首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In areas under intensive livestock farming and with high application rates of animal manure, inorganic and organic phosphorus (P) may be leached from soils. Since the contribution of these P compounds to P leaching may differ, it is important to determine the speciation of P in these soils. We determined the effect of various fertilization regimes on the P speciation in NaOH-Na2EDTA (ethylenediaminetetraacetic acid) and water extracts of acidic sandy soil samples from the top 5 cm of grassland with wet chemical analysis and 31P nuclear magnetic resonance (NMR) spectroscopy. These soils had been treated for a period of 11 years with no fertilizer (control), N (no P application), N-P-K, or different animal manures. Inorganic P was highly elevated in the NaOH-Na2EDTA extracts of the soils amended with N-P-K or animal manures, while organic P increased only in the soil treated with pig slurry. Water-extractable P showed a similar trend. As indicated by 31P NMR, orthophosphate monoesters were the main organic P compounds in all soils. Our results suggest that long-term applications of large amounts of P fertilizer and animal manures caused an accumulation of inorganic P, resulting in an increase of the potential risk related to mobilization of inorganic P in the top 5 cm of these soils.  相似文献   

2.
Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.  相似文献   

3.
There are more than 10000 arsenic (As) contaminated sites in Australia. The ability of soils at these contaminated sites to sorb As is highly variable and appreciable amounts of As have been recorded in the subsurface soils. The potential risk of surface and ground water contamination by As at these sites is a major environmental concern. Factors that influence adsorption capacity of soils influence the bioavailability and subsequent mobility of As in soils. In the present study we investigated the effect of PO4(3-) and Na+ and Ca2+ on the sorption of AsV and AsIII by an Oxisol, a Vertisol, and two Alfisols. The presence of P (0.16 mmol L(-1)) greatly decreased AsV sorption by soils containing low amounts of Fe oxides (<100 mmol kg(-1)), indicating competitive adsorption between P and AsV for sorption sites. In contrast, the presence of a similar amount of P had little effect on the amount of AsV adsorbed by soils with high Fe content (>800 mmol kg(-1)). However, AsV sorption substantially decreased from 0.63 to 0.37 mmol kg(-1) as P concentration was increased from 0.16 to 3.2 mmol L(-1) in selected soils. This suggests increased competition between P and AsV for soil sorption sites, through either the higher affinity or the effect of mass action of the increasing concentration of P in solution. A similar effect of P on AsIII sorption was observed in the low sorbing Alfisol and high affinity Oxisol. However, the amount of AsIII sorbed by the Oxisol was much greater than the Alfisol for all treatments. The presence of Ca2+ increased the amount of AsV sorbed compared with that of Na+ and was manifested through changes in the surface charge characteristics of the soils. A similar trend in AsIII sorption was recorded with changes in index cation, although the effect was not as marked as recorded for AsV.  相似文献   

4.
Excessive fertilizer and manure phosphorus (P) inputs to soils elevates P in soil solution and surface runoff, which can lead to freshwater eutrophication. Runoff P can be related to soil test P and P sorption saturation, but these approaches are restricted to a limited range of soil types or are difficult to determine on a routine basis. The purpose of this study was to determine whether easily measurable soil characteristics were related to the soil phosphorus requirements (P(req), the amount of P sorbed at a particular solution P level). The P(req) was determined for 18 chemically diverse soils from sorption isotherm data (corrected for native sorbed P) and was found to be highly correlated to the sum of oxalate-extractable Al and Fe (R2 > 0.90). Native sorbed P, also determined from oxalate extraction, was subtracted from the P(req) to determine soil phosphorus limits (PL, the amount of P that can be added to soil to reach P(req)). Using this approach, the PL to reach 0.2 mg P L(-1) in solution ranged between -92 and 253 mg P kg(-1). Negative values identified soils with surplus P, while positive values showed soils with P deficiency. The results showed that P, Al, and Fe in oxalate extracts of soils held promise for determining PL to reach up to 10 mg P L(-1) in solution (leading to potential runoff from many soils). The soil oxalate extraction test could be integrated into existing best management practices for improving soil fertility and protecting water quality.  相似文献   

