首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the major challenges in assessing the potential metal stress to aquatic organisms is explicitly predicting the internal dose in target organs. We aimed to understand the main sources of copper (Cu) accumulation in target organs of tilapia (Oreochromis mossambicus) and to investigate how the fish alter the process of Cu uptake, depuration, and accumulation (toxicokinetics (TK)) under prolonged conditions. We measured the temporal Cu profiles in selected organs after single and combined exposure to waterborne and dietary Cu for 14 days. Quantitative relations between different sources and levels of Cu, duration of treatment, and organ-specific Cu concentrations were established using TK modeling approaches. We show that water was the main source of Cu in the gills (>94 %), liver (>89 %), and alimentary canal (>86 %); the major source of Cu in the muscle (>51 %) was food. Cu uptake and depuration in tilapia organs were mediated under prolonged exposure conditions. In general, the uptake rate, depuration rate, and net bioaccumulation ability in all selected organs decreased with increasing waterborne Cu levels and duration of exposure. Muscle played a key role in accounting for the rapid Cu accumulation in the first period after exposure. Conversely, the liver acted as a terminal Cu storage site when exposure was extended. The TK processes of Cu in tilapia were highly changed under higher exposure conditions. The commonly used bioaccumulation model might lead to overestimations of the internal metal concentration with the basic assumption of constant TK processes.  相似文献   

2.
Sexually mature female tilapia were exposed to sublethal concentrations of waterborne Cu and/or Cd over 6 days, and subsequent body concentrations of these metals were determined in several organs. The results show that the distribution of Cu and Cd was metal and organ specific. This is demonstrated, for example, by the observation that in tilapia, Cu exposure did not result in Cu accumulation in the liver, whereas in the intestinal wall, notably high concentrations of Cu and Cd were measured in metal exposed fish. In addition to single metal exposed fish, we also determined Cu and Cd body distribution in Cu?Cd co-exposed fish. The observed interactions in metal accumulation were most pronounced in the organs of fish exposed to low, environmentally realistic, metal concentrations.  相似文献   

3.
Sexually mature female tilapia were exposed to sublethal concentrations of waterborne Cu and/or Cd over 6 days, and subsequent body concentrations of these metals were determined in several organs. The results show that the distribution of Cu and Cd was metal and organ specific. This is demonstrated, for example, by the observation that in tilapia, Cu exposure did not result in Cu accumulation in the liver, whereas in the intestinal wall, notably high concentrations of Cu and Cd were measured in metal exposed fish.In addition to single metal exposed fish, we also determined Cu and Cd body distribution in Cu---Cd co-exposed fish. The observed interactions in metal accumulation were most pronounced in the organs of fish exposed to low, environmentally realistic, metal concentrations.  相似文献   

4.
Modeling VOC-odor exposure risk in livestock buildings   总被引:1,自引:0,他引:1  
Liang HM  Liao CM 《Chemosphere》2007,68(4):781-789
This paper describes a novel idea of linking models of exposure, internal dosimetry, and health effects. Risk assessment approach that integrates predicted odor caused by volatile organic compounds (VOC-odor) of toluene/xylene concentrations in human tissues leads to predict exposure risks in livestock buildings. First, VOC transport model was developed to calculate airborne toluene/xylene concentrations. Based on a physiologically based pharmacokinetic (PBPK) model, concentrations within five compartments representing lung, liver, fat, slowly perfused tissues, and rapidly perfused tissues could be quantified. By using a pharmacodynamic (PD) Hill model, we can optimally fit data from rat and human experiments to reconstruct dose-response relationships for accounting human health effects from nose poke and eye irritation. Results demonstrated that peak tissue concentration occurring at 5-10h in that fat contains the highest concentration than other tissues at around 4ppm of toluene and 1.8ppm of xylene. The EC(10) values are 114 and 232ppm, whereas expected risks are estimated to be 0.71% and 0.26% of human exposure to toluene and xylene, respectively. Risk analyses indicate that inhalation exposure in livestock buildings poses no significant threat to human health under the present environmental conditions. This method provides a rigorous and effective approach to relate target tissue concentration to human nose poke or eye irritation. We suggest that our probabilistic framework and methods be taken seriously because they produce general conclusions that are more robust and could offer a risk-management framework for discussion of future establishment of limits for respiratory exposure to VOC-odor.  相似文献   

