首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The chemical forms of phosphorus in organic amendments are essential variables for proper management of these amendments for agro-environmental purposes. This study was performed to elucidate the forms of phosphorus in various organic amendments using state-of-the-art spectroscopic techniques. Anaerobically digested biosolids (BIO), hog (HOG), dairy (DAIRY), beef (BEEF), and poultry (POULTRY) manures were subjected to sequential extraction. The extracts and residues after extraction were analyzed by solution (31)P nuclear magnetic resonance (NMR) and synchrotron-based P 1s X-ray absorption near-edge structure (XANES) spectroscopies, respectively. Most of the total P analyzed by inductively coupled plasma- optical emission spectroscopy in the sequential extracts of organic amendments was orthophosphate, except POULTRY, which was dominated by organic P. The labile P fraction in all the organic amendments, excluding POULTRY, was mainly orthophosphate from readily soluble calcium and some aluminum phosphates. In the poultry litter, Ca phytate was the main P species controlling P solubility. The recalcitrant fraction of BIO was mainly associated with Al and Fe. Those of HOG, DAIRY, and POULTRY were calcium phytate, which were identified only as organic species in the XANES spectra. The combination of the three techniques-sequential chemical extraction, solution (31)P NMR spectroscopy, and P 1s XANES-provided molecular characterization of P in organic amendments that would not have been possible with just one or a combination of any two of these techniques. Therefore, P speciation of organic amendments should use solid-phase and aqueous speciation techniques as deemed feasible.  相似文献   

2.
Phosphorus speciation in manure-amended alkaline soils   总被引:2,自引:0,他引:2  
Two common manure storage practices are stockpiles and lagoons. The manure from stockpiles is applied to soils in solid form, while lagoon manure is applied as a liquid. Soil amendment with manure in any form introduces a significant amount of phosphorus (P) that exists in both organic and inorganic forms. However, little is known about P speciation in manure stored under different conditions, or the subsequent forms when applied to soils. We used solution (31)P nuclear magnetic resonance (NMR) spectroscopy and conventional P fractionation and speciation methods to investigate P forms in dairy manure and liquid lagoon manure, and to study how long-term amendment with these manures influenced surface and subsurface soil P speciation. Our results show that the P forms in solid and lagoon manure are similar. About 30% of the total P was organic, mostly as orthophosphate monoesters. On a dry weight basis, total P was much higher in the solid manure. In the manure-amended soils the total P concentrations of the surface soils were similar, regardless of manure type. Total P in the subsurface soil was greater in the lagoon-manure-amended soil than the solid-manure-amended subsurface soil. However, the fraction of organic P was greater in the subsurface of the solid-manure-amended soil. The NMR results indicate that the majority of organic P in the soils is phytic acid, which is enriched in the surface soils compared with the subsurface soils. These results provide insight into P speciation and dynamics in manure-amended soils that will further increase our understanding on how best to manage manure disposal on soils.  相似文献   

3.
Both enzymatic hydrolysis and solution (31)P nuclear magnetic resonance (NMR) spectroscopy have been used to characterize P compounds in animal manures. In this study, we comparatively investigated P forms in 0.25 M NaOH/0.05 M EDTA extracts of dairy and poultry manures by the two methods. For the dairy manure, enzymatic hydrolysis revealed that the majority of extracted P was inorganic P (56%), with 10% phytate-like P, 9% simple monoester P, 6% polynucleotide-like P, and 18% non-hydrolyzable P. Similar results were obtained by NMR spectroscopy, which showed that inorganic P was the major P fraction (64-73%), followed by 6% phytic acid, 14 to 22% other monoesters, and 7% phosphodiesters. In the poultry manure, enzymatic hydrolysis showed that inorganic P was the largest fraction (71%), followed by 15% phytate-like P and 1% other monoesters, and 3% polynucleotide-like P. NMR spectroscopy revealed that orthophosphate was 51 to 63% of extracted P, phytic acid 24 to 33%, other phosphomonoesters 6 to 12%, and phospholipids and DNA 2% each. Drying process increased orthophosphate (8.4% of total P) in dairy manure, but decreased orthophosphate (13.3% of total P) in poultry manure, suggesting that drying treatment caused the hydrolysis of some organic P to orthophosphate in dairy manure, but less recovery of orthophosphate in poultry manure. Comparison of these data indicates that the distribution patterns of major P forms in animal manure determined by the two methods were similar. Researchers can utilize the method that best fits their specific research goals or use both methods to obtain a full spectrum of manure P characterization.  相似文献   

