首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Streptomycin (STR) plays an essential role in bacterial infection treatments. Selectivity and sensitivity of photoelectrochemical (PEC) sensors are the two most important parameters, which can be measured using the photosensitivity of its active material. We prepared a novel PEC sensor to detect STR using Bi/BiVO4/LDH (layered double hydroxides) heterostructures as an active material, which is photoactive in the visible light wavelength range. The simultaneous presence of LDH and Bi/BiVO4 enhanced the material photocurrent response, which was linear to the STR concentrations in the 0.01–500 nmol/L range. The STR detection limit by this sensor was 0.0042 nmol/L. Our novel PEC-based sensing strategy includes using an ultra-sensitive and highly selective sensor for STR detection. Additionally, the two-pot synthesis of Bi/BiVO4/LDH developed in this work is environmentally friendly.  相似文献   

2.
Chlorine dioxide (ClO2), an alternative disinfectant to chlorine, has a superior ability to inactivate microorganisms, in which protein damage has been considered as the main inactivation mechanism. However, the reactivity of ClO2 with amino acid residues in oligopeptides and proteins remains poorly investigated. In this research, we studied the reaction rate constants of ClO2 with tryptophan residues in five heptapeptides and four proteins using stopped-flow or competition kinetic method. Each heptapeptide and protein contain only one tryptophan residue and the reactivity of tryptophan residue with ClO2 was lower than that of free tryptophan (3.88 × 104 (mol/L)?1sec?1 at pH 7.0). The neighboring amino acid residues affected the reaction rates through promoting inter-peptide aggregation, changing electron density, shifting pKa values or inducing electron transfer via redox reactions. A single amino acid residue difference in oligopeptides can make the reaction rate constants differ by over 60% (e.g. 3.01 × 104 (mol/L)?1sec?1 for DDDWNDD and 1.85 × 104 (mol/L)?1sec?1 for DDDWDDD at pH 7.0 (D: aspartic acid, W: tryptophan, N: asparagine)). The reaction rates of tryptophan-containing oligopeptides were also highly pH-dependent with higher reactivity for deprotonated tryptophan than the neutral specie. Tryptophan residues in proteins spanned a 4-fold range reactivity toward ClO2 (i.e. 0.84 × 104 (mol/L)?1sec?1 for ribonuclease T1 and 3.21 × 104 (mol/L)?1sec?1 for melittin at pH 7.0) with accessibility to the oxidant as the determinating factor. The local environment surrounding the tryptophan residue in proteins can also accelerate the reaction rates by increasing the electron density of the indole ring of tryptophan or inhibit the reaction rates by inducing electron transfer reactions. The results are of significance in advancing understanding of ClO2 oxidative reactions with proteins and microbial inactivation mechanisms.  相似文献   

3.
In order to enhance Ni-EDTA decomplexation and Ni recovery via photoelectrocatalytic (PEC) process, TiO2/Ni-Sb-SnO2 bifunctional electrode was fabricated as the photoanode and activated carbon fiber (ACF) was introduced as the cathode. At a cell voltage of 3.5 V and initial solution pH of 6.3, the TiO2/Ni-Sb-SnO2 bifunctional photoanode exhibited a synergetic effect on the decomplexation of Ni-EDTA with the pseudo-first-order rate constant of 0.01068 min−1 with 180 min by using stainless steel (SS) cathode, which was 1.5 and 2.4 times higher than that of TiO2 photoanode and Ni-Sb-SnO2 anode, respectively. Moreover, both the efficiencies of Ni-EDTA decomplexation and Ni recovery were improved to 98% from 86% and 73% from 41% after replacing SS cathode with ACF cathode, respectively. Influencing factors on Ni-EDTA decomplexation and Ni recovery were investigated and the efficiencies were favored at acidic condition, higher cell voltage and lower initial Ni-EDTA concentration. Ni-EDTA was mainly decomposed via ·OH radicals which generated via the interaction of O3, H2O2, and UV irradiation in the contrasted PEC system. Then, the liberated Ni2+ ions which liberated from Ni-EDTA decomplexation were eventually reduced to metallic Ni on the ACF cathode surface. Finally, the stability of the constructed PEC system on Ni-EDTA decomplexation and Ni recovery was exhibited.  相似文献   