5.
We developed a risk-based approach to assess how the valve closure behavior of Asiatic clam Corbicula fluminea responds to waterborne copper (Cu) and cadmium (Cd). We reanalyzed the valve closure response data from published literature to reconstruct the response time-dependent dose-response profiles based on an empirical three-parameter Hill equation model. We integrated probabilistic exposure profiles of measured environmental Cu and Cd concentrations in the western coastal areas of Taiwan with the reconstructed dose-response relationships at different integration times of response to quantitatively estimate the valve response risk. The risk assessment results implicate exposure to waterborne Cu and Cd may pose no significant risk to clam valve activity in the short-time response periods (e.g., <30 min), yet a relative high risk for valve closure response to waterborne Cu at response times greater than 120 min is alarming. We successfully linked reconstructed dose-response profiles and EC50-time relationships associated with the fitted daily valve opening/closing rhythm characterized by a three-parameter lognormal function to predict the time-varying bivalve closure rhythm response to waterborne metals. We parameterized the proposed predictive model that should encourage a risk-management framework for discussion of future design of biological monitoring systems.  相似文献   

6.
We introduce a novel on-line biomonitoring system based on a valvometric conversion technique for clam Corbicula fluminea, allowing for rapid, continuous, and ecological relevant water quality control. Our model builds upon the basic principles of biological early warning system model in two ways. We first adopted a risk-based methodology to build a dynamic artificial clam for simulating how the bivalve closure rhythm in response to waterborne copper (Cu) and cadmium (Cd). Secondly, we integrated a probabilistic model associated with the time-varying dose-response relationships of valve closing behavior into the mechanisms of a dynamic artificial clam, allowing estimation of the time-varying waterborne Cu/Cd concentrations for on-line providing the outcomes of the toxicity detection technique. Measurements with Cu/Cd were performed and the calculated EC50 values were compared with published data for the valve movement test with C. fluminea. This proposed dynamic artificial clam provides a better quantitative understanding of on-line biomonitoring measurements of waterborne metals and may foster applications in clam farm management strategy and ecotoxicological risk assessment.  相似文献   

7.
Yu D  Kim JK 《Chemosphere》2004,54(5):639-645
Most of the indoor radon comes directly from the soil beneath the foundation of a basement. Recently, radon from groundwater was found to make some contribution to the total inhalation risk associated with radon in indoor air. This study presents a realistic exposure assessment of a human to indoor radon released from groundwater. First, the prediction of indoor radon concentration released from groundwater was based on a three-compartment model that was developed to describe the transfer and distribution of the radon released from groundwater in a house through showers, washing clothes, and flushing toilets. Second, a physiologically based pharmacokinetic (PBPK) model for inhaled radon was developed and used to estimate tissue group concentrations in a human body. The PBPK model provides reasonable predictions of uptake, excretion, and distribution of retained radon among tissue groups in the body. Hence, the approach using the PBPK model combined with realistic indoor exposure scenarios predicts the radon concentrations in tissue groups in the body associated with the indoor radon pollution. The results obtained from the study will help increase the quantitative understanding of the risk assessment issues associated with the indoor radon released from the groundwater.  相似文献   

8.
The tissue-blood partition coefficients for a physiologically based pharmacokinetic (PBPK) model were determined, and the concentrations of 17 congeners of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in tissues in Japanese people were estimated using the model. According to the PBPK model established by Lawrence and Gobas [Chemosphere 35 (1997) 427-452], we assumed a steady-state fugacity model for Japanese people in general, and set the route of PCDD/Fs exposure only from food intake. The required partition coefficients for liver, kidney, adipose, muscle, skin, bile, gut and viscera (richly perfused tissue) were calculated using available autopsy data from eight Japanese men and women who were not accidentally exposed to PCDD/Fs. For validation of the partition coefficients, estimated PCDD/F concentrations in liver, kidney, fat, blood and muscle using the model were compared to other two sets of measured concentration data in Japanese tissues. Good agreement was obtained between estimated data and measured data, and most of the measured data were within the simulated concentration range in liver, kidney, blood and muscle. From these results, our model and calculated partition coefficients seem applicable for the estimation of congener-specific concentrations in human tissues.  相似文献   