4.
Dairy manure application to soils can result in phosphorus (P)-related degradation of water quality. The P in these manure-impacted soils can be labile even years after abandonment and under conditions normally associated with high P stability. Failure of P to stabilize with time compounds the environmental consequences of dairy manure disposal, especially on sandy soils. The objectives of this study were to compare chemical characteristics of active and abandoned dairy manure-impacted soils and minimally impacted soils and to assess the continuous release of P in relation to sparingly soluble salts using repeated water extractions, X-ray diffraction, and speciation modeling of column leachates. Soil samples from Ap horizons were collected from nine highly manure-impacted (total P > 1000 mg P kg(-1) soil) areas on four active and five abandoned dairies and four minimally impacted soils (total P < 200 mg P kg(-1) soil). Soil extracts were analyzed for electrical conductivity (EC), soluble reactive phosphorus (SRP), Ca, Mg, Na, and K. The EC of the soil solutions decreased as active dairy > abandoned dairy > minimally impacted soils. Release of Mg and SRP were significantly correlated (r2 = 0.68) and did not decline after abandonment; Ca release was not correlated with SRP (r2 = 0.01), and declined significantly (p < 0.05) after abandonment. Speciation data from column leachates suggested that Mg-P phases and/or the most soluble Ca-P phases could control P solution activities. An implication of this study is that P stabilization via crystallization of calcium phosphates (even at near-neutral pH) may be preempted by Mg-P association. Thus, mechanisms to minimize P release may require P-retaining soil amendments or management of animal rations to eliminate Mg-P formation.  相似文献   

5.
Anaerobic digestion of dairy manure with enhanced ammonia removal   总被引:5,自引:0,他引:5  
Poor ammonia-nitrogen removal in methanogenic anaerobic reactors digesting animal manure has been reported as an important disadvantage of anaerobic digestion (AD) in several studies. Development of anaerobic processes that are capable of producing reduced ammonia-nitrogen levels in their effluent is one of the areas where further research must be pursued if AD technology is to be made more effective and economically advantageous. One approach to removing ammonia from anaerobically digested effluents is the forced precipitation of magnesium ammonium phosphate hexahydrate (MgNH4PO4 x 6H2O), commonly called struvite. Struvite is a valuable plant nutrient source for nitrogen and phosphorus since it releases them slowly and has non-burning features because of its low solubility in water. This study investigated coupling AD and controlled struvite precipitation in the same reactor to minimize the nitrogen removal costs and possibly increase the performance of the AD by reducing the ammonia concentration which has an adverse effect on anaerobic bacteria. The results indicated that up to 19% extra COD and almost 11% extra NH3 removals were achieved relative to a control by adding 1750 mg/L of MgCl2 x 6H2O to the anaerobic reactor.  相似文献   

6.
Identification of the chemical P species in biosolids or manures will improve our understanding of the long-term potential for P loss when these materials are land applied. The objectives of this study were to determine the P species in dairy manures, poultry litters, and biosolids using X-ray absorption near-edge structure (XANES) spectroscopy and to determine if chemical fractionation techniques can provide useful information when interpreted based on the results of more definitive P speciation studies. Our XANES fitting results indicated that the predominant forms of P in organic P sources included hydroxylapatite, PO(4) sorbed to Al hydroxides, and phytic acid in lime-stabilized biosolids and manures; hydroxylapatite, PO(4) sorbed on ferrihydrite, and phytic acid in lime- and Fe-treated biosolids; and PO(4) sorbed on ferrihydrite, hydroxylapatite, beta-tricalcium phosphate (beta-TCP), and often PO(4) sorbed to Al hydroxides in Fe-treated and digested biosolids. Strong relationships existed between the proportions of XANES PO(4) sorbed to Al hydroxides and NH(4)Cl- + NH(4)F-extractable P, XANES PO(4) sorbed to ferrihydrite + phytic acid and NaOH-extractable P, and XANES hydroxylapatite + beta-TCP and dithionite-citrate-bicarbonate (DCB)- + H(2)SO(4)-extractable P (r(2) = 0.67 [P = 0.01], 0.78 [P = 0.01], and 0.89 [P = 0.001], respectively). Our XANES fitting results can be used to make predictions about long-term solubility of P when biosolids and manures are land applied. Fractionation techniques indicate that there are differences in the forms of P in these materials but should be interpreted based on P speciation data obtained using more advanced analytical tools.  相似文献   