4.
Peroxymonosulfate (PMS) decomposition, hydroxyl radical (?OH) generation, and acetaminophen (ACT) degradation by the Co/PMS system using homogeneous (dissolved cobalt) and heterogeneous (suspended Co3O4) cobalt were assessed. For the homogeneous process, >99% PMS decomposition was observed and 10 mmol/L of ?OH generation was produced using 5 mmol/L of PMS and different dissolved cobalt concentrations after 30 min. A dissolved cobalt concentration of 0.2 mmol/L was used to achieve >99% ACT degradation using the homogeneous process. For the heterogeneous process, 60% PMS decomposition and negligible ?OH generation were observed for 5 mmol/L of the initial PMS concentration using 0.1 and 0.2 g/L of Co3O4. Degradation of ACT greater than 80% was achieved for all experimental runs using 5 mmol/L of the initial PMS concentration independently of the initial Co3O4 load used. For the heterogeneous process, the best experimental conditions for ACT degradation were found to be 3 mmol/L of PMS and 0.2 g/L of Co3O4, for which >99% ACT degradation was achieved after 10 min. Because negligible ?OH was produced by the Co3O4/PMS process, a second-order kinetic model was proposed for sulfur-based free radical production to allow fair comparison between homogeneous and heterogeneous processes. Using the kinetic data and the reaction by-products identified, a mechanistic pathway for ACT degradation is suggested.  相似文献   

5.
Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations, however, coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis. The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs. Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent, carrier pH, and ion cleaning time, HFUF completely removes metal ions but retains the MCNs in suspension. The optimal conditions include using a mixture of 0.05 vol.% FL-70 and 0.5 mmol/L Na2S2O3 (pH = 8.0) as the carrier and 4 min as the ion cleaning time. At these conditions, HFUF-SP-ICP-MS accurately determines the sizes of MCNs, and the results agree with the size distribution determined by transmission electron microscopy, even when metal ions also are present in the sample. In addition, reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g., from 28.3 to 14.2 nm for gold nanoparticles). This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g., Ag+) and anions (e.g., AuCl4) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.  相似文献   

6.
Phosphine (PH3) is an important factor driving the outbreak of cyanobacterial blooms that produce toxic microcystin threating human health. To clarify the physiological and biochemical responses of cyanobacteria to PH3 under elevated CO2 concentration, Microcystis aeruginosa was used in the coupling treatment of 1000 ppmv CO2 and PH3 at different concentrations respectively. The chlorophyll a (Chl-a), carotenoid, net photosynthetic rate and total protein of M. aeruginosa exhibited evidently increasing tendency under the coupling treatment of 1000 ppmv CO2 and PH3 at different concentrations (7.51 × 10?3, 2.48 × 10?2, 7.51 × 10?2 mg/L). The coupling treatments resulted in the higher concentrations of Chl-a and carotenoid of M. aeruginosa, compared to those in the control and the treatment with CO2 alone, and their enhancement increased with the increase in PH3 concentrations. The total antioxidant capacity (T-AOC) in the coupling treatment with CO2 and PH3 of 2.48 × 10?2 mg/L and 7.51 × 10?3 mg/L showed increasing tendency, compared to the treatment with PH3 alone. Additionally, the coupling treatment with 1000 ppmv CO2 and PH3 also altered the pH and DO level in the culture medium. In this regard, the coupling treatment with CO2 and PH3 at an appropriate concentration can enhance the resistance of M. aeruginosa to PH3 toxicity and is beneficial to the reproduction of M. aeruginosa, presumably resulting in potential for the outbreak of cyanobacteria bloom. Given the concern about global warming and the increase in atmospheric CO2 level, our research laid a foundation for the scientific understanding of the correlation between PH3 and cyanobacteria blooms.  相似文献   