9.
The purpose of this study was to link toxicokinetics/toxicodynamics (TK/TD) and bioavailability-based metal uptake kinetics to assess arsenic (As) uptake and bioaccumulation in three common farmed species of tilapia (Oreochromis mossambicus), milkfish (Chanos chanos), and freshwater clam (Corbicula fluminea). We developed a mechanistic framework by linking damage assessment model (DAM) and bioavailability-based Michaelis?CMenten model for describing TK/TD and As uptake mechanisms. The proposed model was verified with published acute toxicity data. The estimated TK/TD parameters were used to simulate the relationship between bioavailable As uptake and susceptibility probability. The As toxicity was also evaluated based on a constructed elimination?Crecovery scheme. Absorption rate constants were estimated to be 0.025, 0.016, and 0.175?mL g?1 h?1 and As uptake rate constant estimates were 22.875, 63.125, and 788.318?ng g?1 h?1 for tilapia, milkfish, and freshwater clam, respectively. Here we showed that a potential trade-off between capacities of As elimination and damage recovery was found among three farmed species. Moreover, the susceptibility probability can also be estimated by the elimination?Crecovery relations. This study suggested that bioavailability-based uptake kinetics and TK/TD-based DAM could be integrated for assessing metal uptake and toxicity in aquatic organisms. This study is useful to quantitatively assess the complex environmental behavior of metal uptake and implicate to risk assessment of metals in aquaculture systems.  相似文献   

10.
Yang Y  Tan YM  Blount B  Murray C  Egan S  Bolger M  Clewell H 《Chemosphere》2012,88(8):1019-1027
Exposure to perchlorate is widespread in the United States and many studies have attempted to character the perchlorate exposure by estimating the average daily intakes of perchlorate. These approaches provided population-based estimates, but did not provide individual-level exposure estimates. Until recently, exposure activity database such as CSFII, TDS and NHANES become available and provide opportunities to evaluate the individual-level exposure to chemical using exposure surveillance dataset. In this study, we use perchlorate as an example to investigate the usefulness of urinary biomarker data for predicting exposures at the individual level. Specifically, two analyses were conducted: (1) using data from a controlled human study to examine the ability of a physiologically based pharmacokinetic (PBPK) model to predict perchlorate concentrations in single-spot and cumulative urine samples; and (2) using biomarker data from a population-based study and a PBPK model to demonstrate the challenges in linking urinary biomarker concentrations to intake doses for individuals. Results showed that the modeling approach was able to characterize the distribution of biomarker concentrations at the population level, but predicting the exposure-biomarker relationship for individuals was much more difficult. The type of information needed to reduce the uncertainty in estimating intake doses, for individuals, based on biomarker measurements is discussed.  相似文献   

11.
The current study investigated oxidative stress parameters (enzymes activities, metallothionein content and lipid peroxidation) in freshwater fish, Oreochromis niloticus, tilapia exposure to Monjolinho River (in 4 months of year: January, April, July and November). One critical site in Monjolinho River (site B) was assessed in comparison to a reference site (site A). Water pH and oxygen concentration was lower than that recommended by CONAMA (Brazilian National Environmental Committee), resolution 357/2005 for protection of aquatic communities, and ammonium and the metals Cu, Zn, Mn and Fe (on all months) concentrations were higher than the maximum concentration recommended. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly decreased in liver and muscle in tilapia from Monjolinho River, throughout the year, in relation to reference except in gills that SOD activity increased. Glutathione S-transferase (GST) activity was significantly increased in liver of the tilapia from Monjolinho River in all sites, in relation to reference except in gills that GST activity increased in July and decreased in November, suggesting that GST activity could be induced to neutralize the pollutants toxicity. On the other hand, GST activity was significantly decreased in white muscle indicating a toxic effect of pollutants, resulting in a decreased ability of tilapia to perform defense reactions associated to GSTs. The decrease of catalase (CAT) activity in gills of the O. niloticus together with the increase of SOD activity, could explain the increased lipid peroxidation (LPO) level in this organ. Metallothionein levels in liver and gills were significantly high in all sites. Results indicate that the exposure to metals caused severe damage to tissues; despite the consensually assumed antioxidant induction as a sign of exposure to contaminants the effects seem in part to be mediated by suppression of antioxidant system with SOD, CAT and GPx as potential candidates for tissues toxicity biomarkers of pollutants.  相似文献   

