首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND, AIM, AND SCOPE: Due to its essentiality, deficiency, and toxicity to living organisms and the extensive use in industrial activities, selenium (Se) has become an element of global environmental and health concern. Se removal from contaminated sites using physical, chemical, and engineering techniques is quite complicated and expensive. The goal of this study was to investigate uptake and translocation of Se in willows and to provide quantitative information for field application whether Se phytoremediation is feasible and ecologically safe. MATERIALS AND METHODS: Intact pre-rooted plants of hybrid willows (Salix matsudana Koidz x alba L.) and weeping willows (Salix babylonica L.) were grown hydroponically and treated with selenite or selenate at 24.0 +/- 1 degrees C for 144 h. Removal of leaves was also performed as a treatment to quantify the effect of transpiration on translocation and volatilization of Se. At the end of the study, total Se in the hydroponic solution and in different parts of plant tissues was analyzed quantitatively by hydride generation-atomic fluorescence spectrometry. The capacity of willows to assimilate both chemical forms of Se was also evaluated using detached leaves and roots in sealed glass vessels in vivo. Translocation efficiency of Se in both plants was estimated. RESULTS: Significant amounts of the applied selenite and selenate were eliminated from plant growth media by willows during the period of incubation. Both willows showed a significantly higher removal rate for selenate than for selenite (p < 0.05). Substantial differences existed in the distribution of both chemical forms of Se in plant materials: lower stems and roots were the major sites for accumulation of selenite and selenate, respectively. Translocation efficiency for selenite was significantly higher than that for selenate in both willow species (p < 0.01). Compared to the intact trees, remarkable decrease in the removal rate of both chemical forms of Se was found for willows without any leaves (p < 0.01). Volatilization of Se by plant leaves was estimated to be approximately 10% of the total applied selenite or selenate. Significant reduction (>20%) of selenate was observed in the sealed vessel with excised roots of willows, whereas trace amounts of selenite were eliminated from the hydroponic solution in the presence of roots. Detached leaves from neither of them reduced the concentration of selenite or selenate in the solution. DISCUSSION: Due to the significant difference in the removal rate and the distribution of the two chemical forms of Se in plant materials, the conversion of selenate to selenite in hydroponic solution prior to uptake and within plant tissues is unlikely. An independent uptake and translocation mechanisms are likely to exist for each Se chemical species. Uptake of selenate is mediated possibly through an active transport mechanism, whereas that of selenite may possibly depend on plant transpiration. Uptake velocities of selenite are linear (zero-order kinetics), while selenate removal processes obey first-order kinetics. In experiments with detached leaves in closed bottles, the cuticle of leaves was the major obstacle to extract both chemical forms of Se from the hydroponic solution. Phytovolatilization is a biological process playing an important role in Se removal. CONCLUSIONS: Although faster removal rates of selenate than selenite from plant growth media were observed by both willow species, selenite in plant materials was more mobile than selenate. Significant decrease in removal rates of both chemical forms of Se was detected for willows without any leaves. Significant differences in extraction, assimilation and transport pathways for selenite and selenate exist in willow trees. RECOMMENDATIONS AND PERSPECTIVES: Phytoremediation of Se is an attractive approach of cleaning up Se contaminated environmental sites. More detailed investigation on the assimilation of Se in plant roots and transport in tissues will provide further biochemical evidence to explain the differences in uptake and translocation mechanisms between selenite and selenate in willows. A relevant phytoremediation scheme can then be designed to clean up Se contaminated sites. Willows show a great potential for uptake, assimilation and translocation of both selenite and selenate. Phytotreatment of Se is potentially an efficient and practical technology for cleaning up contaminated environmental sites.  相似文献   

2.