7.
To improve the removal capacity of NO + O2 effectively, the alkaline earth metal-doped order mesoporous carbon (A-C-FDU-15(0.001) (A = Mg, Ca, Sr and Ba)) and Mg-C-FDU-15(x) (x = 0.001?0.003) samples were prepared, and their physicochemical and NO + O2 adsorption properties were determined by means of various techniques. The results show that the sequence in (NO + O2) adsorption performance was as follows: Mg-C-FDU-15(0.001) (93.2 mg/g) > Ca-C-FDU-15(0.001) (82.2 mg/g) > Sr-C-FDU-15(0.001) (76.1 mg/g) > Ba-C-FDU-15(0.001) (72.9 mg/g) > C-FDU-15 (67.1 mg/g). Among all of the A-C-FDU-15(0.001) samples, Mg-C-FDU-15(0.001) possessed the highest (NO + O2) adsorption capacity (106.2 mg/g). The species of alkaline earth metals and basic sites were important factors determining the adsorption of NO + O2 on the A-C-FDU-15(x) samples, and (NO + O2) adsorption on the samples was mainly chemical adsorption. Combined with the results of (NO + O2)-temperature-programmed desorption ((NO + O2)-TPD) and in situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization, we deduced that there were two main pathways of (NO + O2) adsorption: one was first the conversion of NO and O2 to NO2 and then part of NO2 was converted to NO2? and NO3?; and the other was the direct oxidation of NO to NO2? and NO3?.  相似文献   

8.
An instrument to detect atmospheric HO2 radicals using fluorescence assay by gas expansion (FAGE) technique has been developed. HO2 is measured by reaction with NO to form OH and subsequent detection of OH by laser-induced fluorescence at low pressure. The system performance has been improved by optimizing the expansion distance and pressure, the influence factors of HO2 conversion efficiency are also studied. The interferences of RO2 radicals were investigated by determining the conversion efficiency of RO2 to OH during the measurement of HO2. The dependence of the conversion of HO2 on NO concentration was investigated, and low HO2 conversion efficiency was selected to realize the ambient HO2 measurement, where the conversion efficiency of RO2 derived by propane, ethene, isoprene and methanol to OH has been reduced to less than 6% in the atmosphere. Furthermore, no significant interferences from PM2.5 and NO were found in the ambient HO2 measurement. The detection limits for HO2 (S/N = 2) are estimated to 4.8 × 105 cm?3 and 1.1 × 106 cm?3 (ρHO2= 20%) under night and noon conditions, with 60 sec signal integration time. The instrument was successfully deployed during STORM-2018 field campaign at Shenzhen graduate school of Peking University. The concentration of atmospheric HOx radical and the good correlation of OH with j(O1D) was obtained here. The diurnal variation of HOx concentration shows that the OH maximum concentration of those days is about 5.3 × 106 cm?3 appearing around 12:00, while the HO2 maximum concentration is about 4.2 × 108 cm?3 appearing around 13:30.  相似文献   