12.
Accumulation and toxicity of waterborne bisphenol A were studied in landlocked salmon (Salmo salar m. sebago) yolk-sac fry. In a short-term (96 h) exposure to five bisphenol A concentrations yolk-sac fry had higher accumulation rates and bioconcentration factors (BCF96) than earlier studies have shown for salmon eggs. Furthermore, the conditional uptake rate constant tended to decrease as exposure concentration increased. Fry were also exposed to bisphenol A for 42 days at three concentrations (10, 100 and 1000 microg/l), and changes in behaviour, morphology and histological structure were observed. After 6 days of exposure, the highest concentration (1000 microg/l) of bisphenol A caused fluid accumulation (oedema) in the yolk sac and haemorrhages in the front part of the yolk sac and in the head around the gill arches. Later on, the fry at 1000 microg/l showed phlegmatic behaviour and had darker skin coloration than the fry in the other treatments. At the two highest concentrations (100 and 1000 microg/l) histological changes were seen in liver cell nuclei, where strongly stained fragments were observed. In the control fry and the fry exposed to 10 microg/l the nucleolus was clearly visible and spherical in shape and no strongly stained fragments were present. This study shows that high concentrations of bisphenol A may have both morphological and histological effects on salmon yolk-sac fry.  相似文献   

13.
Fluctuation exposure of trace metal copper (Cu) is ubiquitous in aquatic environments. The purpose of this study was to investigate the impacts of chronically pulsed exposure on biodynamics and subcellular partitioning of Cu in freshwater tilapia (Oreochromis mossambicus). Long-term 28-day pulsed Cu exposure experiments were performed to explore subcellular partitioning and toxicokinetics/toxicodynamics of Cu in tilapia. Subcellular partitioning linking with a metal influx scheme was used to estimate detoxification and elimination rates. A biotic ligand model-based damage assessment model was used to take into account environmental effects and biological mechanisms of Cu toxicity. We demonstrated that the probability causing 50% of susceptibility risk in response to pulse Cu exposure in generic Taiwan aquaculture ponds was ~33% of Cu in adverse physiologically associated, metabolically active pool, implicating no significant susceptibility risk for tilapia. We suggest that our integrated ecotoxicological models linking chronic exposure measurements with subcellular partitioning can facilitate a risk assessment framework that provides a predictive tool for preventive susceptibility reduction strategies for freshwater fish exposed to pulse metal stressors.  相似文献   

14.
Human exposure to mercury (Hg) mainly occurs through consumption of aquatics, especially fish. In aquatic systems, the bioaccumulation of Hg across trophic levels could be altered by invasive species through changing community composition. The present study is aimed at measuring total mercury (T-Hg) and methylmercury (MeHg) concentrations in non-native (redbelly tilapia (Tilapia zillii)) and native (Benni (Mesopotamichthys sharpeyi) and common carp (Cyprinus carpio)) fish species throughout Shadegan International Wetland and comparing health risk of their mercury contents to the local population. The concentrations were measured using a direct mercury analyzer (DMA 80). The average values of T-Hg and MeHg for native fishes were 19.8 and 10.49 μg/kg. These concentrations for the invasive fish were 28 and 14.62 μg/kg respectively. Despite having less length and weight than the native fish species, tilapia showed significantly higher T-Hg content, yet the lowest concentration of MeHg was observed in common carp with larger body length and weight. Concerning mercury health risk to consumers, tilapia demonstrated the highest estimated weekly intake (EWI) and percentages of tolerable weekly intake (%TWI) for both T-Hg and MeHg, while the highest hazard quotient (HQ) values were obtained for tilapia and Benni. Taken together, the mercury concentrations in the two native and non-native fishes were acceptable according to the international safety guidelines although the local people shall be warned for consumption of tilapia. Furthermore, the low calculated value of tissue residue criterion (TRC) for the wetland fishes sounds a warning.  相似文献   

15.
Song SB  Xu Y  Zhou BS 《Chemosphere》2006,65(4):699-706
Hexachlorobenzene (HCB)-induced oxidative damages have been published in rats while the effects have not yet been reported in fishes. Juvenile common carps (Cyprinus carpio) were exposed to waterborne HCB from 2 to 200 microg l-1 for 5, 10 or 20 days. Liver and brain were analyzed for various parameters of oxidative stress. There were no significant changes of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver after 5 or 10 days exposure, whereas obvious drops were observed at higher concentrations after 20 days exposure. Significant decreases of GSH content and SOD activity in brain were found during all the exposure days. In brain, HCB also significantly elevated the contents of reactive oxygen species (ROS), thiobarbituric acid- reactive substances (TBARS, as an indicator of lipid peroxidation products), glutathione disulfide (GSSG), and activities of nitric oxide synthase (NOS), glutathione peroxidase (GPx), and glutathione reductase (GR), and inhibited activities of acetylcholinesterase (AchE) and glutathione S-transferase (GST). The results clearly demonstrated that environmentally possible level of HCB could result in oxidative stress in fish and brain was a sensitive target organ of HCB toxicity.  相似文献   

