首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 656 毫秒
1.
以制备的桉树遗态Fe_2O_3/Fe_3O_4/C复合材料(PBGC-Fe/C)为吸附剂,对某尾矿库废水中砷等重金属进行了吸附实验。研究了温度、pH、废水化学组成、吸附剂投加量及粒径等对吸附的影响。结果表明,吸附剂投加量越大、粒径越小,温度为35℃,p H为3左右吸附效果最好。但实际废水组分复杂,存在竞争吸附及化学沉淀等使砷的总去除率随p H的增大而增大。综合考虑,吸附砷的最佳条件组合为废水p H=5,PBGC-Fe/C投加量0.06 g/m L,粒径150μm。此时废水中总砷质量浓度为0.487 mg/L,可达标排放。  相似文献   

2.
选用农林剩余物加工制得生物炭,用强氧化剂(KMnO_4、H_2O_2、HNO_3)对生物炭进行化学改性,选择最佳改性方法。通过吸附试验得出用0.01 mol/L KMnO_4改性的生物炭除铀效果最佳。采用KMnO_4改性的生物炭对废水中的铀进行吸附,考察吸附剂投加量、溶液pH值、吸附时间、溶液初始质量浓度等因素对U(Ⅵ)去除效果的影响。结果表明,当吸附剂投加量为0.3 g/L、U(Ⅵ)质量浓度为10mg/L、溶液pH=6、温度为25℃、吸附时间为120 min时,改性生物炭对U(Ⅵ)的去除效果最佳,吸附量达到32.57 mg/g,比未改性前提高了67.9%。对改性前后的生物炭进行了SEM、XRD、FTIR表征及表面含氧官能团测定、吸附动力学分析。结果表明,改性生物炭对U(Ⅵ)的吸附过程符合准二级动力学方程及Langmuir等温吸附模型(决定系数R20.99)。这表明对溶液中铀的去除可能是化学沉淀作用的结果,改性后含氧官能团增加,对溶液中铀的去除也可能存在官能团络合作用与表面吸附,使吸附剂化学吸附能力增强,除铀能力提高。  相似文献   

3.
以柚子皮为原料,经乙醇处理,得到改性柚皮吸附剂,并将其用于对水溶液中Cr(Ⅵ)的吸附,研究了吸附剂用量、温度、水样初始p H值、Cr(Ⅵ)初始质量浓度、吸附时间等对水溶液中Cr(Ⅵ)吸附效果的影响。结果表明,各因素中p H值对改性柚皮吸附Cr(Ⅵ)的影响较大。对初始质量浓度为20 mg/L的Cr(Ⅵ)溶液,改性柚皮投加量为20 g/L、温度为25℃、水样初始p H=1时,吸附420 min后,Cr(Ⅵ)的去除率达99%以上。Freundlich吸附等温模型和二级吸附动力学模型可以很好地对改性柚皮的吸附过程进行线性拟合,决定系数R2分别为0.975 1和0.996 6。  相似文献   

4.
柚子皮生物炭的制备及对水体中锰离子的吸附   总被引:1,自引:0,他引:1  
以柚子皮为原料经硫化钠活化后炭化处理制备了生物质炭吸附剂,并将之应用于含锰废水的吸附。考察了溶液p H值、底液质量浓度、生物炭投加量等因素对柚子皮生物炭吸附能力的影响,并研究了柚子皮吸附剂对锰离子废水的吸附平衡和动力学特征。结果表明:柚子皮吸附剂对含锰废水具备较强吸附能力,在溶液p H值为6,底液质量浓度为50 mg/L,吸附剂投加量为2 g/L的条件下,对锰离子的去除率为93.5%;吸附平衡实验表明该等温吸附过程符合Langmuir方程,饱和吸附量为24.691 mg/g;吸附动力学研究表明,该吸附过程符合二级动力学方程,吸附速率常数为0.028 6 g/(mg·min)。  相似文献   