9.
Catalytic combustion is thought as an efficient and economic pathway to remove volatile organic compounds, and its critical issue is the development of high-performance catalytic materials. In this work, we used the in situ synthesis method to prepare the silicalite-1 (S-1)-supported Pd nanoparticles (NPs). It is found that the as-prepared catalysts displayed a hexagonal prism morphology and a surface area of 390−440 m2/g. The sample (0.28Pd/S-1-H) derived after reduction at 500°C in 10 vol% H2 showed the best catalytic activity for toluene combustion (T50% = 180°C and T90% = 189°C at a space velocity of 40,000 mL/(g·hr), turnover frequency (TOFPd) at 160°C = 3.46 × 10−3 sec−1, and specific reaction rate at 160°C = 63.8 µmol/(gPd·sec)), with the apparent activation energy (41 kJ/mol) obtained over the best-performing 0.28Pd/S-1-H sample being much lower than those (51−70 kJ/mol) obtained over the other samples (0.28Pd/S-1-A derived from calcination at 500°C in air, 0.26Pd/S-1-im derived from the impregnation route, and 0.27Pd/ZSM-5-H prepared after reduction at 500°C in 10 vol% H2). Furthermore, the 0.28Pd/S-1-H sample possessed good thermal stability and its partial deactivation due to CO2 or H2O introduction was reversible, but SO2 addition resulted in an irreversible deactivation. The possible pathways of toluene oxidation over 0.28Pd/S-1-H was toluene → p-methylbenzoquinone → maleic anhydride, benzoic acid, benzaldehyde → carbon dioxide and water. We conclude that the good dispersion of Pd NPs, high adsorption oxygen species concentration, large toluene adsorption capacity, strong acidity, and more Pd0 species were responsible for the good catalytic performance of 0.28Pd/S-1-H.  相似文献   

10.
Accurate quantification of dissolved organic nitrogen (DON) has been a challenge due to the cumulative analytical errors in the conventional method via subtracting dissolved inorganic nitrogen species (DIN) from total dissolved nitrogen (TDN). Size exclusion chromatography coupled with an organic nitrogen detector (SEC-OND) has been developed as a direct method for quantification and characterization of DON. However, the applications of SEC-OND method still subject to poor separations between DON and DIN species and unsatisfied N recoveries of macromolecules. In this study, we packed a series of SEC columns with different lengths and resin materials for separation of different N species and designed an independent vacuum ultraviolet (VUV) oxidation device for complete oxidation converting N species to nitrate. To guarantee sufficient N recoveries, the operation conditions were optimized as oxidation time ≥ 30 min, injection mass (sample concentration × injection volume) < 1000 µL × mg-N/L for macromolecular proteins, and neutral pH mobile eluent. The dissolved O2 concentration in SEC mobile phase determined the upper limit of VUV oxidation at a specific oxidation time. Compared to conventional HW50S column (20 × 250 mm), HW40S column (20 × 350 mm) with mobile phase comprising of 1.5 g/L Na2HPO4·2H2O + 2.5 g/L KH2PO4 (pH = 6.85) could achieve a better separation of DON, nitrite, nitrate, and ammonia. When applied to river water, lake water, wastewater effluent, groundwater, and landfill leachate, the SEC-OND method could quantify DON as well as DIN species accurately and conveniently even the DIN/TDN ratio reached 0.98.  相似文献   

11.
Herein, Na+ and Ca2+ are introduced to MnO2 through cation-exchange method. The presence of Na+ and Ca2+ significantly enhance the catalytic activity of MnO2 in toluene oxidation. Among them, the Ca-MnO2 catalyst exhibits the best catalytic activity (T50 = 194°C, T90 = 215°C, Ea = 57.2 kJ/mol, reaction rate 8.40 × 10?10 mol/(sec?m2) at 210°C. T50 and T90: the temperature of 50% and 90% toluene conversion; Ea: apparent activation energy) and possess high tolerance against 2.0 vol.% water vapor. Results reveal that the increased acidic sites of the MnO2 sample can enhance the adsorption of gaseous toluene, and the mobility of oxygen species and the content of reactive oxygen species in the catalyst are significantly improved due to the formed oxygen vacancy. Thus these two factors result in excellent catalytic performance for toluene oxidation combining with the weak CO2 adsorption ability.  相似文献   