7.
This study evaluated the use of biochar produced from anaerobic digester dairy fiber (ADF) to sequester phosphorus (P) from dairy lagoons. The ADF was collected from a plugged flow digester, air-dried to <8% water content, and pelletized. Biochar was produced by slow pyrolysis in a barrel retort. The potential of biochar to reduce P in the anaerobic digester effluent (ADE) was assessed in small-scale filter systems through which the effluent was circulated. Biochar sequestered an average of 381 mg L P from the ADE, and 4 g L ADF was captured as a coating on the biochar. There was an increase of total (1.9 g kg), Olsen (763 mg kg), and water-extractable P (914 mg kg) bound to the biochar after 15 d of filtration. This accounted for a recovery of 32% of the P in the ADE. The recovered P on the biochar was analyzed using P nuclear magnetic resonance for P speciation, which confirmed the recovery of inorganic orthophosphate after liquid extraction of the biochar and the presence of inextractable Ca-P in the solid state. The inorganic phosphate was sequestered on the biochar through physical and weak chemical bonding. Results indicate that biochar could be a beneficial component to P reduction in the dairy system.  相似文献   

8.
Modifying poultry diets by reducing mineral P supplementation and/or adding phytase may change the chemical composition of P in manures and affect the mobility of P in manure-amended soils. We studied the speciation of P in manures produced by broiler chickens and turkeys from either normal diets, or diets with reduced amounts of non-phytate phosphorus (NPP) and/or phytase, using a combination of chemical fractionation and synchrotron X-ray absorption near edge structure (XANES) spectroscopy. All broiler litters were rich in dicalcium phosphate (65-76%), followed by aqueous phosphate (13-18%), and phytic acid (7-20%); however, no hydroxylapatite was observed. Similarly, normal turkey manure had 77% of P as dicalcium phosphate and had no hydroxylapatite, while turkey manure from diets that had reduced NPP and phytase contained equal proportions of dicalcium phosphate (33-45%) and hydroxylapatite (35-39%). This is attributed to the higher total Ca to P ratio (>2) in modified turkey manures that resulted in transformation of more soluble (dicalcium phosphate) to less soluble P compounds (hydroxylapatite). Chemical fractionation showed that H2O-extractable P was the predominant form in broiler litter (56-77%), whereas aqueous phosphate determined with XANES was <18% indicating that H2O probably dissolved mineral forms of P (e.g., dicalcium phosphate). Results show that HCl extraction primarily removed phytic acid from broiler litters and normal turkey manure, while it removed a mixture of hydroxylapatite and phytic acid from modified turkey manures. The combination of chemical fractionation and XANES provided information about the nature of P in these manures, which may help to devise best management practices for manure use.  相似文献   

9.
The phosphorus (P) in agro-industrial by-products--a potential source of freshwater eutrophication but also a valuable fertilizer--needs to be speciated to evaluate its fate in the environment. We investigated to what extent X-ray absorption near edge structure (XANES) spectroscopy at the P K- and L2.3-edges reflected differences in sequentially extracted filter cakes from sugarcane (Saccharum officinarum L.) (FIC) and niger seed (Guizotia abyssinica Cass.; NIC) processing industry in Ethiopia. The P fractionation removed more labile (54%) and H2SO4-P (28%) from FIC than from NIC (18% labile, 12% H2SO4-P). For the FIC residues after each extraction step, linear combination (LC) fitting of P K-edge spectra provided evidence for the enrichment of Ca-P after the NaOH-extraction and its almost complete removal after the H2SO4-treatment. The LC-fitting was unsuccessful for the NIC samples, likely because of the predominance of organic P compounds. The different proportions of Ca-P compounds between FIC (large) and NIC (small) were more distinctive in L2-than in the K-edge XANES spectra. In conclusion, the added value of complementary P K- and L2.3-edge XANES was clearly demonstrated, and the P fractionation and speciation results together justify using FIC and NIC as soil amendments in the tropics.  相似文献   