5.
以自制毛竹遗态Fe_2O_3/Fe_3O_4/C复合材料为吸附剂,选取溶液初始p H值、吸附剂粒径、吸附剂投加量、砷(V)初始浓度、吸附时间和温度为影响因素开展工艺优化组合寻求的正交实验研究,结果显示,工艺优化组合为:砷(V)初始浓度10 mg/L,溶液初始p H=3,温度为35℃,吸附剂粒径小于100目,吸附剂用量为0.6 mg/50 m L,吸附时间为7 h。  相似文献   

6.
针对冶金酸性含镉废水,研究了硫化钠和重金属捕集剂联合处理对镉的去除效果,考察了药剂的加入量、反应时间、p H值和加药方式对废水中Cd~(2+)去除率的影响。结果表明:采用两步处理法,控制反应的初始p H值为4.0,硫化钠的投加量为445 mg/L,捕集剂的投加量为0.2 m L/L,反应时间为60 min时,处理后废水中Cd~(2+)的质量浓度可以由638 mg/L减少至0.1 mg/L,满足国家废水排放标准,滤渣中镉的质量分数大于10%,具有回收价值,且处理过程中无H_2S气体逸出,可以实现冶金酸性含镉废水的无害化和资源化处理。  相似文献   

7.
酸化油页岩灰吸附Ni(Ⅱ)的研究   总被引:2,自引:0,他引:2  
采用质量分数为50%的HNO3制备酸化油页岩灰吸附剂,研究吸附时间、吸附温度、Ni(Ⅱ)初始浓度、溶液pH值、吸附剂投加量和吸附剂粒径对酸化油页岩灰吸附性能的影响.结果表明,一定范围内,酸化油页岩灰吸附剂的吸附量(Qe)随吸附温度、Ni(Ⅱ)初始浓度、溶液pH值、吸附剂投加量的增加而增加,随吸附剂粒径的增加而减小.吸附温度对吸附刺的最大吸附量Q有明显影响.当Ni(Ⅱ)初始质量浓度为100 mg/L,溶液pH值为6.0,吸附剂粒径为53~75μm,吸附剂投加量为16.0 g/L,吸附搅拌速度为400 r/min时,25℃、30℃、35℃下酸化油页岩灰的最大吸附量Q分别为17.0 mg/g、33.2mg/g、42.9mg/g,且吸附主要以离子交换的化学吸附方式为主.酸化油页岩灰吸附剂对Ni(Ⅱ)的吸附符合Languir等温吸附方程,温度为25℃、30℃、35℃,溶液pH值为6.0,油页岩灰吸附剂投加量为16.0 g/L,油页岩灰吸附剂粒径为53~75μm条件下,酸化油页岩灰对Ni(Ⅱ)的最大吸附量Q分别为17.0mg/g、33.2 mg/g、42.9 mg/g.研究表明,油页岩灰经过酸化改性后可作为吸附荆处理含Ni(Ⅱ)废水,具有较好的市场应用前景.  相似文献   

8.
用天然鸡蛋壳吸附处理含三价铬溶液。采用SEM-EDS技术对吸附材料进行了表征,并考察了溶液p H、接触时间、温度、吸附剂投加量、三价铬浓度、吸附材料粒径等因素对鸡蛋壳吸附三价铬的影响。最大吸附量48.6 mg/g是在低投加量0.5 g/L条件下获得,其实验条件为30℃、溶液p H=5.0、粒径0.1~0.3mm、初始浓度为100 mg/g。实验数据能较好的拟合朗缪尔等温吸附方程和准二级动力学方程。  相似文献   