5.
Drinking water treatment residuals: a review of recent uses   总被引:8,自引:0,他引:8  
Coagulants such as alum [Al2(SO4)3 x 14H2O], FeCl3, or Fe2(SO4)3 are commonly used to remove particulate and dissolved constituents from water supplies in the production of drinking water. The resulting waste product, called water-treatment residuals (WTR), contains precipitated Al and Fe oxyhydroxides, resulting in a strong affinity for anionic species. Recent research has focused on using WTR as cost-effective materials to reduce soluble phosphorus (P) in soils, runoff, and land-applied organic wastes (manures and biosolids). Studies show P adsorption by WTR to be fast and nearly irreversible, suggesting long-term stable immobilization of WTR-bound P. Because excessive WTR application can induce P deficiency in crops, effective application rates and methods remain an area of intense research. Removal of other potential environmental contaminants [ClO4-, Se(+IV and +VI), As(+III and +V), and Hg] by WTR has been documented, suggesting potential use of WTR in environmental remediation. Although the creation of Al plant toxicity and enhanced Al leaching are concerns expressed by researchers, these effects are minimal at circumneutral soil pH conditions. Radioactivity, trace element levels, and enhanced Mn leaching have also been cited as potential problems in WTR usage as a soil supplement. However, these issues can be managed so as not to limit the beneficial use of WTR in controlling off-site P losses to sensitive water bodies or reducing soil-extractable P concentrations.  相似文献   

6.
Physical, chemical, or biological treatment of animal liquid manure generally produces a dry-matter rich fraction (DMF) that contains most of the initial phosphorus (P). Our objective was to assess the solubility and plant availability of P from various DMFs as a function of soil P status. Eight different DMFs were obtained from liquid swine (LSM) and dairy cattle (LDC) manures treated by natural decantation, anaerobic digestion, chemical flocculation, composting, or mechanical separation. The DMFs were compared with mineral P fertilizer in a pot experiment with oat ( L.) grown in four soils with varied P-fixing capacities and P saturation levels. The DMFs were added at a rate of 50 mg P kg soil and incubated 14 d before seeding. Soil water-extractable P (P) at all water:soil extraction ratios (2:1, 20:1, and 200:1) was slightly higher when DMFs were derived from LDC rather than LSM. Soil P at the 2:1 ratio was lower with anaerobically digested LSM. At the 2:1 extraction ratio, DMF P was less soluble than mineral P as P saturation in soils increased. In soils with a lower P-fixing capacity, DMF P appeared less water soluble than mineral P under 20:1 and 200:1 extraction ratios. After 72 d of plant growth, DMFs produced yields comparable to mineral P fertilizer. Although the plant availability of P from DMFs was comparable to mineral P fertilizer, P from DMFs could be less vulnerable to leaching or runoff losses in soils with a high P saturation level or low P-fixing capacity.  相似文献   

7.
To investigate the forms of Zn and Pb and their plant availability in mine spoil long after its abandonment, we studied seven sites in the Mines of Spain, near Dubuque, IA. Ores of Zn and Pb were mined from dolomitic limestone primarily during the 19th century, and there had been no subsequent remediation of metals-contaminated spoil. From both mine spoil and undisturbed areas, we collected root-zone soil samples as well as samples of the dominant ground-level, native plants, aniseroot [Osmorhiza longistylis (Torr.) DC.] and black snakeroot (Sanicular marilandica L.). We determined Zn and Pb concentrations in both the plant tissue and in the soil samples after strong-acid digestion, and we fractionated the solid-phase forms of Zn, Pb, and P in the soil samples by using sequential extraction. Concentrations of total Zn and Pb were 10- to 20-fold greater in the spoil than in the undisturbed soils. Plants growing in the mine spoil had Zn concentrations two to four times greater and Pb concentrations more than 26 times greater than did plants growing in the undisturbed soils. The highest concentrations of Zn and Pb were in the CBD-extractable and the residual fractions in both undisturbed and mine spoil samples. Although the mine spoil contained large amounts of P, Zn, and Pb were available for uptake by the two plant species in amounts proportional to Zn and Pb concentrations in the rooting zone.  相似文献   