10.
Effective manure management to efficiently utilize organic wastes without causing environmental degradation requires a clear understanding of the transformation of P forms from diet to manure. Thus, the objective of this study was to establish quantitative relationships between P forms in diets, feces, and manures collected from U.S. Northeastern and Mid-Atlantic commercial dairy farms. Total P in diets ranged from 3.6 to 5.3 g kg(-1) dry matter, while the feces had higher P than diets (5.7-9.5 g kg(-1)) and manures had lower P (2.5-8.9 g kg(-1)) than feces. The farms with total dietary P of 4.8 to 5.3 g P kg(-1) had twofold higher concentrations of phytic acid (1647-2300 mg P kg(-1)) than farms with 3.6 to 4.0 g dietary P kg(-1) (844-1100 mg P kg(-1)). Much of the phytic acid in diets was converted to inorganic orthophosphate in the rumen as indicated by a reduction in phytic acid percentage from diets (32%) to feces (18%). The proportion of orthophosphate diesters (phospholipids, deoxyribonucleic acid [DNA]) was twice as high in feces (6.2-10%) as diets (2.4-5.3%) suggesting the excretion of microbial residues in feces. Phosphonates (aminoethyl phosphonates and phosphonolipids) were not seen in diets but were detected in feces and persisted in manures, which suggests a microbial origin. These organic compounds (phytic acid, phospholipids, DNA) were decomposed on storage of feces in slurry pits, increasing orthophosphate in manures by 9 to 12% of total P. These results suggest that reducing dietary P and typically storing feces in dairy farms will result in manure with similar chemical forms (primarily orthophosphate: 63-77%) that will be land applied. Thus, both the reduction of dietary P and storage of manure on farm are important for controlling solubility and bioavailability of P forms in soils and waters.  相似文献   

11.
Animal manure contains partially digested feed fiber and grains where phosphorus (P) is bound in organic compounds that include myo-inositol 1,2,3,5/4,6-hexakis dihydrogenphosphate or phytic acid (IP6). Information is needed on the effects of other (non-IP6) organic ligands (LIGND) on the enzymatic dephosphorylation of IP6, which is a potential source of dissolved orthophosphate P (PO4-P) in the soil-manure-water system. The effects of 1,2-cyclohexane diamino-tetraacetate (CDTA), diethylenetriamine-N,N,N',N',N'-pentaacetate (DTPA), ethylenediamine-N,N,N',N'-tetraacetate (EDTA), oxalate (OXA), and phthalate (PHTH) and LIGND to IP6 molar ratio and charge concentration ratio on IP6 dephosphorylation were studied to determine controlling mechanisms of IP6 persistence in manure. Solution PO4-P concentrations were analyzed by ion chromatography as the phosphomolybdate-ascorbic acid method partly includes IP6-P. Uncomplexed IP6 dephosphorylation by Aspergillus ficuum (Reichardt) Henn. phytase EC 3.1.3.8 at pH 4.5 and 6 is unaffected by the presence of LIGNDs. As the concentrations of Ca2+, Al3+, or Fe3+ increase, dephosphorylation is reduced. Their inhibitory effect lessens in the presence of LIGNDs, in the following order: CDTA = EDTA > DTPA > OXA > or = PHTH. Whether CDTA or EDTA is the most effective LIGND depends upon the acidity of the suspension and LIGND charge concentration, reducing the inhibitory effect of polyvalent counterions to the point of promoting the hydrolysis of a manure phytase-hydrolyzable phosphorus (PHP) fraction that is otherwise unavailable. Therefore, ligand-induced changes increase the mobilization and dephosphorylation of complexed organic P, above and beyond the simple dissolution of inorganic phosphates. An analytical method for potentially bioavailable PHP in animal manure should include a LIGND as extracting reagent. Also, potential LIGNDs in an organic carbon-rich dairy wastewater may increase the release of PHP and environmental dispersion of PO4-P.  相似文献   

