是丙酮、甲醛、 2-丁酮和乙醛,其日均浓度分别为10.84、 9.29、 8.35和8.0 μg·m-3,占总醛酮类化合物日均浓度的72.29%.城区省站测点总醛酮类化合物日均浓度最高,达到59.66 μg·m-3,而郊区从化测点的总醛酮类化合物日均浓度最低,为43.51 μg·m-3.各种化合物在不同垂直高度的采样点表现出不一致的浓度变化规律,而在水平方向上均表现出昼间明显高于夜间的日变化规律.大气中甲醛、乙醛和丙酮相关性好,具有较好的同源特征,而C1/C2、C2/C3比值分别为1.12、 7.51,反映出机动车尾气排放对大气醛酮类化合物具有相当重要的贡献.  相似文献   

5.
西安西南郊“夏防期”大气VOCs污染特征及来源解析   总被引:1,自引:0,他引:1  
于2021年8月1日—9月30日开展“夏防期”西安西南郊大气挥发性有机物(VOCs)污染监测,累计监测到不同大气VOCs组分70种. 基于监测结果梳理分析西安西南郊大气VOCs污染分布特征及进行臭氧生成潜势(OFP)评估,并运用PMF模型解析VOCs主要来源.结果表明:①监测期间西安西南郊平均TVOCs浓度为181.89 μg·m-3,工业园区污染物浓度(189.32 μg·m-3)整体略高于城区(164.96 μg·m-3),以甲醛和 乙醛为主的醛酮类物质占比最高(88.10%),醛酮类物质浓度下午时段高于上午时段.②OFP评估结果表明,醛酮类物质对西安西南郊臭氧生成贡献较大,其中,甲醛、乙醛和丙醛是对该区域近地面O3生成贡献最大的3种物质.③PMF源解析结果显示,西安西南郊大气VOCs主要来源依次为移动源、油气挥发源、溶剂涂料源、工业过程源,其中,以工业企业生产排放为主的溶剂涂料源与工业过程源均指向工业园区,表明当前西安西南郊大气VOCs来源以机动车尾气排放和工业园区企业生产排放为主.  相似文献   

6.
传统北京烤鸭烤制过程中大气污染物的排放特征   总被引:6,自引:5,他引:1  
徐敏  何万清  聂磊  韩力慧  潘涛  石爱军 《环境科学》2017,38(8):3139-3145
烤鸭是具有北京特色的传统美食之一,制作过程采用果木炭火烤制方式,与其它食物烹饪过程存在明显的差异,国内还未对这类餐饮源的排放特征进行过系统研究,为掌握这类餐饮源排放特征,从而为污染控制提供技术依据,选取北京市具有代表性的烤鸭店,研究了其烤鸭烤制过程中大气污染物的排放特征.结果表明,传统烤鸭烤制过程中排放的油烟、颗粒物、挥发性有机物(VOCs)和醛酮类化合物的基准排放浓度分别为(0.74±0.45)、(15.32±7.93)、(7.60±3.41)和(1.22±0.59)mg·m~(-3);颗粒物排放浓度要远高于油烟排放浓度,VOCs组分构成相对复杂,既包括烷烃、烯烃、芳香烃等VOCs也包括醛酮类、醇类、酯类等含氧VOCs和卤代烃,其中3-甲基呋喃、乙醇和乙酸甲酯的浓度最高;醛酮类化合物的主要组分有乙醛、甲醛和丙烯醛等,其中C1~C3物质占72.27%.  相似文献   

