首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
以甘蔗渣为基质,环氧氯丙烷为改性剂制备了一种新型吸附剂,用红外光谱、扫描电镜分析了其表面特征。研究了溶液初始p H值、染料浓度、吸附时间、盐浓度对刚果红(CR)染料吸附行为的影响。结果表明,改性吸附剂对刚果红(CR)的最大吸附量为108.9 mg/g,为未改性吸附剂的2.1倍,吸附平衡时间为1.5 h;染料与吸附剂通过静电引力实现吸附,吸附平衡为Langmuir单分子层化学吸附,符合准二级动力学模型;当Na Cl的浓度低于0.8g/L时,对刚果红(CR)吸附影响不大。  相似文献   

2.
利用海藻酸钠和氯化钙的凝胶化,包埋制备有机凹凸棒土颗粒(GOAT)吸附剂,通过批量实验考察了制备的吸附剂对水中亚甲基蓝(MB)、刚果红(CR)的吸附行为。实验结果表明,GOAT对MB和CR的吸附行为都更符合准二级吸附动力学方程,吸附等温线符合Langumir方程。吸附量的大小与溶液的初始p H值有关,且增加盐浓度,GOAT的吸附能力增加。  相似文献   

3.
通过静态吸附实验,比较了D201、D301和D314型3种阴离子交换树脂对锑的吸附容量和吸附速率,优选出D314型为除锑的最佳树脂,并优化了p H值、温度和初始浓度、吸附时间等影响其吸附性能的条件。实验结果表明,当p H值为7,温度为25~45℃,溶液初始质量浓度为200 mg/L时,树脂对锑吸附容量可到达19.4~20.7 mg/L;D314型树脂对锑的吸附是一个吸热过程,用Langmuir等温模型拟合R2大于0.99,相关性显著,理论最大吸附容量可达到24.04 mg/g;D314型树脂对锑是一个快速吸附过程,达到吸附平衡时间为2 h,符合准二级动力学模型。  相似文献   

4.
采用多壁碳纳米管对自然水体中低浓度红霉素进行吸附试验,测定了其动力学曲线和吸附等温线,并计算了热力学参数,考察了p H值、离子强度和腐殖酸对吸附过程的影响。结果表明:碳纳米管对红霉素的吸附在前40 min为快速吸附阶段,200 min时基本达到吸附平衡,动力学曲线符合准二级动力学模型;Freundlich模型能够更好地拟合吸附试验数据,热力学参数表明多壁碳纳米管对红霉素的吸附为自发吸热过程;吸附活化能Ea表明多壁碳纳米管与红霉素之间的强吸附作用是以化学吸附为主的过程,碳纳米管表面含氧官能团含量决定平衡吸附量;离子强度对吸附有明显的影响;p H值在5~9时,提高溶液p H值有利于提高对红霉素的吸附量;适量的腐殖酸使碳纳米管对红霉素的吸附量显著增加。  相似文献   

5.
柚子皮生物炭的制备及对水体中锰离子的吸附   总被引:1,自引:0,他引:1  
以柚子皮为原料经硫化钠活化后炭化处理制备了生物质炭吸附剂,并将之应用于含锰废水的吸附。考察了溶液p H值、底液质量浓度、生物炭投加量等因素对柚子皮生物炭吸附能力的影响,并研究了柚子皮吸附剂对锰离子废水的吸附平衡和动力学特征。结果表明:柚子皮吸附剂对含锰废水具备较强吸附能力,在溶液p H值为6,底液质量浓度为50 mg/L,吸附剂投加量为2 g/L的条件下,对锰离子的去除率为93.5%;吸附平衡实验表明该等温吸附过程符合Langmuir方程,饱和吸附量为24.691 mg/g;吸附动力学研究表明,该吸附过程符合二级动力学方程,吸附速率常数为0.028 6 g/(mg·min)。  相似文献   

6.
采用铝盐浸渍法制备改性活性炭。研究了铝盐种类、浸渍液浓度和不同吸附条件对Cr(Ⅵ)吸附性能的影响。结果表明:采用0. 1 mol/L Al_2(SO_4)_3浸渍法制得的改性PAC吸附效果最好,Cr(Ⅵ)的吸附量由0. 75 mg/g提高到4. 86 mg/g。当温度为30℃时,Al-PAC的最佳吸附条件为:投加量0. 2 g(每100m L),p H为4,吸附时间30 min,溶液中Cr(Ⅵ)浓度由10 mg/L降至0. 45 mg/L以下,低于排放限值。吸附动力学符合拟二级动力学方程,吸附等温线符合Freundlich方程,吸附过程为以离子交换为主要机制的化学吸附。  相似文献   

