首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
目的 为满足高强钢装备的阴极保护要求,开展新型干湿交替环境牺牲阳极电化学性能测试,评价材料的阴极保护效果。方法 采用高温熔炼方法,制备Al-Zn-Sn-Ce低电位牺牲阳极试样,进行不同浸水率下(干湿态环境时间比为1:1、3:1和7:1)的干湿交替环境牺牲阳极电化学性能试验、电化学表征测试及腐蚀微观形貌表征,通过对比试验数据和材料形貌表征结果,综合分析铝合金牺牲阳极在干湿交替环境下的电化学性能,探究干湿交替环境因素对阳极溶解行为的影响。结果 Al-Zn-Sn-Ce牺牲阳极在多种试验环境下的工作电位为‒0.70~‒0.81 V(vs. SCE),符合高强钢阴极保护电位需求,阳极表面溶解形貌相对均匀,表面阴阳极电化学微区分布均匀。随着干湿态试验环境时间比的增加,阳极工作电位出现正移,干态环境下表面腐蚀产物的沉积和结壳导致阳极活化溶解能力下降,而干湿态环境时间比最大时,阳极自腐蚀反应得到一定的抑制,阳极电流效率均保持在75%以上。结论 随着干湿态试验环境时间比的增加,牺牲阳极在干湿交替试验环境中的工作电位出现正移。由于干态环境下表面腐蚀产物的沉积和结壳,导致阳极活化溶解能力下降,但自腐蚀反应得到抑制。Al-0.7Zn-0.1Sn-0.1Ce低电位牺牲阳极在复杂干湿交替环境中表现出良好的阴极保护性能。  相似文献   

2.
目的 研究FPSO工艺水舱中铝牺牲阳极消耗过快的原因。方法 参照GB 17848—1999牺牲阳极电化学性能试验方法,对比水舱环境与普通环境下,在役阳极的电化学性能数据,并模拟水舱环境,监测阳极工作时实际的发生电流与工作电位等情况,据此分析牺牲阳极在工艺水舱中消耗过快的原因。结果 在常温(25 ℃)、常温充空气、高温(65 ℃)充空气等条件下,阳极的电化学容量分别是2522.07、2464.29、1943.74 Ah/kg,且高温(65 ℃)充空气环境下阳极的晶间腐蚀较其他两组试验严重许多,说明温度是影响阳极电化学容量的关键因素。在模拟工艺水舱环境下,实测的阳极发生电流最高可达100 mA。将工艺水与海水1:5稀释后,实测的保护电流密度最高达45 mA,说明工艺水中存在大量的去极化剂,是造成阳极快速消耗的又一重要因素。结论 工艺水舱环境下,阳极发生严重的晶间腐蚀,严重影响了阳极的电化学容量,使阳极寿命缩短。工艺水成分中含大量去极化剂,使船舱所需的保护电流密度大大增加,促使阳极发生电流加大,亦缩短了阳极的实际服役寿命。  相似文献   

3.
目的 研究不同阴极极化电位下高强不锈钢的极化行为,确定某高强不锈钢合理的阴极保护电位区间。方法 通过动电位极化测试以及电化学阻抗测试等电化学测试手段,研究此种高强不锈钢在海水中的阴极反应过程,通过不同极化电位下的恒电位极化测试,结合扫描电子显微镜和能谱仪,观察分析试样表面的腐蚀产物,研究阴极极化电位对高强不锈钢表面阴极产物膜的影响规律,以及对高强不锈钢在海水中的阴极保护效果。结果 动电位极化测试表明,在‒0.50~‒0.90 V,只需要施加很小的阴极电流,就可使极化电位发生显著变化。电化学阻抗谱测试及拟合结果表明,极化电位在‒0.70 V时,电极反应的电荷转移电阻最大,此时腐蚀被完全抑制。恒电位极化测试发现,随着电位负移,极化电流密度整体上呈现先减小、后增大的趋势。用能谱仪分析其表面产物发现,钙镁沉积层的致密度呈现先增加、后降低的趋势。结论 此种高强不锈钢在海水环境中施加阴极电位为‒0.50~‒1.00 V时,可以得到有效保护。  相似文献   