Selenium (Se) is an essential metalloid element for mammals. Nonetheless, both deficiency and excess of Se in the environment are associated with several diseases in animals and humans. Here, we investigated the interaction of Se, supplied as selenate (Se+6) and selenite (Se+4), with phosphorus (P) and sulfur (S) in a weathered tropical soil and their effects on growth and Se accumulation in Leucaena leucocephala (Lam.) de Wit. The P-Se interaction effects on L. leucocephala growth differed between the Se forms (selenate and selenite) supplied in the soil. Selenate was prejudicial to plants grown in the soil with low P dose, while selenite was harmful to plants grown in soil with high P dose. The decreasing soil S dose increased the toxic effect of Se in L. leucocephala plants. Se tissue concentration and total Se accumulation in L. leucocephala shoot were higher with selenate supply in the soil when compared with selenite. Therefore, selenite proved to be less phytoavailable in the weathered tropical soil and, at the same time, more toxic to L. leucocephala plants than selenate. Thus, it is expected that L. leucocephala plants are more efficient to phytoextract and accumulate Se as selenate than Se as selenite from weathered tropical soils, for either strategy of phytoremediation (decontamination of Se-polluted soils) or purposes of biofortification for animal feed (fertilization of Se-poor soils).

  相似文献   

3.
This study developed a seven-compartment model for predicting the fate of selenium (Se) in an aquatic environment containing a water-sediment boundary. Speciation of Se in water-sediment microcosms under microaerobic conditions was measured to evaluate first-order kinetics of Se transportation and transformation. The microcosm consisted of a 10-ml solution containing 1mM soluble Se as selenate (Se6+) or selenite (Se4+) and 8 g wet sediment that was free from Se contamination, sampled from the Senri, Yamato, or Yodo Rivers in Osaka, Japan. Stepwise reaction coefficients describing transportation and transformation were determined using an inverse method on this model which includes: selenate (Se(W)6+) and selenite (Se(W)4+) in ponded water; selenate (Se(S)6+) and selenite (Se(S)4+), elemental Se (Se0), organic Se (Se2-) in sediment; and gaseous Se (DMSe). During this 1-month experiment, soluble Se was transported from ponded water to the sediment and Se was transformed sequentially to other Se species through biochemical reactions. Experimental and kinetic analyses indicated quantitatively that the Yamato River microcosm, with its high organic matter content, had a high adsorption rate of soluble Se. The Yodo River microcosm had a low adsorption rate for Se6+ and a low Se reduction rate. The Senri River microcosm had an apparent high volatilization rate of DMSe. The model developed in this study is extremely useful for predicting fate of Se in aquatic environment in the field.  相似文献   

4.
Closed-system microcosms were used to study factors affecting the fate of selenium (Se) in aquatic systems. Distribution and bioaccumulation of Se varied among sediment types and Se species. A mixture of dissolved (75)Se species (selenate, selenite and selenomethionine) was sorbed more rapidly to fine-textured, highly organic pond sediments than to sandy riverine sediments. Sulfate did not affect the distribution and bioaccumulation of (75)Se over the range 80-180 mg SO(4) liter(-1). When each Se species was labeled separately, selenomethionine was lost from the water column more rapidly than selenate or selenite. Selenium lost from the water column accumulated primarily in sediments, but volatilization was also an important pathway for loss of Se added as selenomethionine. Loss rates of dissolved Se residues were more rapid than rates reported from mesocosm and field studies, suggesting that sediment: water interactions are more important in microcosms than in larger test systems. Daphnids accumulated highest concentrations of Se, followed by periphyton and macrophytes. Selenium added as selenomethionine was bioaccumulated preferentially compared to that added as selenite or selenate. Organoselenium compounds such as selenomethione may thus contribute disproportionately to Se bioaccumulation and toxicity in aquatic organisms.  相似文献   