16.
We investigated the effects of waterborne and maternal exposure to tributyltin (TBT) on veliger larvae of the Manila clam, Ruditapes philippinarum. In a waterborne exposure test, veliger larvae (D-larvae stage: 24h after fertilization) were exposed to TBT at measured concentrations of <0.01 (control), 0.055, 0.130, 0.340, and 0.600microg/l for 13d. The percentage of normal veliger larvae (the ratio of normal veliger larvae to all larvae) decreased significantly in all TBT treatment groups compared with that in the control group. In a maternal exposure test, 100 clams were exposed to TBT at measured concentrations of <0.01 (control), 0.061, and 0.310microg/l at 20-22 degrees C for 3 weeks, and the percentage of normal veliger larvae assessed for 13d. No maternal effects on veliger larvae from TBT were observed in TBT treatment groups as compared with the control group. These results demonstrate that waterborne TBT affects Manila clam veliger larvae, and indicates that TBT may have reduced Manila clam populations by preventing the development and survival of veliger larvae.  相似文献   

17.
GOAL, SCOPE AND BACKGROUND: Lake Shkodra/Skadar is the largest lake in the Balkans region and located on the border between Albania to the south and Montenegro to the north. Because of the wide range of endemic, rare or endangered plant and animal species it supports, Lake Shkodra/Skadar and its extensive associated wetlands are internationally recognised as a site of significance and importance (Ramsar site). In recent years, social and economic changes in both Albania and Montenegro have lead to unprecedented levels of urban and industrial effluent entering the lake. Of particular concern is the increasing input of toxic hydrophobic organic pollutants (HOPs) into the lake and the degree to which these compounds are available for uptake by aquatic biota. Semipermeable membrane devices (SPMDs) have been shown to sample the readily bioavailable fraction (dissolved phase) of waterborne HOPs and in doing so provide relevant data for exposure assessment. The aim of the current study was to use SPMD-based sampling in conjunction with appropriate bioassays and chemical analysis to identify readily bioavailable HOPs in the lake. METHODS: SPMDs were constructed and deployed at three sites in the Albanian sector and three sites in the Montenegrin sector of Lake Skadar/Shkodra for 21 days. Following the dialytic recovery of target analytes and size exclusion chromatographic clean-up, aliquots of SPMD samples were subjected to GC-MS scan analysis for major components, GC-MS SIM analysis for 16 priority pollutant polycyclic aromatic hydrocarbons (PP-PAHs) and assayed for EROD-inducing, estrogenic and mutagenic potential using rainbow trout liver cells (RTL-W1), the yeast estrogen screen (YES) and the Ames Test, respectively. RESULTS AND DISCUSSION: A total of 39 compounds were tentatively identified in SPMD samples from the six sampling sites. Alkylated PAHs were the most abundant and ubiquitous compounds present along with various sterols and sterol derivatives. Numerous other compounds remain unidentified. 15 of the 16 targeted PP-PAHs were present in samples from one or more of the sampling sites indicating these compounds are both readily bioavailable and widely distributed in Lake Shkodra/Skadar. Total PP-PAH concentrations ranged between 3991 ng/SPMD and 10695 ng/SPMD. Bioassays carried out on SPMD samples revealed significant EROD-inducing and estrogenic potential at five of the six sampling sites indicating toxicologically relevant compounds are readily available for uptake by resident aquatic biota. EROD-inducing potential was positively correlated with targeted PP-PAH concentration (r2 = 0.74). However, comparison of bioassay- and analytically-derived toxicity equivalents revealed targeted PP-PAHs were responsible for less than 0.06% of the total EROD-inducing potential. CONCLUSIONS AND OUTLOOK: The combination of SPMD-based sampling with appropriate bioassays and chemical analysis provided an effective tool for the identification of environmentally relevant waterborne pollutants in Lake Shkodra/Skadar. Our results show that toxicologically relevant HOPs including EROD-inducing and potentially estrogenic compounds are widely distributed in the lake and readily available for uptake by aquatic biota. Our results also suggest that alkylated PAHs rather than parent compounds may be of greater toxicological relevance in the lake. As anthropogenic influences continue to increase, SPMD-based sampling is expected to play a central role in future research concerned with the identification, monitoring and assessment of the risk posed by HOPs to Lake Shkodra/Skadar's aquatic biota.  相似文献   

