首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
太湖梅梁湾2008年有机污染物检测及环境影响度   总被引:3,自引:1,他引:2       下载免费PDF全文
利用GC-MS技术定性和定量分析2008年不同季度太湖梅梁湾水体中的半挥发性有机污染物(SVOCs),并采用多介质环境目标值(MEG)分别就人体健康影响度(ASI)和生态环境影响度(ASII)对太湖梅梁湾水质进行了评价.结果表明,2008年春、夏、秋、冬太湖梅梁湾水体中25种EPA优先控制SVOCs的总浓度分别为17.459,11.140,11.147,5.675mg/L,其中检出率较高的是邻苯二甲酸酯类物质、苯系物和PAHs;健康和生态影响度均小于1,表明对健康和生态尚属安全.  相似文献   

2.
2016年1月,在杭州市城区及主要郊县建成区采集降雪样品,利用高效液相色谱法分析了雪样中16种多环芳烃(PAHs)的质量浓度,探讨它们的分布特征、来源和生态风险。结果表明,杭州市降雪中属于美国环境保护署(US EPA)优先控制16种PAHs均有检出,各采样点位ΣPAHs的质量浓度范围在97.0~964 ng/L之间,平均598 ng/L,其中富阳降雪中最高,临安最低。降雪中PAHs以低分子量的3环和中分子量的4环为主,以菲的含量最高。特征组分比例分析结果表明临安和淳安降雪中PAHs以石油源为主,而其余采样点以燃烧污染和石油排放污染的混合源为主。采用风险商值法进行生态风险评价结果显示,除了临安降雪PAHs污染的生态风险较低外,其余各采样点均处于高、中风险等级,存在不利的生态风险。  相似文献   

3.
2015年2月采集石家庄地区滹沱河冲洪积扇深层孔隙水地下水水样,采用气相色谱-质谱法测定了US EPA优先控制的多环芳烃(PAHs)和酞酸酯(PAEs),并对PAEs的饮水健康风险进行了评估.结果显示,7个采样点均检出PAHs和PAEs,∑PAHs范围为34.4~598.5ng/L,且2~3环PAHs的质量分数介于50%~83%;∑PAEs范围为27.6~25236.7ng/L,其中有3个点位∑PAEs达到20μg/L水平,且7个点位均以DBP、DEHP为主.与国内其他研究区相比,本研究区∑PAHs浓度与国内非岩溶地下水的污染水平接近,而∑PAEs浓度较高.饮水健康风险评估结果显示,仅G2点位的PAHs终生致癌风险指数小于US EPA推荐的可接受的水平(10-6),其致癌风险可以忽略外,其他点位均具有潜在致癌风险;而对于PAEs饮水终生致癌风险而言,G1、G6、G73个点位的PAEs终生致癌风险也均高于10-6,因此,研究区深层孔隙水中的PAHs和PAEs污染均应当引起重视.  相似文献   

4.
研究了白洋淀表层沉积物中US EPA 16种优先控制的多环芳烃(PAHs)的分布特征和污染来源,其w(PAHs)为101.3~1 494.8 ng/g (平均值为353.0 ng/g),与国内其他的湖泊和河流相比,整体处于中等污染水平. 安州采样点沉积物中w(PAHs)最高,污染最严重;其次为小田庄、烧车淀、王家寨;污染较轻的采样点为枣林庄、光淀、圈头和端村. 在16种多环芳烃单体中,菲、荧蒽、芘、苯并[b]荧蒽所占比例较大. w(荧蒽)/w(芘)和w(菲)/w(蒽)2个比值显示, 白洋淀沉积物中多环芳烃的含量和分布受石化材料燃料、煤炭及薪柴燃烧影响较大. 风险评价表明,安州采样点表层沉积物对生物存在潜在危害,而其他采样点沉积物潜在风险处于较低水平.   相似文献   