8.
The adsorption of As(V) and As(III) on synthetic two-line ferrihydrite in the presence and absence of a peat humic acid (HAp), Suwannee River fulvic acid (FA), or citric acid (CA) was investigated. Previous work with goethite has demonstrated the ability of dissolved organic carbon (DOC) to decrease As(V) and As(III) adsorption. The results obtained demonstrate that As(V) adsorption on ferrihydrite was decreased only in the presence of CA. Arsenate decreased the adsorption of all organic acids except HAp. Both FA and CA reduced As(III) adsorption on ferrihydrite, while HAp had no effect. Fulvic and citric acid adsorption on ferrihydrite was decreased in the presence of As(III); however, FA and CA adsorption increased at lower pH, which was consistent with decreased As(III) adsorption. Peat humic acid did not decrease As(III) adsorption, and we believe that the adsorption process of HAp and As(III) and As(V) on ferrihydrite are independent of each other. Previously, we observed that As(V) adsorption on goethite decreased in the presence of HAp > FA > CA, while As(III) adsorption on goethite was decreased similarly to that on ferrihydrite in the presence of CA > FA approximately HAp, yet As(III) adsorption on ferrihydrite was greater than on goethite. The observed differences between this study and the earlier study on goethite are believed to be an intricate function of ferrihydrite's surface characteristics, which affect the mechanisms of adsorption and hence the affinity of organic acids such as HAp, FA, and CA for the ferrihydrite surface. As such, the adsorption of DOCs to ferrihydrite are assumed to be less favorable and to occur with a fewer number of ligands, resulting in lower surface coverage of weaker bond strength.  相似文献   

9.
Increasing chloride (Cl) concentration in soil solution has been shown to increase cadmium (Cd) concentration in soil solution and Cd uptake by plants, when grown in phosphate fertilizer- or biosolid-amended soils. However, previous experiments did not distinguish between the effect of Cl on biosolid-borne Cd compared with soil-borne Cd inherited from previous fertilizer history. A factorial pot experiment was conducted with biosolid application rates of 0, 20, 40, and 80 g biosolids kg(-1) and Cl concentration in soil solution ranging from 1 to 160 mM Cl. The Cd uptake of wheat (Triticum aestivum L. cv. Halberd) was measured and major cations and anions in soil solution were determined. Cadmium speciation in soil solution was calculated using GEOCHEM-PC. The Cd concentration in plant shoots and soil solution increased with biosolid application rates up to 40 g kg(-1), but decreased slightly in the 80 g kg(-1) biosolid treatment. Across biosolid application rates, the Cd concentration in soil solution and plant shoots was positively correlated with the Cl concentration in soil solution. This suggests that biosolid-borne Cd is also mobilized by chloride ligands in soil solution. The soil solution CdCl+ activity correlated best with the Cd uptake of plants, although little of the variation in plant Cd concentrations was explained by activity of CdCl+ in higher sludge treatments. It was concluded that chlorocomplexation of Cd increased the phytoavailability of biosolid-borne Cd to a similar degree as soil (fertilizer) Cd. There was a nonlinear increase in plant uptake and solubility of Cd in biosolid-amended soils, with highest plant Cd found at the 40 g kg(-1) rate of biosolid application, and higher rates (80 g kg(-1)) producing lower plant Cd uptake and lower Cd solubility in soil. This is postulated to be a result of Cd retention by CaCO3 formed as a result of the high alkalinity induced by biosolid application.  相似文献   

10.
The leaching of colloidal phosphorus (P(coll)) contributes to P losses from agricultural soils. In an irrigation experiment with undisturbed soil columns, we investigated whether the accumulation of P in soils due to excess P additions enhances the leaching of colloids and P(coll) from sandy soils. Furthermore, we hypothesized that large concentrations of P(coll) occur at the onset of leaching events and that P(coll) mobilized from topsoils is retained in subsoils. Soil columns of different P saturation and depth (0-25 and 0-40 cm) were collected at a former disposal site for liquid manure and at the Thyrow fertilization experiment in northeastern Germany. Concentrations of total dissolved P, P(coll), Fe(coll), Al(coll), optical density, zeta potential, pH, and electrical conductivity of the leachates were determined. Colloidal P concentrations ranged from 0.46 to 10 micromol L(-1) and contributed between 1 and 37% to total P leaching. Large P(coll) concentrations leached from the P-rich soil of the manure disposal site were rather related to a large P-content of colloids than to the mobilization of additional colloids. Concentrations of colloids and P(coll) in leachates from P-poor and P-rich columns from Thyrow did not differ significantly. In contrast, accumulation of P in the Werbellin and the Thyrow soil consistently increased dissolved P concentrations to maximum values as high as 300 micromol L(-1). We observed no first-flush of colloids and P(coll) at the beginning of the leaching event. Concentrations of P(coll) leached from 40-cm soil columns were not smaller than those leached from 25-cm columns. Our results illustrate that an accumulation of P in sandy soils does not necessarily lead to an enhanced leaching of colloids and P(coll), because a multitude of factors independent from the P status of soils control the mobility of colloids. In contrast, P accumulation generally increases dissolved P concentrations in noncalcareous soils due to the saturation of the P sorption capacity. This indicates that leaching of dissolved P might be a more widespread environmental problem in areas with P-saturated sandy soils than leaching of P(coll).  相似文献   