7.
环境空气中的醛酮类化合物是当今大气环境科学领域的研究热点.醛酮类化合物因反应活性较高、性质不稳定,导致检测较为困难.为准确测定环境空气中的醛酮类化合物,针对环境空气中质量浓度较高或活性较强的18种醛酮类化合物的采样和分析方法进行研究,并采用优化的方法于2018年5月对北京市典型城区环境空气中的醛酮类化合物进行了检测.结果表明:①与手动采样器同时同地点采样数据相比,自行制作的醛酮类化合物自动采样器能够实现连续采样,数据基本一致(R2为0.999 7),其采样流速最大不超过0.8 L/min;醛酮类化合物采样管中杂质含量最高的乙醛为0.01 μg/管,小于我国HJ 683-2014《环境空气醛、酮类化合物的测定高效液相色谱法》标准限值(0.10 μg/管).②采用所确定的二醛类化合物衍生化方法与质谱扫描条件可以成功检测乙二醛和甲基乙二醛两种二醛类化合物,建立了18种醛酮类化合物的标准曲线且标准曲线相关系数R2均大于0.995 0.③采用该优化方法得到北京市典型城区环境空气中18种醛酮类化合物质量浓度的日变化范围为17.73~88.42 μg/m3.   相似文献   

8.
室内空气质量与人体健康息息相关,为了解新装修室内大气中醛酮类化合物的污染特征及健康效应,实验对西安市三个不同装修材料及不同装修风格房间的大气环境开展研究。使用2,4-二硝基苯肼硅胶提取小柱(DNPH)进行采样,并采用高效液相色谱(high performance liquid chromatography,HPLC)对18种醛酮类物质进行检测,研究其污染水平及特征,并根据物质的光化学反应活性,计算其臭氧生成潜势(ozone formation potential,OPF),评估其对不同年龄段人群的非致癌和致癌健康效应。研究表明:(1)18种醛酮类物质在三个新装修房间空气样品中的总含量为79.9—194.4 μg·m−3,高于普通室内环境中的含量。且在供暖期含量显著增加,升高了23.9%—53.3%。其中丙酮、甲醛、乙醛、正壬醛是主要的污染物,其中丁酮在Room 2中显著高于其他两个房间。(2)甲醛和乙醛的光化学活性显著高于其他物质,因而对OPF贡献较大。丙酮虽然含量显著高于其他物质,但是由于光化学活性较低,对OPF贡献不显著。(3)乙醛超过了室内安全排放标准,且在Room 2和Room 3中的非致癌风险危险熵(hazard quotient,HQ)不容忽视。终身致癌风险评估(incremental lifetime cancer risks,ILCR)显示不同人群暴露甲醛的ILCR均大于1×10−6,存在潜在健康风险。人群暴露乙醛的ILCR值仅青少年和老年人在Room 1中低于1×10−6。由此可见新建住房室内空气中醛酮类物质的污染所产生的健康效应不能忽视。  相似文献   

9.
在底盘测功机上,对6辆不同排放标准的柴油车燃用不同比例聚甲氧基二甲醚(PODE)-柴油混合燃料时,排放的非甲烷总烃(NMHC)、醛酮类化合物和苯系物进行了测试研究。结果表明,掺混一定比例PODE的混合燃料能显著降低柴油车的NMHC排放浓度,这种效果在排放浓度较高的国3车上更为显著,国5车在70 km/h工况下使用PODE混合燃料反而会造成NMHC排放浓度的增加;柴油车燃用不同燃料时排放醛酮类物质均以C_4以下小分子物质为主,约占总量的93%以上,燃用PODE混合燃料会造成柴油车尾气中醛酮类物质尤其是甲醛浓度的增加;燃用PODE混合燃料会造成苯系物种类和浓度的增加,但其浓度绝对值并不高。  相似文献   