12.
An innovative photoelectrode, B2O3·TiO2/Ti electrode, was prepared by galvanostaticanodisation. The morphology and crystalline texture of the B2O3·TiO2 film on electrode were examined by acomic force microscopy (AFM) and X-ray diffraction respectively. The examination results indicated that the anatase was the dominant component. The kinetics of photoelectrocatalytic(PEC) degradation of humic acid(HA) was investigated; the results demonstrated that effects from strongness to weakness on the photoelectrocatalytic degraded rate of humic acid: power of UV-lamp, area of TiO2 film, bias, original concentration of humic acid solution. The optimum conditions were power of UV-lamp 125 W, area of TiO2 film 42.0 cm2 , bias 1.4 V, original concentration of humic acid solution 5 mg/L in this PEC reaction system.  相似文献   

13.
In this work, a novel dual Z-scheme Bi2WO6/g-C3N4/black phosphorus quantum dots (Bi2WO6/g-C3N4/BPQDs) composites were fabricated and utilized towards photocatalytic degradation of bisphenol A (BPA) under visible-light irradiation. Optimizing the content of g-C3N4 and BPQDs in Bi2WO6/g-C3N4/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes, resulting in much higher photocatalytic activity for BPA degradation (95.6%, at 20 mg/L in 120 min) than that of Bi2WO6 (63.7%), g-C3N4 (25.0%), BPQDs (8.5%), and Bi2WO6/g-C3N4 (79.6%), respectively. Radical trapping experiments indicated that photogenerated holes (h+) and superoxide radicals (•O2) played crucial roles in photocatalytic BPA degradation. Further, the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates. This work also demonstrated that the Bi2WO6/g-C3N4/BPQDs as effective photocatalysts was stable and have promising potential to remove environmental contaminants from real water samples.  相似文献   

14.
Freshwater reservoirs are regarded as an important anthropogenic source of methane (CH4) emissions. The temporal and spatial variability of CH4 emissions from different reservoirs results in uncertainty in the estimation of the global CH4 budget. In this study, surface water CH4 concentrations were measured and diffusive CH4 fluxes were estimated via a thin boundary layer model in a temperate river–reservoir system in North China, using spatial (33 sites) and temporal (four seasons) monitoring; the system has experienced intensive aquaculture disturbance. Our results indicated that the dissolved CH4 concentration in the reservoir ranged from 0.07 to 0.58 µmol/L, with an annual average of 0.13 ± 0.10 µmol/L, and the diffusive CH4 flux across the water–air interface ranged from 0.66 to 3.61 μmol/(m2•hr), with an annual average of 1.67 ± 0.75 μmol/(m2•hr). During the study period, the dissolved CH4 concentration was supersaturated and was a net source of atmospheric CH4. Notably, CH4 concentration and diffusive flux portrayed large temporal and spatial heterogeneity. The river inflow zone was determined to be a hotspot for CH4 emissions, and its flux was significantly higher than that of the tributary and main basin; the CH4 flux in autumn was greater than that in other seasons. We also deduced that the CH4 concentration/diffusive flux was co-regulated mainly by water temperature, water depth, and water productivity (Chla, trophic status). Our results highlight the importance of considering the spatiotemporal variability of diffusive CH4 flux from temperate reservoirs to estimate the CH4 budget at regional and global scales.  相似文献   

15.
A novel polycyclodextrin-modified magnetic cationic hydrogel (PCD-MCH) was developed and its performance, kinetics and mechanism for the removal of reactive brilliant red X-3B (X-3B) were studied. The results showed that the zeta-potential of PCD-MCH was 32.8 to 16.7 mV at pH 3.0–10.5. The maximum X-3B adsorption capacity of PCD-MCH was 2792.3 mg/g. The adsorption kinetics could be well-described by the Weber–Morris model and the homogeneous surface diffusion model (HSDM). Diffusion stages corresponding to surface or film diffusion, intra-particle or wide mesopore diffusion, and narrow mesopore/micropore diffusion occurred at 0–120, 120–480 and 480–1200 min, respectively. The latter two diffusion stages were rate-controlling for X-3B adsorption kinetics. At the initial X-3B concentration of 600 mg/L, the diffusion coefficient (Ds) and external mass transfer coefficient in the liquid phase (kF) were 3 × 10?11 cm2/min and 4.68 × 10?6 cm/min, respectively. X-3B approaching the center of PCD-MCH particles could be observed at 360 min. At the end of the third diffusion stage, the Cp at q/qe = 0 was 45.20 mg/L, which was close to the homogeneous Cp value of 46 mg/L along the radius of PCD-MCH particles. At pH 3.0–10.0, PCD-MCH showed stable X-3B adsorption capacities. After five regeneration-reuse cycles, the residual adsorption capacity of regenerated PCD-MCH was higher than 892.7 mg/g. The corresponding adsorption mechanism was identified as involving electrostatic interactions, cyclodextrin cavities and hydrogen bonds, of which cyclodextrin cavities showed prominent capture performance towards dye molecules through the formation of inclusion complexes.  相似文献   