11.
Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from the Recent Soil was the result of increased leaching of native soil organic N due to the higher hydraulic loading from the effluent irrigation.  相似文献   

12.
Phosphorus retention in lowland soils depends on redox conditions. The aim of this study was to evaluate how the Fe(III) reduction degree affects phosphate adsorption and precipitation. Two similarly P-saturated, ferric Fe-rich lowland soils, a sandy and a peat soil, were incubated under anaerobic conditions. M?ssbauer spectroscopy demonstrated that Fe(III) in the sandy soil was present as goethite and phyllosilicates, whereas Fe(III) in the peat soil was mainly present as polynuclear, Fe-humic complexes. Following anoxic incubation, extensive formation of Fe(II) in the solids occurred. After 100 d, the Fe(II) production reached its maximum and 34% of the citrate-bicarbonate-dithionite extractable Fe (Fe(CBD)) was reduced to Fe(II) in the sandy soil. The peat soil showed a much faster reduction of Fe(III) and the maximum reduction of 89% of Fe(CBD) was reached after 200 d. Neoformation of a metavivianite/vivianite phase under anoxic conditions was identified by X-ray diffraction in the peat. The sandy soil exhibited small changes in the point of zero net sorption (EPC?) and P(i) desorption with increasing Fe(III) reduction, whereas in the peat soil P desorption increased from 80 to 3100 μmol kg?1 and EPC? increased from 1.7 to 83 μM, after 322 d of anoxic incubation. The fast Fe(III) reduction made the peat soils particularly vulnerable to changes in redox conditions. However, the precipitation of vivianite/metavivianite minerals may control soluble P(i) concentrations to between 2 and 3 μM in the long term if the soil is not disturbed.  相似文献   

13.
Long-term application of phosphorus (P) with animal manure in amounts exceeding removal with crops leads to buildup of P in soil and to increasing risk of P loss to surface water and eutrophication. In most manures, the majority of P is held within inorganic forms, but in soil leachates organic P forms often dominate. We investigated the mobility of both inorganic and organic P in profile samples from a noncalcareous sandy soil treated for 11 yr with excessive amounts of pig slurry, poultry manure, or poultry manure mixed with litter. Solution 31P nuclear magnetic resonance spectroscopy was used to characterize NaOH-EDTA-extractable forms of P, corresponding to 64 to 93% of the total P concentration in soil. Orthophosphate and orthophosphate monoesters were the main P forms detected in the NaOH-EDTA extracts. A strong accumulation of orthophosphate monoesters was found in the upper layers of the manure-treated soils. For orthophosphate, however, increased concentrations were found down to the 40- to 50-cm soil layers, indicating a strong downward movement of this P form. This was ascribed to the strong retention of orthophosphate monoesters by the solid phase of the soil, preventing orthophosphate sorption and facilitating downward movement of orthophosphate. Alternatively, mineralization of organic P in the upper layers of the manure-treated soils may have generated orthophosphate, which could have contributed to the downward movement of the latter. Leaching of inorganic P should thus be considered for the assessment and the future management of the long-term risk of P loss from soils receiving large amounts of manure.  相似文献   