12.
Treatments to reduce solids content in liquid manure have been developed, but little information is available on gaseous N emissions and plant N uptake after application of treated liquid swine manure (LSM). We measured crop yield, N uptake, and NH3 and N2O losses after the application of mineral fertilizer (NH4 NO3), raw LSM, and LSM that was decanted, filtered, anaerobically digested, or chemically flocculated. The experiment was conducted from 2001 to 2003 on a loam and a sandy loam cropped to timothy (Phleum pratense L.) with annual applications equivalent to 80 kg N ha(-1) in spring and 60 kg N ha(-1) after the first harvest. Raw LSM resulted in NH3 emissions three to six times larger (P < 0.05) than mineral fertilizer. The LSM treatments reduced NH3 emissions by an average of 25% compared with raw LSM (P < 0.05). The N2O emissions tended to be higher with raw LSM than with mineral fertilizer. The LSM treatments had little effect on N2O emissions, except for anaerobic digestion, which reduced emissions by >50% compared with raw LSM (P < 0.05). Forage yield with raw LSM was >90% of that with mineral fertilizer. The LSM treatments tended to increase forage yield and N uptake relative to raw LSM. We conclude that treated or untreated LSM offers an alternative to mineral fertilizers for forage grass production but care must be taken to minimize NH3 volatilization. Removing solids from LSM by mechanical, chemical, and biological means reduced NH3 losses from LSM applied to perennial grass.  相似文献   

13.
Three chemicals, ferrous sulfate (Fe-sul), calcium oxide (CaO), and aluminum sulfate (alum), were used to stabilize phosphorus (P) in fresh, anaerobically digested sewage sludge (FSS). The chemically stabilized sludge materials and biosolids compost (BSC) were compared with the FSS with respect to water-soluble phosphorus (WSP) content in its inorganic (WSP(i)) and organic (WSP(o)) forms as well as water-soluble organic carbon (DOC). Solid-state P speciation was further probed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray elemental spectrometry (EDXS). Water-soluble P was effectively controlled by a wide range of Fe-sul or CaO additions to the sludge (Ca to P ratio = 3.47-17.72, Fe to P ratio = 1.01-16.53), but by only a narrow range (Al to P ratio = 1.04-2.87) of alum addition. The WSP content in the BSC was also depressed, but to a lesser extent. The pH in the treated sludge ranged from 3.0 to 12.5 and served as a key factor to control P chemistry. No correlation was observed between DOC and WSP(o). No crystallized Ca-P minerals were detected in the CaO-stabilized sludge, but brushite crystallization seemed to be obtained by low addition of Fe-sul and alum. Variscite and strengite crystallization was obtained following high addition of Fe-sul or alum, as detected by XRD and SEM-EDXS. Adsorption of P by newly formed Fe-hydroxide seems to play an important role in the Fe-sul-stabilized sludge. We concluded that administration of the tested chemicals at the proper rate can effectively reduce the hazard of P release and leaching from sludge.  相似文献   

14.
Swine manure contains considerable amounts of total (P) and soluble phosphorus (PO(4)-P) which may increase the soil P content when applied in excess to crop requirements and, consequently, risk water eutrophication. The feasibility of using magnesium (Mg) from the by-product of electrolysis and foundries (BPEF) for the removal of P from liquid swine manure was studied by adding up to 3 g of Mg as BPEF per liter of nursery (NU) and grower-finisher (GF) swine manure in 25-L plastic buckets. Changes in P and other elements were monitored for up to 360 h. Small amounts of Mg as BPEF (0.5 and 1.0 g Mg L(-1) manure) reduced the total P concentration of the liquid fraction by 70 to 95% of both manure types with respect to the control treatment of mixed raw manure. A settling period of 8 h or more was necessary to significantly reduce the liquid fraction's total P concentration for both manure types. Reduction of PO(4)-P varied from 96 to 100% in the liquid fractions for both manure types, which along with natural settling, explains most of the total P reduction in that fraction. The addition of BPEF did not influence the N content of manure. The low P liquid fraction can be safely applied to saturated P soils whereas the high P solid fraction offers the opportunity of transporting manure to agricultural soils deficient in P. Since N is conserved, both liquid and solid fractions could be valuable fertilizer manure by-products.  相似文献   