16.
A simple and efficient dithizone-functionalized solid-phase extraction (SPE) procedure, online coupled with high-performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry, was developed for the first time for enrichment and determination of ultra-trace mercury (Hg) species (inorganic divalent Hg (Hg(II)), methylmercury (CH3Hg(II)) and ethylmercury (C2H5Hg(II)) in cereals and environmental samples. In the proposed method, functionalization of the commercial C18 column with dithizone, enrichment, and elution of the above Hg species can be completed online with the developed SPE device. A simple solution of 2-mercaptoethanol (1% (V/V)) could be used as an eluent for both the SPE and HPLC separation of Hg species, significantly simplifying the method and instrumentation. The online SPE method was optimized by varying dithizone dose, 2-mercaptoethanol concentration, and sample volume. In addition, the effect of pH, coexisting interfering ions, and salt effect on the enrichment was also discussed. Under the optimized conditions, the detection limits of Hg species for 5 mL water sample were 0.15 ng/L for Hg(II), 0.07 ng/L for CH3Hg(II), and 0.04 ng/L for C2H5Hg(II) with recoveries in the range of 85%–100%. The developed dithizone-functionalized C18 SPE column can be reused after a single functionalization, which significantly simplifies the enrichment step. Moreover, the stability of Hg species enriched on the SPE column demonstrated its suitability for field sampling of Hg species for later laboratory analysis. This environment-friendly method offers a robust tool to detect ultra-trace Hg species in cereals and environmental samples.  相似文献   

17.
Lead halide perovskites MAPbX3 (MA = CH3NH3 or Cs; X = I, Br, Cl) are well considered to be potential candidates for photocatalytic reaction due to its excellent photoelectrical properties, but they still suffer from the low charge separation efficiency and slow catalytic reaction dynamics. To tackle the drawbacks, herein, MAPbBr3/carbon sphere (CS) composite photocatalysts using glucose as the carbon source were elaborately designed and fabricated via a dry mechanochemical grinding process. The interfacial interaction Pb-O-C chemical bonds were constructed between MAPbBr3 and the carbon sphere surface containing organic functional groups. By optimizing the content of CSs, the enhanced photocatalytic degradation kinetic rate of Malachite Green (MG) pollutants (92% within 20 min) for MAPbBr3/CSx (x = 17 wt.%) is about 3.6-fold of that for pristine MAPbBr3, which is attributed to the corporative adsorption and enhanced carrier transportation and separation of MAPbBr3/CSx. Furthermore, the possible degradation mechanism was proposed on basis of the electrochemical, mass spectrometry and optical characterization results. Owing to the robust interfacial interaction, effective electron extraction rate (ket = 4.6 × 107 sec?1) from MAPbBr3 to CS can be established, which driven oxygen activation where superoxide radicals (?O2?) played an important role in MG degradation. It is expected that mechanochemistry strategy may provide a new route to design efficient lead halide perovskite-carbon or metal oxide or sulfide composite photocatalysts.  相似文献   