14.
Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%).  相似文献   

15.
Desorption kinetics of arsenate from kaolinite as influenced by pH   总被引:1,自引:0,他引:1  
Arsenic is highly toxic and therefore represents a potential threat to the environment and human health. The mobility and bioavailability of arsenic in soil is mostly controlled by adsorption and desorption reactions. Even though adsorption and traditional batch desorption experiments provide information about the environmental fate of As, the equilibrium conditions imposed in these studies would usually not be reached in the natural environment. Flow-through desorption techniques, where the desorbed species are removed from the substrate, can therefore be used to provide information about the rate and mechanisms of As desorption. The effect of pH on As adsorption reactions is relatively well understood; however, desorption of As and the effect of pH on As desorption remain unexplored. Desorption of As(V) (the most dominant arsenic species in aerated soils) was therefore investigated using batch and flow-through desorption experiments. Traditional batch desorption experiments underestimated the desorption rate of As(V) from kaolinite. The pH had a large effect on the amount of As(V) desorbed from kaolinite, with both an increase and a decrease in pH (from the initial pH 6.4) enhancing As(V) desorption. Modeling desorption over time revealed that the pH can influence As(V) desorption over extended periods of time.  相似文献   

16.
Lumber used to construct raised garden beds is often treated with chromated copper arsenate (CCA). This project aimed to determine (i) how far As, Cu, and Cr had diffused away from CCA-treated wood surfaces in raised garden beds under realistic conditions, (ii) the uptake of these elements by crops, and (iii) the effect of CCA solution on soil bacteria. This study showed that As, Cu, and Cr diffuse into soil from CCA-treated wood used to construct raised garden beds. To determine crop uptake of these elements, contaminated soil 0 to 2 cm from the treated wood was obtained from two different beds (40-50 mg kg(-1) As); control soil was collected 1.5 m away from the treated wood (<3-10 mg kg(-1) As). Four replicates of carrot (Daucus carota var. sativus Hoffm. cv. Thumbelina), spinach (Spinacia oleracea L. cv. Indian Summer), bush bean (Phaseolus vulgaris L. cv. Provider), and buckwheat (Fagopyrum esculentum Moench cv. Common) were grown in pots containing these soils in a greenhouse. After harvest, plant materials were dried, ground, digested, and analyzed for As by inductively coupled plasma-hydride generation (ICP-HG). Concentrations of As in all crops grown in contaminated soils were higher than those from control soils. The levels of As in the crops remained well below the recommended limit for As set by the United States Public Health Service (2.6 mg kg(-1) fresh wt.). To determine if bacteria in soils 0 to 2 cm from the treated wood had higher resistance to Type C chromated copper arsenate (CCA-C) solution than those from reference soils, dilution plates were set up using quarter-strength tryptic soy agar (TSA) media and 0 to 22.94 g L(-1) (0-1.25% v/v) CCA-C working solution. The microorganisms from soils adjacent to treated wood had greater growth on the CCA-amended media than those from reference soils outside the bed.  相似文献   

17.
Revegetation of arsenic (As)-rich mine spoils is often impeded by the lack of plant species tolerant of high As concentrations and low nutrient availability. Basin wildrye [Leymus cinereus (Scribner & Merr.) A. L?ve] has been observed to establish naturally in soils with elevated As content and thus may be useful for the stabilization of As-contaminated soils. An experiment was conducted to evaluate how variable phosphorus (P) concentrations and inoculation with site-specific arbuscular mycorrhizal fungi influence As tolerance of basin wildrye. Basin wildrye was grown in sterile sand in the greenhouse for 16 weeks. Pots of sterile sand were amended to create one of four rates of As (0, 3, 15, or 50 mg As kg(-1)), two rates of P (3 or 15 mg P kg(-1)), and +/-mycorrhizal inoculation in a 2 x 4 x 2 factorial arrangement. After 16 weeks of growth, plants were harvested, shoots and roots thoroughly washed, and the tissue analyzed for total shoot biomass, total root and shoot As and P concentrations, and degree of mycorrhizal infection. Basin wildrye was found to be tolerant of high As concentrations allowing for vigorous plant growth at application levels of 3 or 15 mg As kg(-1). Arsenic was sequestered in the roots, with 30 to 50 times more As in the roots than shoots under low P conditions. Mycorrhizal infection did not confer As tolerance in basin wildrye nor did mycorrhizal fungi influence biomass production. Phosphorus concentrations of 15 mg kg(-1) effectively inhibited As accumulation in basin wildrye. Basin wildrye has the potential to be used for stabilization of As-rich soils while minimizing exposure to grazing animals following reclamation.  相似文献   