5.
A major goal of our selenium (Se) phytoremediation research is to use genetic engineering to develop fast-growing plants with an increased ability to tolerate, accumulate, and volatilize Se. To this end we incorporated a gene (encoding selenocysteine methyltransferase, SMT) from the Se hyperaccumulator, Astragalus bisulcatus, into Indian mustard (LeDuc, D.L., Tarun, A.S., Montes-Bayón, M., Meija, J., Malit, M.F., Wu, C.P., AbdelSamie, M., Chiang, C.-Y., Tagmount, A., deSouza, M., Neuhierl, B., B?ck, A., Caruso, J., Terry, N., 2004. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation Plant Physiol. 135, 377-383.). The resulting transgenic plants successfully enhanced Se phytoremediation in that the plants tolerated and accumulated Se from selenite significantly better than wild type. However, the advantage conferred by the SMT enzyme was much less when Se was supplied as selenate. In order to enhance the phytoremediation of selenate, we developed double transgenic plants that overexpressed the gene encoding ATP sulfurylase (APS) in addition to SMT, i.e., APSxSMT. The results showed that there was a substantial improvement in Se accumulation from selenate (4 to 9 times increase) in transgenic plants overexpressing both APS and SMT.  相似文献   

6.
Thirty Atriplex lines were examined for potential habitat improvement and phytoremediation of selenium (Se) contaminated sites. Studies were conducted to determine the biomass production, Se accumulation, and resistance of each line to the beet armyworm, Spodoptera exigua, an agriculturally important insect. Plants were tested using three salinity treatments: (1) control, no Se; (2) NaCl and CaCl2 salts and 1 mg l(-1) Se (12.7 microM) added as sodium selenate; and (3) iso-osmotic to treatment 2 containing high concentrations of sulfate and I mg l(-1) Se added as sodium selenate. Insect bioassays measured survival, growth, and development. Atriplex patula. A. spongiosa 415862, A. hortensis, A. hortensis 379088 and A. hortensis 379092 were among the top biomass producers and Se accumulators, yet they exhibited significantly reduced insect growth, development, and survival. High background sulfate strongly reduced Se accumulation, suggesting that phytoremediation potential is greatest in saline areas having low to moderate sulfate levels. However, these lines grew well in high salinity soils, indicating possible use as a self-seeding cover crop to improve habitat. All plant lines grown in control and high sulfate salinity treatments are acceptable oviposition sites for S. exigua, indicating that these plants would help reduce populations of this key agricultural pest.  相似文献   

7.
Volatilization of selenium (Se) from soil to the atmosphere involves several sequential chemical reactions that form volatile Se species, followed by transport of the gaseous Se through the soil. This paper describes a numerical model that simulates the chemical and physical processes governing the production and transport of Se vapor in unsaturated soil. The model couples the four Se species involved in the production of Se vapor through chemical reactions, and allows each to migrate through the soil by advection, liquid or vapor diffusion depending on its affinity for the dissolved or vapor phase. The coupled transformations and transport of the four Se species, i.e., selenate, selenite, elemental and organic Se, and Se vapor, were calculated based on the Crank-Nicolson finite difference method. The model was used to analyze fluxes of Se vapor measured from a soil amended with inorganic Se in the form of selenate and covered with unamended clean soil of various thicknesses. Evolution of Se vapor from the soil was very fast, with measurable amounts of Se detected within 24 h. The peak of Se volatilization, detected at the 6th day, reached 3.31 Se microgram/day for the uncovered soil, but was reduced to near the detection limit (0.05 microgram/day) in the presence of a 8- or 16-cm clean soil cover. With two reaction rate coefficients fitted to the data, the model described Se volatilization very well. The estimated rate coefficient of Se methylation was unexpectedly high, with a value of 0.167/day. The net volatilization of Se, however, was severely inhibited by the fast demethylation, i.e., the reverse reaction which converted volatile Se species back into nonvolatile forms. As a result, Se vapor only penetrated a few centimeters in the soil. The demethylation rate coefficient, assessed by independent transport experiments using dimethyl selenide, was estimated as 186.8/day, corresponding to a half-life of only 5.3 min for Se vapor. Results of this study indicated that rapid demethylation of Se vapor during its diffusive transport through a soil is probably an important limiting factor in the volatilization of Se under natural conditions.  相似文献   