18.
Aquatic contamination of diclofenac (DCF), an emergent non-steroidal anti-inflammatory drug (NSAIDs), can result in adverse effects to many ecosystems through biomagnification. Hence, introducing effective remediation techniques to sequester the pharmaceutical wastes is highly fundamental to prevent their accumulation in the environment. Generally, adsorption has been presented as a green and efficient approach. Herein, we report the characterization and application of the novel magnetic nanocomposite ([email protected]2O4) derived from cobalt-based ferrite (CoFe2O4) and graphene oxide (GO) for DCF adsorption. For the optimization procedure, the response surface methodology (RSM) was adopted to investigate the impacts of DCF concentration (1.6–18.4 mg/L), DCF dosage (0.08–0.92 g/L), and solution pH (2.6–9.4) to find the optimum conditions for DCF removal, at 10.5 mg/L, 0.74 g/L, and pH 4, respectively. For the adsorption experiments, the kinetic, isotherm, thermodynamic, and intraparticle diffusion models were systematically studied. Moreover, we have elucidated the role of functional groups on the surface of [email protected]2O4 in enhancing the adsorption of DCF drug. With good removal efficiency (up to 86.1%), high maximum adsorption capacity (32.4 mg/g), [email protected]2O4 can be a potential candidate to eliminate DCF drug from water.  相似文献   

19.
A series of novel adsorbents composed of cellulose (CL) with Ca/Al layered double hydroxide (CCxA; where x represent the Ca/Al molar ratio) were prepared for the adsorption of antimony (Sb(V)) and fluoride (F?) ions from aqueous solutions. The CCxA was characterized by Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), elemental analysis (CHNS/O), thermogravimetric analysis (TGA-DTA), zeta potential, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) analysis. The effects of varying parameters such as dose, pH, contact time, temperature and initial concentration on the adsorption process were investigated. According to the obtained results, the adsorption processes were described by a pseudo-second-order kinetic model. Langmuir adsorption isotherm model provided the best fit for the experimental data and was used to describe isotherm constants. The maximum adsorption capacity was found to be 77.2 and 63.1 mg/g for Sb(V) and F?, respectively by CC3A (experimental conditions: pH 5.5, time 60 min, dose 15 mg/10 mL, temperature 298 K). The CC3A nanocomposite was able to reduce the Sb(V) and F? ions concentration in synthetic solution to lower than 6 μg/L and 1.5 mg/L, respectively, which are maximum contaminant levels of these elements in drinking water according to WHO guidelines.  相似文献   

20.
Bauxite residue, a byproduct of alumina manufacture, is a serious environmental pollutant due to its high leaching contents of metals and caustic compounds. Four typical anions of CO32?, HCO3?, Al(OH)4? and OH? (represented caustic compounds) and metal ions (As, B, Mo and V) were selected to assess their leaching behavior under dealkalization process with different conditions including liquid/solid ratio (L/S ratio), temperature and leaching time. The results revealed that washing process could remove the soluble composition in bauxite residue effectively. The leaching concentrations of typical anions in bauxite residue decreased as follows: c(CO32?) > c(HCO3?) > c[Al(OH)4?] > c(OH?). L/S ratio had a more significant effect on leaching behavior of OH?, whilst the leaching concentration of Al(OH)4? varied larger underleaching temperature and time treatment. Under the optimal leaching, the total alkaline, soluble Na concentrations, exchangeable Ca concentrations were 79.52, 68.93, and 136.0 mmol/L, respectively, whilst the soluble and exchangeable content of As, B, Mo and V in bauxite residue changed slightly. However, it should be noted that water leaching has released metal ions such as As, B, Mo and V in bauxite residue to the surrounding environment. The semiquantitative analysis of XRD revealed that water leaching increased the content of gismondine from 2.4% to 6.4%. The SEM images demonstrated the dissolution of caustic compounds on bauxite residue surface. The correlation analysis indicated that CO32? and HCO3? could effectively reflect the alkalinity of bauxite residue, and may be regarded as critical dealkalization indicators to evaluate alkalinity removal in bauxite residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号