18.
This paper describes a risk assessment approach that integrates predicted tissue concentrations of zinc (Zn) with a concentration-response relationship and leads to predictions of survival risk for pond abalone Haliotis diversicolor supertexta as well as to the uncertainties associated with these predictions. The models implemented include a probabilistic bioaccumulation model, which linking biokinetic and consumer-resource models, accounts for Zn exposure profile and a modified Hill model for reconstructing a dose-response profile for abalone exposed to waterborne Zn. The growth risk is assessed by hazard quotients characterized by measured water level and chronic no-observed effect concentration. Our risk analyses for H. diversicolor supertexta reared near Toucheng, Kouhu, and Anping, respectively, in north, central, and south Taiwan region indicate a relatively low likelihood that survival is being affected by waterborne Zn. Expected risks of mortality for abalone were estimated as 0.46 (Toucheng), 0.36 (Kouhu), and 0.29 (Anping). The predicted 90th-percentiles of hazard quotient for potential growth risk were estimated as 1.94 (Toucheng), 0.47 (Kouhu), and 0.51 (Anping). These findings indicate that waterborne Zn exposure poses no significant risk to pond abalone in Kouhu and Anping, yet a relative high growth risk in Toucheng is alarming. Because of a scarcity of toxicity and exposure data, the probabilistic risk assessment was based on very conservative assumptions.  相似文献   

19.
We examined the effect of tributyltin (TBT) on embryonic development of the Manila clam, Ruditapes philippinarum. In a maternal exposure test, 100 clams were exposed to TBT at measured concentrations of <0.01 (control), 0.061, 0.310, or 0.350 microg/l at 20-22 degrees C for 3 weeks, and the embryo developmental success (the ratio of normal D-larvae to all larvae) was measured. There was a significant negative correlation between embryo developmental success and TBT concentration in the female Manila clams (p < 0.001). These results indicated that TBT accumulated in the female clam decreased embryo developmental success. In a waterborne exposure test, fertilized eggs (4 h after fertilization) were exposed to TBT at measured concentrations of <0.01 (control), 0.062, 0.140, 0.320, or 0.640 microg/l for 23 h. Embryo developmental success was also significantly decreased in all TBT treatment groups compared with that in the control group. TBT accumulated in female adults and waterborne TBT clearly inhibit reproductive success of the clam.  相似文献   

20.
This study measured antioxidative responses of Chinese brake fern (Pteris vittata L.) upon exposure to arsenic (As) of different concentrations. Chinese brake fern was grown in an artificially-contaminated soil containing 0 to 200 mg As kg(-1) (Na2HAsO4) for 12 weeks in a greenhouse. Soil As concentrations at < or =20 mg kg(-1) enhanced plant growth, with 12-71% biomass increase compared to the control. Such beneficial effects were not observed at >20 mg As kg(-1). Plant As concentrations increased with soil As concentrations, with more As being accumulated in the fronds (aboveground biomass) than in the roots and with maximum frond As concentration being 4675 mg kg(-1). Arsenic uptake by Chinese brake enhanced uptake of nutrient elements K, P, Fe, Mn, and Zn except Ca and Mg, whose concentrations mostly decreased. The contents of non-enzymatic antioxidants (glutathione, acid-soluble thiol) followed similar trends as plant As concentrations, increasing with soil As concentrations, with greater contents in the fronds than in the roots especially when exposed to high As concentrations (>50 mg kg(-1)). The activities of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase) in Chinese brake followed the same trends as plant biomass, increasing with soil As up to 20 mg kg(-1) and then decreased. The results indicated though both enzymatic and non-enzymatic antioxidants played significant roles in As detoxification and hyperaccumulation in Chinese brake, the former is more important at low As exposure (< or =20 mg kg(-1)), whereas the latter is more critical at high As exposure (50-200 mg kg(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号