9.
以稻壳-粉煤灰为混合吸附剂吸附沼液中的氮磷,考察了混合吸附剂组分质量比、吸附剂量、吸附时间、初始氨氮质量浓度和p H值对吸附效果的影响。结果表明:在沼液中PO3-4-P和NH+4-N初始质量浓度分别为36.4 mg/L和88.2 mg/L、稻壳粉和粉煤灰质量比为3∶7、混合吸附剂投加量为50 g/L、吸附时间180 min、p H=8.3时,沼液中PO3-4-P的去除率达90.5%,NH+4-N去除率达70.6%,COD去除率达29.7%,PO3-4-P、NH+4-N和COD的吸附量分别为0.6588 mg/g、1.245 mg/g和1.356 mg/g。  相似文献   

10.
为探讨改性氧化石墨烯(GO)的性质特征对其吸附放射性重金属铀的影响,将L-谷氨酸(L-Glu)与氧化石墨烯发生亲核反应,从而制得L-谷氨酸功能化的氧化石墨烯(L-Glu/GO)。通过静态吸附试验,考察了p H值、投加量、反应时间、温度与铀初始质量浓度等因素对L-谷氨酸功能化氧化石墨烯吸附铀效果的影响,并采用扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FT-IR)对吸附剂的结构和形貌进行了表征,分析其吸附机理。结果表明,铀初始质量浓度为10mg/L,p H=4,投加量为0. 2 g/L时吸附效果最佳,吸附平衡时间为40 min,温度对吸附效果影响不大。吸附过程符合准二级动力学模型和Langmuir等温吸附方程,铀初始质量浓度为70 mg/L,30℃时最大吸附容量为309. 36 mg/g。L-Glu/GO的表征结果表明,L-谷氨酸上的氨基进攻GO上的环氧基团并与C发生了亲核取代反应,为GO引入了含氮基团,实现了GO的功能化。相比GO,L-Glu/GO的晶体结构发生了较大改变,L-Glu/GO吸附U(VI)后表面更光滑。  相似文献   

11.
8-羟基喹啉对金属离子具有良好的络合性能。研究了一种8-羟基喹啉接枝DK-110的螯合型离子交换树脂HQDK-110对Hg~(2+)的吸附性能,并与DK-110树脂进行比较。考察了不同吸附时间、Hg~(2+)浓度、温度和pH值条件下两种树脂对Hg~(2+)的吸附性能和去除性能。结果表明,HQDK-110和DK-110树脂对Hg~(2+)的适宜吸附p H值为4.5左右。25℃时,HQDK-110和DK-110树脂对Hg~(2+)的吸附容量分别为2.496 mmol/g和2.290 mmol/g。HQDK-110和DK-110对Hg~(2+)的吸附过程更接近于一级动力学方程,其一级吸附动力学常数k1分别为0.009 4 min-1和0.011 8 min-1。吸附过程符合Langmuir等温吸附方程。研究表明,HQDK-110对Hg~(2+)的吸附量和去除率优于DK-110,且树脂的稳定性优于DK-110,湿态树脂比干态树脂具有更好的重复使用性能。  相似文献   

12.
采用化学沉积法制备了二氧化锰/羟基氧化铁(MnO2/FeOOH)复合材料,并将其用于吸附去除水中的放射性重金属铀。通过静态吸附试验,考察了Fe/Mn物质的量比、pH值、吸附时间和干扰离子等因素对MnO2/FeOOH吸附U(Ⅵ)效果的影响,利用扫描电镜-能谱分析(SEM-EDS)、X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FT-IR)和X射线光电子能谱(XPS)对材料结构和形貌进行表征,并分析其吸附机理。结果表明,在投加量为150 mg/L、温度为30℃、U(Ⅵ)初始质量浓度为10 mg/L、pH值为5、Fe/Mn物质的量比为1/2及吸附时间为120 min的条件下,MnO2/FeOOH对U(Ⅵ)的去除率最大可达97.7%,且pH值对铀去除效果的影响最为明显。MnO2/FeOOH对U(Ⅵ)吸附动力学符合准二级动力学模型,吸附等温线均能符合Langmuir和Freundlich模型,且最大吸附容量达260.34 mg/g。干扰离子试验表明,SO42-、CO32-和Fe3+对MnO2/FeOOH吸附U (VI)几乎没有影响,而Ca2+和Cu2+具有明显的抑制作用,且抑制随浓度的增大而增强。FTIR和XPS分析表明MnO2/FeOOH对U(Ⅵ)的主要作用机制为表面羟基、Mn-O与铀的配位作用。因此,MnO2/FeOOH可作为一种潜在的铀吸附材料。  相似文献   