7.
以自制毛竹遗态Fe_2O_3/Fe_3O_4/C复合材料为吸附剂,选取溶液初始p H值、吸附剂粒径、吸附剂投加量、砷(V)初始浓度、吸附时间和温度为影响因素开展工艺优化组合寻求的正交实验研究,结果显示,工艺优化组合为:砷(V)初始浓度10 mg/L,溶液初始p H=3,温度为35℃,吸附剂粒径小于100目,吸附剂用量为0.6 mg/50 m L,吸附时间为7 h。  相似文献   

8.
以油菜秸秆为原料,均苯四甲酸酐为改性剂,四氧化三铁为磁性包裹材料,制备了磁性油菜秸秆吸附剂。研究了染料初始浓度、初始p H值、无机盐离子等因素对吸附性能的影响。研究结果表明:室温时,在染料为自然p H值,吸附4 h后,改性吸附剂对亚甲基蓝和碱性品红吸附量分别为450、320 mg/g。p H在2~10范围内时,吸附量随着p H值的增大而增加;p H10之后,吸附量保持不变。高浓度盐的存在对吸附无明显影响,但K+要大于Na+的影响。改性吸附剂对两种染料吸附动力学模拟均符合准二级动力学方程,吸附等温式符合Langmuir模型。  相似文献   

9.
采用后嫁接法,先后以硅烷偶联剂NQ-62和EDTA-2Na为改性剂,制备出功能化的介孔二氧化硅SBA-15,利用热重分析、元素分析对样品进行了表征,并探讨了吸附动力学和吸附等温线。采用单因素实验法确定了最佳吸附条件:投加量为1.0 g/L,温度为308~313 K,p H为6。研究结果表明,改性后的SBA-15吸附水中Co~(2+)可以在120 min趋于平衡,吸附过程符合拟二级动力学模型。Langmuir等温线模型很好地描述了吸附材料对Co2+的吸附行为,可算出在308 K时吸附量最大,最大值为30.12 mg/g。  相似文献   

10.
处理成本高、分离难度大是当前湖库等相对封闭水体磷治理工程中的主要问题。为此,以廉价农林废弃物花生壳为主要前驱物与Fe_3O_4纳米颗粒复合制备一种低成本、可磁分离的磁性生物炭吸附剂,研究了热解温度(400℃、500℃、600℃)、溶液pH值、阴离子(Cl~-和SO_4~(2-))共存等因素对复合材料吸附性能的影响。结果表明,复合后的磁性生物炭最大吸附量相比复合前提升了3~5倍。动力学数据拟合结果表明,拟二级动力学方程能较好地拟合吸附过程。磁性生物炭的零电荷点(均7.5)与前驱物的热解终温在试验范围内呈现明显的正相关,表明引入Fe_3O_4后可明显增加磁性生物炭表面电荷,进而有效提升吸附性能。此外,阴离子共存试验表明,磁性生物炭对磷具有较好的选择性。  相似文献   

11.
选用农林剩余物加工制得生物炭,用强氧化剂(KMnO_4、H_2O_2、HNO_3)对生物炭进行化学改性,选择最佳改性方法。通过吸附试验得出用0.01 mol/L KMnO_4改性的生物炭除铀效果最佳。采用KMnO_4改性的生物炭对废水中的铀进行吸附,考察吸附剂投加量、溶液pH值、吸附时间、溶液初始质量浓度等因素对U(Ⅵ)去除效果的影响。结果表明,当吸附剂投加量为0.3 g/L、U(Ⅵ)质量浓度为10mg/L、溶液pH=6、温度为25℃、吸附时间为120 min时,改性生物炭对U(Ⅵ)的去除效果最佳,吸附量达到32.57 mg/g,比未改性前提高了67.9%。对改性前后的生物炭进行了SEM、XRD、FTIR表征及表面含氧官能团测定、吸附动力学分析。结果表明,改性生物炭对U(Ⅵ)的吸附过程符合准二级动力学方程及Langmuir等温吸附模型(决定系数R20.99)。这表明对溶液中铀的去除可能是化学沉淀作用的结果,改性后含氧官能团增加,对溶液中铀的去除也可能存在官能团络合作用与表面吸附,使吸附剂化学吸附能力增强,除铀能力提高。  相似文献   