8.
Several organic compounds of high molecular weight present in soil interact with selenium and may act as active binding agents affecting its availability in soil, and, consequently, selenium uptake by plants. This study is aimed at investigating the effects of polysaccharides on selenium speciation in soil and on selenium absorption by Lactuca sativa L. plants. Three-week-old seedlings were transplanted into pots filled with soil, and sodium selenite at rates of 1.5 and 5mgSekg(-1) of soil, or sodium selenate at a rate of 1.5mgSekg(-1) of soil were applied. Carboxymethylcellulose (CMC) was added to the soil at rates of 0, 3 and 30mgkg(-1) of soil. After 48 and 110d from transplanting plants were harvested, separated into root and shoot, and fresh and dry matter weights were recorded. Total selenium was determined in both soil and plant samples. A sequential extraction was used to investigate the different Se oxidation states and assess the availability of Se in soil after the final harvesting. Both selenite and selenate were absorbed by roots, but plants amended with Se(VI+) showed higher selenium concentration than plants amended with Se(IV+). Selenite appears to be less mobile than selenate both in soil and plants. The addition of carboxymethylcellulose to soil decreased the amount of selenium absorbed by plants. CMC interacted with Se, making it less mobile as evidenced by the increase in the insoluble fractions. The insoluble Se forms in soil may represent environmental Se sinks potentially available for plants if the substrate is re-used for subsequent growth cycles and selenium species are mobilized as a result of biological and chemical processes.  相似文献   

9.
Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pH < 4 is needed to prevent precipitation of Al and Fe phases. Therefore, a speciation method with a low pH eluent that matches the natural sample pH of acid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20 mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in <10 min with a LOQ of 0.2 μg L−1 using 78Se for detection. Applying this speciation analysis to study acid rain-soil interaction using synthetic rain based on H2SO4 and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments.  相似文献   

10.
Even plants classified as 'nonaccumulators' can sequester concentrations of sodium selenate, sodium selenite, selenocystine and selenomethionine that can strongly influence insect development and survival. These forms of selenium (Se), tested in diet-incorporation bioassays, proved toxic to larvae of a generalist insect herbivore at relatively low levels. Sodium selenite was the most toxic form tested against Spodoptera exigua (Hübner), with an LC(50) of 9.14 microg g(-1) wet wt (21.11 microg g(-1) dry wt). Selenocystine was intermediate with an LC(50) of 15.2 microg g(-1) wet wt. The least toxic forms, sodium selenate and selenomethionine, had LC(50)s below 50 microg g(-1) dry wt, the upper level for tissues of plants classified as nonaccumulators. Ingestion of some forms of Se also affected growth and development. Increasing concentrations of sodium selenate and sodium selenite decreased pupal weight and added significantly to the time needed for development to the pupal and adult stages. The time required to complete the larval stage increased by over 25% and the time from egg to adult emergence was extended by 22% to nearly 30%. Selenocystine and selenomethionine did not significantly increase developmental times, even at concentrations that killed 90% or more of the test populations. Analyses of relative growth rate, relative growth index, and an analysis of covariance technique for measuring growth indicated that the form of Se affected growth rates, growth inhibition responses of the larvae, and toxicological effects. Thus, quantity and the form of Se accumulating in plants grown on Se-contaminated sites are likely to influence the population dynamics of insect herbivores. The implications of these results for the ecology of contaminated sites are discussed.  相似文献   