15.
There is concern that P from dairy effluent sprayfields will leach into groundwater beneath Suwannee River basins in northern Florida. Our purpose was to describe the effects of dairy effluent irrigation on the movement of soil P and other nutrients within the upper soil profile of a sprayfield over three 12-mo cycles (April 1998-March 2001). Effluent P rates of 70, 110, and 165 kg ha(-1) cycle(-1) were applied to forages that were grown year-round. The soil is a deep, excessively drained sand (thermic, uncoated Typic Quartzipsamment). Mean P concentration in soil water below the rooting zone (152-cm depth) was < or = 0.1 mg L(-1) during 11 3-mo periods. Mehlich-1-extractable (M1) P, Al, and Ca in the topsoil increased over time but did not change in subsoil depths of 25 to 51, 51 to 71, 71 to 97, and 97 to 122 cm. Topsoil Ca increased as effluent rate increased. High Ca levels were found in dairy effluent (avg.: 305 mg L(-1)) and supplemental irrigation water (avg.: 145 mg L(-1)) which likely played a role in retaining P in the topsoil. An effect of effluent rate on P and Al concentrations in the topsoil was not detected, probably due to large and variable quantities present at project initiation. The P retention capacity (i.e., Al plus Fe) increased in the topsoil because Al increased. Dairy effluent contained Al (avg.: 31 mg L(-1)). Phosphorus saturation ratio (PSR) increased over time in the topsoil but not in subsoil layers. Regardless of effluent rate, the P retention capacity and PSR of subsoil, which contained 119 to 229 mg kg(-1) of Al, should be taken into account when assessing the risk of P moving below the rooting zone of most forage crops.  相似文献   

16.
Long-term application of phosphorus (P) with animal manure in amounts exceeding removal with crops leads to buildup of P in soil and to increasing risk of P loss to surface water and eutrophication. In most manures, the majority of P is held within inorganic forms, but in soil leachates organic P forms often dominate. We investigated the mobility of both inorganic and organic P in profile samples from a noncalcareous sandy soil treated for 11 yr with excessive amounts of pig slurry, poultry manure, or poultry manure mixed with litter. Solution 31P nuclear magnetic resonance spectroscopy was used to characterize NaOH-EDTA-extractable forms of P, corresponding to 64 to 93% of the total P concentration in soil. Orthophosphate and orthophosphate monoesters were the main P forms detected in the NaOH-EDTA extracts. A strong accumulation of orthophosphate monoesters was found in the upper layers of the manure-treated soils. For orthophosphate, however, increased concentrations were found down to the 40- to 50-cm soil layers, indicating a strong downward movement of this P form. This was ascribed to the strong retention of orthophosphate monoesters by the solid phase of the soil, preventing orthophosphate sorption and facilitating downward movement of orthophosphate. Alternatively, mineralization of organic P in the upper layers of the manure-treated soils may have generated orthophosphate, which could have contributed to the downward movement of the latter. Leaching of inorganic P should thus be considered for the assessment and the future management of the long-term risk of P loss from soils receiving large amounts of manure.  相似文献   

17.
The use of spectroscopic techniques (especially phosphorus-31 nuclear magnetic resonance [(31)P-NMR] and X-ray absorption near edge structure spectroscopy) has recently advanced the analysis of the speciation of P in poultry litter (PL) and greatly enhanced our understanding of changes in P pools in PL that receive alum (aluminum sulfate) to reduce water-soluble P and control ammonia emissions from poultry houses. Questions remain concerning changes of P species during long-term storage, drying, or after application of PL to cropland or for other uses, such as turfgrass. In this study, we investigated a set of six PL samples (of which three were alum-amended and three were unamended) that had been characterized previously. The P speciation was analyzed using solid-state (31)P-NMR spectroscopy, and the mineralogy was analyzed by powder X-ray diffraction (XRD) after storing the samples moist and dried for up to 5 yr under controlled conditions. The magnesium ammonium phosphate mineral struvite was identified in all but one PL samples. Struvite concentrations were generally lower in dried samples (< or = 14%) than in samples stored moist (23 and 26%). The moist samples also had higher concentrations of phosphate bound to aluminum hydroxides. Solid-state NMR spectroscopy was in general more sensitive than XRD in detecting and quantifying P species. Although phosphate associated with calcium and aluminum made up a large proportion of P species, they were not detected by XRD.  相似文献   