4.
目的 找到压载舱锌阳极失效原因,并提出整改方案。方法 对服役环境进行调研、阳极化学成分检测、电化学性能检测以及阳极表面形貌检测。结果 干湿交替以及高温的环境是造成锌阳极发生钝化的主要原因。在干湿交替环境下,阳极腐蚀表面晶粒松散,晶界宽度大,发生晶间腐蚀和晶粒脱落,造成了阳极失效。结论 通过该项目的实验研究,得出了锌阳极的适用条件,在干湿交替的环境以及高温环境(50 ℃)下,不推荐使用锌阳极,建议使用铝阳极。  相似文献   

5.
目的 以南海某200 m深水导管架平台为原型,研究外加电流单座辅助阳极在静态和动态海水条件下的导管架阴极保护电位分布及其变化规律。方法 采用一定比例缩小的导管架模型,对其施加外加电流阴极保护,研究不同条件下的阴极保护电位分布,以及电位分布的变化规律。结果 辅助阳极距离导管架模型越远,模型整体的阴极保护越均匀,反之,则越不均匀。导管架距离辅助阳极最近的区域,阴极保护电流密度最大,易出现过保护风险,而平台内部屏蔽严重区域和距离辅助阳极较远的水面附近导管架结构,阴极保护电位负移程度最小,易出现欠保护风险,这2个典型区域应当是阴极保护监测的重点位置。在相同保护电流密度和保护距离下,从静态到动态转换时,整座导管架表面的电位均呈现上升趋势,电位差值更大,分布更不均匀。随着阴极保护时间的延长,代表沉积层形成质量和覆盖程度的表观电阻率Rsr呈现初期快速增加、后期缓慢升高的趋势。海水流动会导致沉积层变薄,甚至脱落,使得动态海水环境中Rsr较同时期静态环境下的小。结论 在导管架模型的一侧放置一套辅助阳极,可实现整个模型的有效阴极保护。  相似文献   

6.
目的探究4种常用Al-Zn-In系牺牲阳极(Al-Zn-In、Al-Zn-In-Cd、Al-Zn-In-Mg-Ti、Al-Zn-In-Mg-Ga-Mn)在海水间浸环境中的电化学性能。方法采用恒电流法对4种阳极的开路电位、工作电位、实际电容量、电流效率及溶解形貌等进行研究,并结合电化学阻抗谱、动电位极化曲线等方法进行分析。结果在间浸环境中,Al-Zn-In、Al-Zn-In-Mg-Ti、Al-Zn-In-Mg-Ga-Mn的电流效率均在88.92%以上,3种阳极的工作电位在-0.96~-1.10 V波动,能满足碳钢在间浸环境中的保护需要。Al-Zn-In-Mg-Ga-Mn阳极溶解形貌均匀,Al-Zn-In和Al-Zn-In-Mg-Ti阳极溶解形貌略差。Al-Zn-In-Cd阳极电流效率仅为80.95%,工作电位在-0.93~-1.10 V波动,溶解形貌不均匀,电化学性能最差。研究发现,Al-Zn-In-Cd阳极表面附着的腐蚀产物多次在空气环境中脱水,并形成壳层,导致电位正移,阻碍阳极的进一步活化。结论在间浸环境中,4种阳极的电化学性能由好到差依次为Al-Zn-In-Mg-Ga-Mn阳极、Al-Zn-In阳极、Al-Zn-In-Mg-Ti阳极、Al-Zn-In-Cd阳极,前3种阳极适用于间浸环境中海洋结构物的阴极保护。  相似文献   