13.
许多行业产生的废水中都含有大量氟离子,电子元件生产、电镀和金属冶炼等行业排放的废水中都含有高浓度氟化物。而目前缺乏经济性好且适用性强的除氟方法,针对氟化物去除难度大、达标困难这一典型问题,采用不同的制备方法,制备了羟基氧化铁和两种铈基吸附剂,研究了吸附等温模型、吸附动力学以及pH对吸附的影响。结果表明:3种吸附剂在吸附过程中化学吸附起主要作用,整个吸附过程符合准二级反应动力学模型。与另外两种吸附剂相比铈吸附剂B去除效果更好,且pH在2~10范围内,氟离子去除率稳定在80%以上。  相似文献   

14.
李霞  张丹  沈飞  青会 《安全与环境学报》2017,17(3):1064-1069
用聚乙烯醇-海藻酸钠(PVA-SA)将金针菇(Flammulina velutipes)、毛木耳(Auricularia polytricha)、杏鲍菇(Pleurotus eryngii)和平菇(Pleurotus ostreatus)加工废弃物固定制成吸附小球,研究初始p H值、反应时间对Cu~(2+)吸附的影响及吸附特性,并应用到实际废水的处理中。结果表明:固定金针菇、毛木耳、杏鲍菇和平菇废弃物吸附小球的最大吸附率分别为81.3%、60.8%、42.8%和50.0%;伪二级动力学模型比颗粒内扩散模型能更好地描述固定食用菌加工废弃物吸附小球对Cu~(2+)的吸附过程;固定金针菇、毛木耳和平菇废弃物吸附小球的等温吸附过程与Langmuir等温模型拟合度高,吸附过程主要是单层吸附,固定杏鲍菇废弃物小球的等温吸附过程则更符合Freundlich等温模型;扫描电镜(SEM)分析显示,固定金针菇废弃物吸附小球吸附Cu~(2+)后,细胞壁增厚,细胞壁上形成了明显的Cu~(2+)无机沉淀或晶体,表现为物理性吸附。研究表明,固定金针菇废弃物吸附小球对自然废水中Cu~(2+)的去除率为73.11%,具有一定的实际应用价值。  相似文献   

15.
为了研究用于含汞离子废水处理的新型高效材料,研究了纳米γ-Fe2O3对汞离子的吸附行为。探讨pH值(3、8和12)、温度(288 K、298 K、308 K、318 K)和离子强度(Ca2+,0.001 mol/L、0.01 mol/L、0.1 mol/L)对该吸附的影响。使用吸附动力学方程(拉格朗日准一级、准二级)和等温吸附方程(Langmuir和Freundlich)分别对吸附数据进行拟合,并讨论吸附机理。结果表明:pH值为3、8、12时,纳米γ-Fe2O3对汞离子的吸附动力学方程符合准二级动力学模型(R2=0.997~0.999);288 K、298 K、308 K、318 K时,纳米γ-Fe2O3对汞离子的吸附过程更符合Langmuir吸附模型(R2=0.970~0.995),并且随温度升高,吸附量增加;在不同pH值下,纳米γ-Fe2O3对汞离子的吸附等温式可使用Langmuir模式(R2=0.983~0.996)进行表征,随p H值降低,吸附量减少,中性环境有利于吸附;在不同Ca2+浓度下,可用Langmuir等温吸附式拟合(R2=0.990~0.996)。通过Langmuir等温吸附式推算出最大吸附量随Ca2+浓度增加而减少。  相似文献   