10.
为探究沈阳市郊区环境空气中醛酮类化合物的污染特征,于2017年8月24日—9月2日采用2,4-二硝基苯肼固相吸附/高效液相色谱方法对沈阳市郊区醛酮类化合物进行观测分析,利用美国环境保护局推荐的人体健康风险评价方法对部分有毒有害醛酮类化合物的人体健康风险进行了评价,并利用比值法对醛酮类化合物的来源进行了初步分析.结果表明:醛酮类化合物质量浓度日均值范围为23.16~38.38 μg/m3;质量浓度最高的4种醛酮类化合物依次是丙酮、甲醛、正丁醛和乙醛,其质量浓度日均值的平均值分别为8.71、5.90、5.48和2.95 μg/m3.对·OH消耗速率(LOH)贡献较大的醛酮类化合物物种是正丁醛、甲醛和乙醛,臭氧生成潜势贡献(OFP)较大的醛酮类化合物物种是甲醛、正丁醛和乙醛,在研究区影响醛酮类化合物光化学反应活性的物种主要是甲醛、乙醛和正丁醛.研究区观测期间,环境空气中甲醛和乙醛的致癌性风险值分别为1.18×10-5和5.91×10-6,对暴露人群存在潜在的致癌风险;乙醛的非致癌风险值为0.05,对暴露人群不存在非致癌风险.在研究区的一次臭氧轻度污染过程期间,环境空气中的甲醛和乙醛受天然源排放的挥发性有机物二次转化的影响减弱,甲醛、乙醛和丙酮受到炼焦工业和机动车等人为源排放的影响增强,而正丁醛主要受当地精细化工产业排放的影响.研究显示,沈阳市应加大对炼焦工业、精细化工和机动车来源排放醛酮类化合物的管制,以降低环境空气中活性醛酮类化合物及有毒有害醛酮类化合物的浓度.   相似文献   

11.
沈阳市环境空气中醛酮类化合物污染现状初探   总被引:1,自引:0,他引:1  
姜荻 《环境保护科学》2015,(3):118-119,158
通过对沈阳地区环境空气中醛酮类化合物的测定,初步了解其醛酮类化合物的污染现状。采用2,4-二硝基苯肼吸附柱采集环境空气样品,高效液相色谱法对样品进行分析。结果表明:沈阳市5个监测点位中冬季浑南二点位醛酮类污染物浓度最低,冬季二毛点位醛酮类污染物浓度最高。冬夏两季的环境空气中均检出丙酮和乙醛,冬季醛酮类污染物浓度总和高于夏季。  相似文献   

12.
基于江宁区家具企业集中区三个月上下风向挥发性有机物实测数据并结合江苏省生态环境厅关于挥发性有机物夏季监测的相关要求,通过对PAMS及醛酮类数据分析,发现该集中区VOCs排放水平低现行相关标准中规定的限值。通过对挥发性有机物中不同组份的构成情况并析,发现间、对二甲苯和丙烷是PAMS的主要组分,甲醛、乙醛和丙酮是醛酮类物质的主要组分。通过研究,对该集中区因家具制造产生的挥发性有机物总体排放水平有一定的了解,为挥发性有机物治理溯源及相关管控工作提供数据支撑。  相似文献   

13.
建立了一种用高效液相色谱法测定空气中的醛酮类化合物的方法.该方法用2,4-二硝基苯肼(DNPH)的磷酸溶液为吸收液,将醛酮类化合物转化为醛酮-DNPH衍生物,测定空气中的含量.方法的相关系数大于0.999,检出限为2~10 μg/m3,回收率大于85%.该方法灵敏度高,前处理简单,可用于环境空气中醛酮类的测定.  相似文献   

14.
环境空气中低分子醛酮类有机物调查研究   总被引:1,自引:0,他引:1  
本文对2005年广州市9个环境空气监测点中低分子醛酮类有机污染物进行采样监测,结果表明:广州市大气环境中存在一定程度的醛酮类有机物的污染,特别是甲醛和乙醛的污染相对较为明显。  相似文献   