18.
Phosphorus transport from agricultural soils contributes to eutrophication of fresh waters. Computer modeling can help identify agricultural areas with high potential P transport. Most models use a constant extraction coefficient (i.e., the slope of the linear regression between filterable reactive phosphorus [FRP] in runoff and soil P) to predict dissolved P release from soil to runoff, yet it is unclear how variations in soil properties, management practices, or hydrology affect extraction coefficients. We investigated published data from 17 studies that determined extraction coefficients using Mehlich-3 or Bray-1 soil P (mg kg(-1)), water-extractable soil P (mg kg(-1)), or soil P sorption saturation (%) as determined by ammonium oxalate extraction. Studies represented 31 soils with a variety of management conditions. Extraction coefficients from Mehlich-3 or Bray-1 soil P were not significantly different for 26 of 31 soils, with values ranging from 1.2 to 3.0. Extraction coefficients from water-extractable soil P were not significantly different for 17 of 20 soils, with values ranging from 6.0 to 18.3. The relationship between soil P sorption saturation and runoff FRP (microg L(-1)) was the same for all 10 soils investigated, exhibiting a split-line relationship where runoff FRP rapidly increased at P sorption saturation values greater than 12.5%. Overall, a single extraction coefficient (2.0 for Mehlich-3 P data, 11.2 for water-extractable P data, and a split-line relationship for P sorption saturation data) could be used in water quality models to approximate dissolved P release from soil to runoff for the majority of soil, hydrologic, or management conditions. A test for soil P sorption saturation may provide the most universal approximation, but only for noncalcareous soils.  相似文献   

19.
Phosphorus saturation in spodosols impacted by manure   总被引:1,自引:0,他引:1  
Significant amounts of phosphorus (P) accumulate in soils receiving animal manures that could eventually result in unacceptable concentrations of dissolved P loss through surface runoff or subsurface leaching. The degree of phosphorus saturation (DPS) relates a soil's extractable P to its P sorbing capacity, and is reportedly a predictor of the P likely to be mobilized from a system. A DPS value (DPS-1) was derived that expressed the percentage of Mehlich 1-extractable P to the sorbing capacity of a Spodosol (expressed as the sum of oxalate-extractable Fe and Al). Values of DPS-1 were determined in various horizons of soil in current and abandoned dairy systems in South Florida's Lake Okeechobee watershed to assess P release potential. Land use within the dairies was classified as highly impacted by cattle (intensive and holding), and minimally impacted by cattle (pasture, forage, or native) areas. The A and E horizon of soils in heavily manure-impacted intensive and holding areas for both active and abandoned dairies generally had higher DPS-1 values than the pasture, forage, and native area soils, which were minimally impacted by manure. Degree of P saturation was also calculated as a percentage of Mehlich 1-extractable P to the sum of Mehlich 1-extractable Fe and Al (DPS-2). Both DPS-1 and DPS-2 were shown to be significantly (P = 0.0001) related to water-extractable P for all soil horizons, suggesting that either index can be used as an indicator for P loss potential from a soil.  相似文献   

20.
Peat fire effects on some properties of an artificially drained peatland   总被引:3,自引:0,他引:3  
The management of artificially drained organic soils is a very important issue, since the accelerated mineralization and sometimes peat fires alter physical and chemical properties of soils and the availability of plant nutrients. This study was performed to determine relatively short- and long-term effects of peat fires on some physical and chemical properties of soils in the artificially drained Gavur Lake Peatland of Turkey. To achieve this objective, measured properties of soils burned in 2001, burned in 1965, and unburned were compared. The results indicated that soil bulk density, pH, amounts of soluble salts, CaCO3, and concentrations of ammonium acetate-extractable (AAE) Ca, Mg, K, and Na were significantly higher for both sampling depths in the burned areas. The areas burned in 2001 had higher pH, soluble salts, and the concentrations of AAE Ca, Mg, and K compared with sites burned in 1965, and this was reasoned with leaching losses and plant uptake of these basic cations for four decades in the latter. Percent saturation and organic carbon contents of soils, however, were significantly lower in the burned areas for both sampling depths. Olsen P levels were not significantly different between the sites. This work clearly shows that alterations in soils properties with peat fires do not recover in the long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号