16.
锯屑处理含铬废水的实验研究   总被引:14,自引:0,他引:14  
本文提出一种利用木材加工剩余物——锯屑,处理含六价铬离子废水的方法.实验表明,锯屑对废水中的六价铬离子有一定的去除作用,得到了锯屑吸附水中六价铬离子的吸附等温线,测定了吸附速度,并对pH值、锯屑用量和六价铬离子初始浓度等因素对吸附过程的影响进行了实验研究.  相似文献   

17.
以水作溶剂,采用简单的回流法合成了一种稳定的金属有机骨架材料UiO-66-(COOH)2,并首次将其用于In(Ⅲ)离子的吸附分离。采用傅里叶变换红外光谱(FTIR)、热重分析(TGA)、N2吸附-脱附和X射线衍射(XRD)等手段对材料进行了表征。通过静态吸附试验,探讨了pH值、接触时间和溶液初始质量浓度等因素对材料吸附In(Ⅲ)离子性能的影响。结果表明,在pH值为3.0、温度为303 K的条件下,UiO-66-(COOH)2对In(Ⅲ)的最大饱和吸附容量可达84.29 mg/g,优于大多数文献的报道值;整个吸附过程在90 min左右完成,且符合Langmuir等温吸附方程,而吸附动力学可以用准二级动力学模型进行描述。其可能的吸附机理是UiO-66-(COOH)2中的羧基与In(Ⅲ)离子的配位作用。此外,该材料能够实现重复使用,且在Na(Ⅰ)、K(Ⅰ)、Mg(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)和Ni(Ⅱ)等竞争性金属离子的存在下,对In(Ⅲ)仍具备较好的吸附选择性。研究结果为含铟废水的处理提供了一种有效的新途径,也进一步拓展了MOFs材料的实际应用。  相似文献   

18.
采用离子交换膜、离子交换树脂和铁粉还原法对复合法制备二氧化氯过程中产生的高浓度氯酸盐残液进行处理,对3种方法进行综合比较。结果表明:离子交换膜处理后氯酸盐富集质量浓度为13.06 g/L,为进水质量浓度的6.5倍,去除率大于50%,离子交换膜不可重复使用;离子交换树脂处理后富集质量浓度为23.51 g/L,为进水质量浓度的11.8倍,去除率为95%,离子交换树脂可重复使用;铁粉对氯酸根去除率为99%,可连续使用15次。综合比较处理效果、控制条件和处理成本,选择铁粉还原法为最佳方法。  相似文献   

19.
The present study investigates the adsorption potential of Chrysanthemum indicum flower in its raw (CIF-R) and biochar (CIF-BC) form for the removal of cobalt ions from aqueous solution. The adsorbents were characterized for their surface area using BET analysis, surface morphology and elemental composition with SEM-EDAX and for the presence of functional groups by FTIR analysis. Batch adsorption experiments were carried out to evaluate the effect of process parameters, viz. pH, adsorbent dosage, initial metal ion concentration, contact time, stirring speed, presence of interfering ions and temperature on the adsorption of Co(II) ion using both the adsorbents. The optimum conditions for maximum removal of Co(II) ion was ascertained to be pH 5 for both adsorbents, adsorbent dose of 4 g/L and 3 g/L, equilibrium time of 60 min and 45 min, respectively, for CIF-R and CIF-BC. The maximum adsorption capacity of CIF-R and CIF-BC was found to be 14.84 mg/g and 45.44 mg/g, respectively, for the removal of Co(II) ion. The mechanism of adsorption was studied using different models of adsorption kinetics, isotherms and thermodynamics. It was inferred that Co(II) adsorption on both CIF-R and CIF-BC followed pseudo-second order kinetics and Langmuir isotherm model with the process being spontaneous and endothermic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号