11.
Evaporation basins (or ponds) are the most commonly used facilities for disposal of selenium-laden saline agricultural drainage in the closed hydrologic basin portion of the San Joaquin Valley, California. However concerns remain for potential risk from selenium (Se) toxicity to water fowl in these evaporation basins. In this study, we examined the chemical status of Se in both waters and sediments in two currently operating evaporation pond facilities in the Tulare Lake Drainage District. Some of the saline ponds have been colonized by brine-shrimp (Artemia), which have been harvested since 2001. We evaluated Se concentration and speciation, including selenate [Se(VI)], selenite [Se(IV)], and organic Se [org-Se or Se(-II)] in waters and sediment extracts, and fractionation (soluble, adsorbed, organic matter (OM)-associated, and Se(0) and other resistant forms) in sediments and organic-rich surface detrital layers from the decay of algal blooms. Selenium in ponds without vascular plants exhibited similar behavior to wetlands with vascular plant present, indicating that similar Se transformation processes and mechanisms had resulted in Se immobilization and an increase of reduced Se species [Se(IV), org-Se, and Se(0)] from Se(VI)-dominated input waters. Selenium concentrations in most pond waters were significantly lower than the influent drainage water. This decrease of dissolved Se concentration was accompanied by the increase of reduced Se species. Selenium accumulated preferentially in sediments of the initial pond cell receiving drainage water. Brine-shrimp harvesting activities did not affect Se speciation but may have reduced Se accumulation in surface detrital and sediments.  相似文献   

12.
Lim TT  Goh KH 《Chemosphere》2005,58(1):91-101
Two batches of fine soil fraction of an acidic soil were deliberately contaminated with selenite (Se(IV)) and selenate (Se(VI)), respectively, and aged for more than 220 days. Speciation analysis using continuous flow-through hydride generation atomic absorption spectrometry (HGAAS) indicated that the species were predominant in their respective aged soils. A selective sequential extraction scheme was employed to fractionate the Se retained in the soils into six fractions of varying retentions. Abilities of various chemical reagents in extracting the Se in the two soil batches were then evaluated. The reagents investigated were sodium salts such as sodium chloride (NaCl), sodium sulfate (Na2SO4), sodium carbonate (Na2CO3), and sodium phosphate (Na3PO4), and two oxidants, namely, hydrogen peroxide (H2O2) and potassium permanganate (KMnO4). It was found that NaCl, Na2SO4, and Na2CO3 could only extract the exchangeable fraction of Se, while Na3PO4 could extract the exchangeable and strongly-bound fractions. Selenate was extracted more than Se(IV) by the salts. The kinetics of Se(IV) extraction by Na3PO4 could be best described by the Elovich model, while the Ritchie second-order model was the most appropriate to describe Se(VI) extraction. Efficiencies of the oxidants in Se(IV) extraction highly depended on their applied dosages. Both H2O2 and KMnO4 were able to extract greater than 93% of total Se, and therefore were significantly more effective than the salts in Se(IV) extraction.  相似文献   

13.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

14.
A lake system in northern Saskatchewan receiving treated metal mine and mill effluent contains elevated levels of selenium (Se). An important step in the trophic transfer of Se is the bioaccumulation of Se by benthic invertebrates, especially primary consumers serving as a food source for higher trophic level organisms. Chironomids, ubiquitous components of many northern aquatic ecosystems, were sampled at lakes downstream of the milling operation and were found to contain Se concentrations ranging from 7 to 80 mg kg−1 dry weight. For comparison, laboratory-reared Chironomus dilutus were exposed to waterborne selenate, selenite, or seleno-DL-methionine under laboratory conditions at the average total Se concentrations found in lakes near the operation. Similarities in Se localization and speciation in laboratory and field chironomids were observed using synchrotron-based X-ray fluorescence (XRF) imaging and X-ray absorption spectroscopy (XAS). Selenium localized primarily in the head capsule, brain, salivary glands and gut lining, with organic Se species modeled as selenocystine and selenomethionine being the most abundant. Similarities between field chironomids and C. dilutus exposed in the laboratory to waterborne selenomethionine suggest that selenomethionine-like species are most readily accumulated, whether from diet or water.  相似文献   