7.
采用电化学方法,研究了喷涂用锌丝、锌铝合金丝和铝丝及其喷涂层在海水环境中的电化学性能和阴极保护性能;测试了3种喷涂层经实海曝露4年后的极化曲线。结果表明,3种喷涂层材料对碳钢在海水环境中均具有阴极保护效果,但喷锌涂层腐蚀较快,喷铝和喷锌铝合金涂层表面生成氧化膜,腐蚀较小。  相似文献   

8.
目的 解决埋覆介质中牺牲阳极电化学性能评价的不确定性,实现非匀质介质中牺牲阳极电容量测试结果的评价和对比.方法 模拟沉管隧道埋覆的环境介质,对铝合金牺牲阳极的电容量和溶解形貌进行评测.为区别于现有的海水等匀质介质中阳极的检测方法,建立非匀质介质中铝阳极电化学性能评价方法.另外,在上述埋覆介质中,测定阳极和阴极的极化曲线,修正仿真计算的边界条件,有利于模拟这种高电阻率介质环境下阴极保护电位分布.结果 测试箱所测电阻率与商用便携式电导率仪测定精度相当.A1阳极在低电阻率的海水中(25~40?·cm)性能稳定,电容量稳定在2500 A·h/kg,溶解性能良好;在40?·cm海淡水+回填石的混合介质中,电容量测试值数据波动大,重现性差.B1阳极在海水(25~40?·cm)中的电容量和A1阳极相当,未见到差异,在40?·cm海淡水+回填石混合介质中,电容量数值分散性小,电化学活性高.结论 混合介质中的评价试验体现了海淡水、混合介质电阻率和回填石对阳极溶解产物阻滞的综合效应,提高了抛石环境中铝阳极寿命评估的准确性,尤其适用于沉管隧道钢壳用铝合金阳极电化学性能评价和牺牲阳极保护效果评估.  相似文献   

9.
固溶处理对Al-Zn-In-Si-Sn阳极电化学性能的影响分析   总被引:5,自引:1,他引:4  
研究了固溶处理对Al-Zn-In-Si-Sn阳极性能的影响。首先对Al-Zn-In-Si-Sn合阳极试样进行了固溶处理,进而测定了经固溶处理和未经固溶处理两种阳极在15℃和60℃人造海水中的电化学性能。结果表明,固溶处理对常温下铝阳极的电化学性能影响不大.但可改善高温下的阳极性能,固溶处理能有效提高阳极的电流效率.消除晶间腐蚀。还讨论了Sn元素在铝合金阳极中的作用。  相似文献   

10.
为研究微生物、氢渗透和阴极保护三者关系,介绍了微生物生长代谢的测定方法和氢渗透测试的研究方法。分别介绍了微生物生长曲线、菌量及代谢的测试方法。氢渗透测试主要采用Devanathan-Stachurski双电解池技术,试样常采用单面镀镍或镀钯处理,对阴极池施加阴极保护,试样表面产生的氢渗透到阳极池一侧后,利用恒电位仪记录试样表面氢的氧化电流即氢渗透电流。  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

18.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

19.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

20.
Toxic effect of Zn(Ⅱ) on a green alga (Chlorella pyrenoidasa) in the presence of sepiolite and kaolinite was investigated.The Zn-free clays were found to have a negative impact on the growth of C.pyrenoidosa in comparison with control samples (without adding any clay or Zn(Ⅱ)).When Zn(Ⅱ) was added,the algae in the presence of clays could be better survived than the control samples,which was actually caused by a decrease in Zn(Ⅱ) concentration in the solution owing to the adsorption of Zn(Ⅱ) on the clays.When the solution system was diluted,the growth of algae could be further inhibited as compared to that in a system which had the same initial Zn(Ⅱ) concentration as in the diluted system.This in fact resulted from desorption of Zn(Ⅱ) from the zinc-contaminated clays,although the effect varied according to the different desorption capabilities of sepiolite and kaolinite.Therefore the adsorption and desorption processes of Zn(Ⅱ) played an important part in its toxicity,and adsorption and desorption of pollutants on soils/sediments should be well considered in natural eco-environmental systems before their risk of toxicity to aquatic organisms was assessed objectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号