12.
将PS-DCDA树脂用于水相中As(Ⅴ)的吸附净化处理,探讨了溶液的pH值、初始As(Ⅴ)质量浓度、接触时间、温度、NaCl、竞争性阴离子等因素对吸附性能的影响,并研究了其对As(Ⅴ)的吸附等温线、动力学和热力学。结果表明,NaCl和竞争性阴离子(Cl-、SO24-、CO23-、NO3-、HPO24-等)明显地抑制了PS-DCDA树脂对As(Ⅴ)的吸附。PS-DCDA树脂对As(Ⅴ)的吸附符合Langmuir等温式,准二级吸附动力学方程能够很好地描述As(Ⅴ)在树脂上的吸附动力学行为。粒子内扩散方程表明,表面吸附和内部扩散参与到As(Ⅴ)的吸附过程当中。PS-DCDA树脂对As(Ⅴ)的热力学参数表明,PS-DCDA树脂对As(Ⅴ)的吸附是自发的、吸热的过程。已吸附As(Ⅴ)的PS-DCDA树脂可以用0.1 mol/L NaOH有效解吸,解吸后的树脂对As(Ⅴ)仍具有较高的吸附量。  相似文献   

13.
将海藻酸钠与纳米α-Fe2O3制成微球,用于吸附U(Ⅵ)。探讨了纳米α-Fe2O3含量、交联时间、pH值、投加量、浓度、温度等对吸附的影响。结果表明,pH值对U(Ⅵ)的吸附过程影响显著,适宜pH值为3。U(Ⅵ)在微球上的吸附量随着吸附时间的增加而增大,初始阶段(1.5 h)反应进行得很快,9 h时达到吸附平衡。当U(Ⅵ)初始质量浓度为10mg/L时,其饱和吸附量为2.64mg/g。准二级动力方程很好地拟合了吸附动力学数据,且R2>0.99。吸附率与温度呈正相关,Lang-muir与Freundlich吸附等温方程均能较好地拟合固定化微球对U(Ⅵ)的吸附过程(R2>0.99),但Freundlich等温线效果更好。吸附反应中ΔG<0,ΔH>0且小于40 kJ/mol,ΔS>0,这表明吸附过程能自发进行,为吸热反应。  相似文献   

14.
采用化学沉积法制备了二氧化锰/羟基氧化铁(MnO2/FeOOH)复合材料,并将其用于吸附去除水中的放射性重金属铀。通过静态吸附试验,考察了Fe/Mn物质的量比、pH值、吸附时间和干扰离子等因素对MnO2/FeOOH吸附U(Ⅵ)效果的影响,利用扫描电镜-能谱分析(SEM-EDS)、X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FT-IR)和X射线光电子能谱(XPS)对材料结构和形貌进行表征,并分析其吸附机理。结果表明,在投加量为150 mg/L、温度为30℃、U(Ⅵ)初始质量浓度为10 mg/L、pH值为5、Fe/Mn物质的量比为1/2及吸附时间为120 min的条件下,MnO2/FeOOH对U(Ⅵ)的去除率最大可达97.7%,且pH值对铀去除效果的影响最为明显。MnO2/FeOOH对U(Ⅵ)吸附动力学符合准二级动力学模型,吸附等温线均能符合Langmuir和Freundlich模型,且最大吸附容量达260.34 mg/g。干扰离子试验表明,SO42-、CO32-和Fe3+对MnO2/FeOOH吸附U (VI)几乎没有影响,而Ca2+和Cu2+具有明显的抑制作用,且抑制随浓度的增大而增强。FTIR和XPS分析表明MnO2/FeOOH对U(Ⅵ)的主要作用机制为表面羟基、Mn-O与铀的配位作用。因此,MnO2/FeOOH可作为一种潜在的铀吸附材料。  相似文献   