15.
The long-lived radionuclide 79Se is one of the elements of concern for the safe storage of high-level nuclear waste, since clay minerals in engineered barriers and natural aquifer sediments strongly adsorb cationic species, but to lesser extent anions like selenate (SeVIO4(2-)) and selenite (SeIVO3(2-)). Previous investigations have demonstrated, however, that SeIV and SeVI are reduced by surface-associated FeII, thereby forming insoluble Se0 and Fe selenides. Here we show that the mixed FeII/III (hydr)oxides green rust and magnetite, and the FeII sulfide mackinawite reduce selenite rapidly (< 1 day) to FeSe, while the slightly slower reduction by the FeII carbonate siderite produces elemental Se. In the case of mackinawite, both S(-II) and FeII surface atoms are oxidized at a ratio of one to four by producing a defective mackinawite surface. Comparison of these spectroscopic results with thermodynamic equilibrium modeling provides evidence that the nature of reduction end product in these FeII systems is controlled by the concentration of HSe(-); Se0 forms only at lower HSe(-) concentrations related to slower HSeO3(-) reduction kinetics. Even under thermodynamically unstable conditions, the initially formed Se solid phases may remain stable for longer periods since their low solubility prevents the dissolution required for a phase transformation into more stable solids. The reduction by Fe2+-montmorillonite is generally much slower and restricted to a pH range, where selenite is adsorbed (pH < 7), stressing the importance of a heterogeneous, surface-enhanced electron transfer reaction. Although the solids precipitated by the redox reaction are nanocrystalline, their solubility remains below 6.3 x 10(-8) M. No evidence for aqueous metal selenide colloids nor for Se sorption to colloidal phases was found. Since FeII phases like the ones investigated here should be ubiquitous in the near field of nuclear waste disposals as well as in the surrounding aquifers, mobility of the fission product 79Se may be much lower than previously assumed.  相似文献   

16.
Lenz M  Janzen N  Lens PN 《Chemosphere》2008,73(3):383-388
Inhibitory effects of selenite and selenate towards hydrogenotrophic and acetoclastic methanogenesis were evaluated in anaerobic toxicity assays. The 50% inhibitory concentration (IC(50)) of both selenium oxyanions was below 6.1x10(-5)M in hydrogenotrophic assays, whereas acetoclastic methanogens were less inhibited: IC(50)=8.3x10(-5)M and 5.5x10(-4)M for selenite and selenate, respectively. Selenite completely inhibits methanogenesis from both substrates tested at concentrations 10(-3)M selenite, while only marginal methanogenic activities occur at equimolar concentrations of selenate. Selenite becomes irreversibly inhibitory upon a single exposure, whereas selenate inhibits methanogens upon repeated exposure. Consequently, methane recovery can be seriously hampered or even impossible during anaerobic treatment of highly selenium contaminated waste streams.  相似文献   

17.
The long-lived radionuclide 79Se is one of the elements of concern for the safe storage of high-level nuclear waste, since clay minerals in engineered barriers and natural aquifer sediments strongly adsorb cationic species, but to lesser extent anions like selenate (SeVIO42−) and selenite (SeIVO32−). Previous investigations have demonstrated, however, that SeIV and SeVI are reduced by surface-associated FeII, thereby forming insoluble Se0 and Fe selenides. Here we show that the mixed FeII/III (hydr)oxides green rust and magnetite, and the FeII sulfide mackinawite reduce selenite rapidly (< 1 day) to FeSe, while the slightly slower reduction by the FeII carbonate siderite produces elemental Se. In the case of mackinawite, both S−II and FeII surface atoms are oxidized at a ratio of one to four by producing a defective mackinawite surface. Comparison of these spectroscopic results with thermodynamic equilibrium modeling provides evidence that the nature of reduction end product in these FeII systems is controlled by the concentration of HSe; Se0 forms only at lower HSe concentrations related to slower HSeO3 reduction kinetics. Even under thermodynamically unstable conditions, the initially formed Se solid phases may remain stable for longer periods since their low solubility prevents the dissolution required for a phase transformation into more stable solids. The reduction by Fe2+-montmorillonite is generally much slower and restricted to a pH range, where selenite is adsorbed (pH < 7), stressing the importance of a heterogeneous, surface-enhanced electron transfer reaction. Although the solids precipitated by the redox reaction are nanocrystalline, their solubility remains below 6.3 × 10− 8 M. No evidence for aqueous metal selenide colloids nor for Se sorption to colloidal phases was found. Since FeII phases like the ones investigated here should be ubiquitous in the near field of nuclear waste disposals as well as in the surrounding aquifers, mobility of the fission product 79Se may be much lower than previously assumed.  相似文献   