18.
Physical, chemical, or biological treatment of animal liquid manure generally produces a dry-matter rich fraction (DMF) that contains most of the initial phosphorus (P). Our objective was to assess the solubility and plant availability of P from various DMFs as a function of soil P status. Eight different DMFs were obtained from liquid swine (LSM) and dairy cattle (LDC) manures treated by natural decantation, anaerobic digestion, chemical flocculation, composting, or mechanical separation. The DMFs were compared with mineral P fertilizer in a pot experiment with oat ( L.) grown in four soils with varied P-fixing capacities and P saturation levels. The DMFs were added at a rate of 50 mg P kg soil and incubated 14 d before seeding. Soil water-extractable P (P) at all water:soil extraction ratios (2:1, 20:1, and 200:1) was slightly higher when DMFs were derived from LDC rather than LSM. Soil P at the 2:1 ratio was lower with anaerobically digested LSM. At the 2:1 extraction ratio, DMF P was less soluble than mineral P as P saturation in soils increased. In soils with a lower P-fixing capacity, DMF P appeared less water soluble than mineral P under 20:1 and 200:1 extraction ratios. After 72 d of plant growth, DMFs produced yields comparable to mineral P fertilizer. Although the plant availability of P from DMFs was comparable to mineral P fertilizer, P from DMFs could be less vulnerable to leaching or runoff losses in soils with a high P saturation level or low P-fixing capacity.  相似文献   

19.
A procedure involving alkaline extraction and solution 31P nuclear magnetic resonance (NMR) spectroscopy was developed and optimized for the characterization of P in animal manures (broiler, swine, beef cattle). Inclusion of ethylenediaminetetraacetic acid (EDTA) in the alkaline extraction solution recovered between 82 and 97% of the total P from the three manures, which represented a significant improvement on recovery in NaOH alone. Low concentrations of paramagnetic ions in all manure extracts meant that relatively long delay times (> 5 s) were required for quantitative analysis by solution 31P NMR spectroscopy. The manures contained inorganic orthophosphate, orthophosphate monoesters, orthophosphate diesters, and inorganic polyphosphates, but results were markedly influenced by the concentration of NaOH in the extractant, which affected both spectral resolution and the apparent P composition of the extracts. For example, extraction of swine manure and broiler litter with 0.5 M NaOH + 50 mM EDTA produced remarkable spectral resolution that allowed accurate quantification of the four signals from phytic acid, the major organic P compound in these manures. In contrast, more dilute NaOH concentrations produced considerable line broadening that obscured individual signals in the orthophosphate monoester region of the spectra. Spectral resolution of cattle manure extracts was relatively unaffected by NaOH concentration. Improvements in spectral resolution of more concentrated NaOH extracts were, however, compromised by the disappearance of phospholipids and inorganic polyphosphates, notably in swine and cattle manure extracts, which indicated either degradation or a change in solubility. The optimum extraction conditions will therefore vary depending on the manure type and the objectives of the study. Phytic acid can be accurately quantified in swine manure and broiler litter by extraction with 0.5 M NaOH + 50 mM EDTA, while a more dilute NaOH concentration should be used for complete P characterization or comparison among different manure types.  相似文献   

20.
Application of manure to frozen and/or snow-covered soils of high-latitude, continental climate regions is associated with enhanced P losses to surface water bodies, but the practice is an essential part of most animal farming systems in these regions. Field experiments of the fates of winter-applied manure P are so difficult as to make them essentially impractical, so a mechanistic, modeling approach is required. Central to a mechanistic understanding of manure P snow-melt runoff is knowledge of snowpack disappearance (ablation) as affected by manure application. The objective of this study was to learn how solid manure applied to snow-covered fields modulates the surface energy balance and thereby snow cover ablation. Manure landspreading experiments were conducted in Arlington, WI during the winters of 1998 and 1999. Solid dairy manure was applied on top of snow at a rate of 70 Mg ha(-1) in 1998, and at 45 and 100 Mg ha(-1) in 1999. Results showed that the manure retarded melt, in proportion to the rate applied. The low-albedo manure increased absorption of shortwave radiation compared with snow, but this extra energy was lost in longwave radiation and turbulent flux of sensible and latent heat. These losses result in significant attenuation of melt peaks, retarding snowmelt. Lower snowmelt rates beneath manure may allow more infiltration of meltwater compared with bare snow. This infiltration and attenuated snowmelt runoff may partially mitigate the enhanced likelihood of P runoff from unincorporated winter-spread manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号