15.
蔬菜废弃物基生物炭对铅的吸附特性   总被引:3,自引:0,他引:3  
以蔬菜废弃物(芹菜)为原料,采用限氧裂解法制备了500℃下的蔬菜废弃物基生物炭,利用SEM扫描电镜、EDS能谱分析、CHN元素分析、FTIR红外光谱、比表面积及孔径分析等方法表征生物炭的物理化学性质,探究生物炭对水溶液中Pb(Ⅱ)的吸附特性及其影响因素。结果表明,500℃下制备的废弃芹菜生物炭孔隙较少,具有较小的比表面积和丰富的官能团。废弃芹菜生物炭对Pb(Ⅱ)具有良好的吸附效果,在初始pH值为5、投加量为0.8 g/L、初始质量浓度为400 mg/L时,其最大吸附量为240.5 mg/g,且投加量、初始质量浓度和体系pH值的影响强烈。废弃芹菜生物炭对Pb(Ⅱ)的吸附在5 min内达到平衡,吸附过程更符合准二级动力学模型(R~20.99),表明其吸附速率主要受化学作用控制。同时吸附速率还受初始质量浓度的影响,初始质量浓度越低,吸附过程越先达到平衡。在试验范围内,等温吸附Langmuir模型和Freundlich模型都适合描述废弃芹菜生物炭对Pb(Ⅱ)的吸附过程。  相似文献   

16.
改性硅酸钙(CSH)对重金属废水中Ni2+的吸附特性研究   总被引:3,自引:0,他引:3  
赵越  郑欣  徐畅  严群 《安全与环境学报》2017,17(5):1904-1908
以硅灰石和氧化钙为原料制备改性硅酸钙(CSH),为了探讨改性硅酸钙对Ni~(2+)的吸附特性和机理,考察了初始p H值、吸附剂投加量、初始Ni~(2+)质量浓度和硅酸钙使用次数等因素对模拟废水中Ni~(2+)去除率的影响。结果表明,p H值在3.0~6.0、吸附剂投加量为1g/L、含Ni~(2+)废水质量浓度小于200 mg/L、硅酸钙前两次使用时,CSH对Ni~(2+)均有较高的去除效果。采用Langmuir等温吸附模型拟合CSH对Ni~(2+)的吸附,得到CSH对Ni~(2+)的最大吸附量为417 mg/g。结合吸附前后的扫描电镜-能谱(SEM-EDS)和X射线衍射(XRD)图谱分析,推测出CSH的主要结构为Ca Si2O5,CSH对Ni~(2+)的吸附主要发生在CSH表面并且是通过离子交换作用进行的。通过对CSH吸附去除Ni~(2+)过程中溶液离子浓度变化的研究推断出97%的Ni~(2+)通过离子交换作用被去除,剩余的Ni~(2+)通过表面络合作用去除。  相似文献   

17.
以毛竹遗态Fe2 O3/Fe3 O4/C复合材料为吸附剂,锑(III )初始含量、溶液初始pH值、吸附剂投加量以及吸附剂粒径为影响因素开展吸附影响研究。结果表明,随着锑(III )初始浓度的升高,毛竹遗态Fe2 O3/Fe3 O4/C复合材料对锑(III )的吸附量逐渐增加;初始溶液pH为7时,对锑(III )的吸附效果最好,吸附量为4.7821 mg/g;块状吸附剂对水中锑(III )的去除率和吸附量与粉末状吸附剂吸附效果相当。  相似文献   

18.
以玉米秸秆为原材料,在350℃下采用限氧裂解法制备了4种粒径的生物碳(BC-9.31、BC-20.26、BC-71.07、BC-101.90,数字代表样品的中值径,单位μm),对比研究了15℃、25℃、35℃、45℃下生物碳对锶的吸附行为,旨在阐明生物碳粒径和溶液温度对生物碳吸附锶的耦合影响。结果表明:生物碳粒径和溶液温度对等温吸附曲线的基本特征影响较小,Freundlich模型能较好地拟合吸附过程(R2=0.915~0.997,N=0.513~0.745);生物碳吸附锶是以熵驱动为主的物理吸附过程,熵变ΔS为75.66~99.43 J/(mol·K),焓变ΔH为18.18~25.84 k J/mol;生物碳对锶的吸附性能大体与溶液温度呈正相关,与颗粒粒径呈负相关,同时颗粒粒径与溶液温度存在耦合影响;生物碳粒径越小,锶吸附过程受温度影响越小;温度越高,锶吸附受粒径影响越小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号