18.
There is still a long-term debate concerning the relative contributions of naturally emitted and anthropogenic Se at the regional and local scales. Here, Se and heavy metal concentrations are reported for epiphytic lichens collected in coastal and inland areas from the USA, Canada and France for assessing atmospheric Se source. Correlations found between Se and Cl in lichens confirmed the major marine biogenic source for atmospheric Se. Continental samples do not show systematic relationships between Se and other metal (Pb, Cu, In …) contents, even for lichens collected in the vicinity of smelters or close to urban areas. Our results suggest that, although anthropogenic Se may be present, the marine biogenic Se source is a major contributor to atmospheric Se for our sampling locations. The contribution of naturally emitted atmospheric Se may be significant in urban and industrial areas and should be taken into account for further studies.  相似文献   

19.
Goh KH  Lim TT 《Chemosphere》2004,55(6):849-859
Factors that can affect As and Se adsorption by soils influence the bioavailability and mobility of these elements in the subsurface. This research attempted to compare the adsorption capacities of As(III), As(V), Se(IV), and Se(VI) on a tropical soil commonly found in Singapore in a single-species system. The effect of reaction time, pH, and competitive anions at different concentrations on the adsorption of both As and Se species were investigated. The As and Se adsorption isotherm were also obtained under different background electrolytes. The batch adsorption experiments showed that the sequence of the As and Se adsorption capacities in the soil was As(V) > Se(IV) > As(III) > Se(VI). The adsorption kinetics could be best described by the Elovich equation. The adsorption of As(V), Se(IV), and Se(VI) appeared to be influenced by the variable pH-dependent charges developed on the soil particle surfaces. Phosphate had more profound effect than SO4(2-) on As and Se adsorption in the soil. The competition between PO4(3-) and As or Se oxyanions on adsorption sites was presumably due to the formation of surface complexes and the surface accumulation or precipitation involving PO4(3-). The thermodynamic adsorption data for As(V) and Se(IV) adsorption followed the Langmuir equation, while the As(III) and Se(VI) adsorption data appeared to be best-represented by the Freundlich equation.  相似文献   

20.
The atmosphere is an important transient reservoir of selenium (Se). According to recent evaluations of the global Se budget, approximately 13,000–19,000 tons of Se is cycled through the troposphere annually. Most studies suggest that atmospheric deposition is an important source of Se contamination and it is therefore critical to evaluate the source emissions and fate of Se in the atmosphere. This paper presents a broad overview of current state of knowledge and understanding of major aspects of atmospheric Se and its natural and anthropogenic sources. The significant physical and chemical species encountered in the atmosphere are examined and special attention is paid to atmospheric speciation and its atmospheric pathways and processes. In addition, thermodynamic and kinetic data for atmospheric Se speciation are provided, which aid our understanding and the modelling of Se behaviour in the atmospheric environment. We also document how Se isotopes might be useful for tracing atmospheric sources and pathways. Important gaps in our current knowledge of Se in the atmospheric environment are identified, and suggestions for future research are offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号