15.
千呼万唤的<车内挥发性有机物和醛酮类物质采样测定方法>(下简称<方法>)终于出来,或许从<方法>的出台,可以初见"国标"浮出水面的端倪.  相似文献   

16.
深圳市餐饮油烟醛酮类化合物污染特征研究   总被引:1,自引:0,他引:1  
餐饮业的快速发展加剧了城市大气污染程度.对深圳市粤菜馆、茶餐厅、西餐厅、湘菜馆4种餐馆及职工食堂排放的醛酮类化合物进行采样分析,并研究其组分特征、大气化学反应活性及排放因子.结果表明,职工食堂醛酮类化合物的基准风量排放浓度最高(742.28μg·m~(-3)),茶餐厅最低(30.49μg·m~(-3)).OH消耗速率法(L_(OH))和臭氧生成潜势(OFP)分析结果表明,深圳市总醛酮L_(OH)值和OFP值最大的餐馆均为西餐厅,其值分别为26.20 s~(-1)和1063.41μg·m~(-3).各餐馆排放己醛的L_(OH)贡献率均较高,为13.10%~64.51%.甲醛为O_3生成的关键活性物质,OFP贡献率为9.29%~59.10%.以灶台数、单位时间及用油量为核算基准的排放因子中,职工食堂醛酮排放因子均最大,分别为(0.16±0.03) g·h~(-1)·stove~(-1)、(5.90±0.13) g·h~(-1)和(1.62±0.04) g·kg~(-1);茶餐厅的醛酮排放因子均最小,分别为(0.34±0.02) g·h~(-1)·stove~(-1)、(0.60±0.02) g·h~(-1)和(0.22±0.01) g·kg~(-1).结合研究结果,本研究从源头控制、净化设备的选择及运营维护等方面对深圳市餐饮油烟醛酮控制及减排提出了相关建议.  相似文献   

17.
使用ZF-PKU-1007大气挥发性有机物(VOCs)在线连续监测系统,于2018年09月25日~10月18日在廊坊市经济技术开发区对99种VOCs进行了在线连续观测.结果显示,观测期间VOCs浓度为69.56×10-9,烷烃、烯烃、芳香烃、醛酮类及卤代烃体积分数占VOCs比例分别为53.2%、5.9%、7.6%、10.5%和19.3%;使用OH消耗速率LOH和臭氧生成潜势(OFP)估算了观测期间VOCs大气化学反应活性,结果表明醛酮类、芳香烃和烯烃是主要的活性物质;使用气溶胶生成系数法(FAC)估算了VOCs对二次有机气溶胶(SOA)的贡献,得出VOCs对SOA浓度的贡献值为1.13μg/m3,其中芳香烃对SOA生成贡献占比为94.3%,间/对-二甲苯、甲苯为优势物种;使用PMF模型对VOCs进行了来源解析,识别了5个主要来源,分别为溶剂使用及挥发源(39.6%)、机动车源(22.5%)、固定燃烧源(17.6%)、石化工业源(11.1%)及植物排放源(9.4%),因此,溶剂使用及挥发源、机动车源及燃烧源应为廊坊开发区秋季大气VOCs控制的重点.  相似文献   

18.
(3)苏联的酸性沉降物及酸雨状况苏联大气中的酸性物质不仅来源于自身污染源的排放,而且来源于酸性物质的传输。苏联全国自然环境污染监测部门组织两个专门的监测系统对其酸性物质的来源、污染状况等进行监测和研究。研究的重点放在两个方面: -污染物质的边界传输; -雪复盖层的污染及大气沉降物的组  相似文献   

19.
2,4-二硝基苯肼吸收液法测定空气中醛、酮类化合物   总被引:1,自引:0,他引:1  
应用高效液相色谱分析环境空气和废气中的醛、酮类污染物。样品经DNPH的酸溶液吸收后,用二氯甲烷/正己烷3∶7进行萃取,然后将萃取液吹干,用乙腈溶解后进行高效液相色谱分析。结果证明该测定方法具有准确率高,精密度好的特点。为制定适合于我国国情的空气和废气中醛、酮类化合物的测定方法提供依据。  相似文献   

20.
选取5辆典型国六重型柴油车,进行基于C-WTVC的挥发性有机物(VOCs)排放测试,分析了包括7种苯系物以及14种醛酮类物质的比排放量.结果表明,甲苯、苯、苯乙烯是国六重型柴油车苯系物排放的主体物质,占总量的60%~86%;而甲醛、乙醛、苯甲醛是醛酮污染物的主要物质,占总量的72%~87%.在同时包含市区、市郊和高速综合工况的试验车会产生较高的苯系物和醛酮类物质的排放,苯、苯乙烯在综合工况下的比排放量分别为处于市郊工况车型的1.25倍、1.45倍,市区占比为40%的货车具有最高的甲醛比排放量20.84mg/(kW×h),有超甲醇车甲醛排放限值的风险;在市郊工况下车型的甲苯、乙醛排放平均分别为其余车型的1.65倍、2.1倍.测试车辆的臭氧潜势均值达到(249.53±10) mgO3/(kW×h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号