5.
为了解太湖浮游植物群落结构的特征,2017年7月至2018年6月对太湖梅梁湾(藻型湖区)和东太湖(草型湖区)浮游植物群落结构和理化因子进行了调查.结果发现:梅梁湾氮磷浓度显著高于东太湖,梅梁湾浮游植物年平均数量是东太湖4.94倍,梅梁湾浮游植物年平均生物量是东太湖的2.16倍;梅梁湾微囊藻数量占比为68.52%~99....  相似文献   

6.
福州市区街道灰尘中多环芳烃的质量分数及其来源   总被引:3,自引:1,他引:2  
采用超高效液相色谱系统(UPLC)荧光检测器法,测定了福州市区14条主要街道灰尘样品中属美国环境保护署(US EPA)优控的15种多环芳烃(PAHs)的质量分数,对其毒性进行了评估,并通过聚类分析、因子分析/多元线性回归等方法,分析了灰尘中PAHs的来源. 结果表明:福州市区的w(PAHs)为1 029.5~5 182.0 μg/kg,平均值为2 884.7 μg/kg,在国内外城市中处于中等含量水平. 14个街道灰尘样品中有5个样品的w(PAHs)超过毒性效应区间低值(ERL),具有潜在的生态风险. 聚类分析发现,4号,5号,7号和12号采样点分别具有高比例的w(菲),w(苯并[b]荧蒽),w(荧蒽)和w(萘)的特殊来源.对样品中PAHs的来源解析显示,燃烧源占78%,石油泄漏源占22%.   相似文献   

7.
千岛湖表层沉积物中多环芳烃污染特征及生态风险评价   总被引:1,自引:0,他引:1  
利用高效液相色谱法对采集于2012年12月的部分千岛湖表层沉积物中多环芳烃(PAHs)进行了分析.结果表明,千岛湖表层沉积物中共检出属于美国EPA优先控制16种PAHs中的15种,各采样点位PAHs总量的浓度范围在258~906ng/g(干重)之间,平均值为558ng/g,属低污染水平.空间分布特征受周边区域内点源污染和河流输入污染物影响.沉积物中的多环芳烃以高分子量组分为主,通过特征组分比例可确认其主要来源于周边地区煤炭、木材不完全燃烧及车船尾气排放.利用沉积物质量基准法、沉积物质量标准法分别对千岛湖表层沉积物中PAHs的风险评价表明,千岛湖沉积物中不存在严重的多环芳烃生态风险,但部分点位按照质量标准法评价已经超过临界效应浓度值,需加强监测查明污染源,并采取措施控制污染物输入.  相似文献   

8.
松花湖是吉林省面积最大的湖泊和重要水源地,具有防洪排涝、灌溉供水、航运旅游等重要功能.为探究松花湖中PAHs(多环芳烃)和PAEs(邻苯二甲酸酯)的主要污染来源及生物毒性风险,于2017年7月采集松花湖21个表层沉积物样品,采用GC-MS测试16种US EPA(美国环境保护局)优先控制PAHs和6种PAEs的质量分数,并通过统计学方法对调查结果进行分析.结果表明:①松花湖沉积物中w(∑16PAHs)范围为23.1~554.8 ng/g,平均值和中位值分别为172.9和123.2 ng/g,w(∑16PAHs)高值分布在漂河镇和丰满乡附近湖区,主要来源于石油燃烧污染,贡献率为57.9%,其次为煤及生物质燃烧污染、石油泄露污染,贡献率分别为21.1%、21.0%.②松花湖沉积物中w(∑6PAEs)范围为33.7~2 062.3 ng/g,平均值和中位值分别为240.4和72.7 ng/g,主要成分为DBP(邻苯二甲酸二正丁酯)和DEHP(邻酞酸二辛酯),w(∑6PAEs)高值分布在旺起镇附近湖区,其来源主要与城镇生活污染输入有关.③松花湖沉积物中PAHs、PAEs污染生态风险较低,只有部分采样点存在低度潜在生态风险,但旺起镇附近湖区沉积物中的w(DBP)已经临近ERL(效应区间低值),需加以关注.研究显示,松花湖PAHs、PAEs污染程度较低,为加强松花湖饮用水源地保护,应着重加强交通燃油污染源的风险防控,同时在乡镇附近湖区应加强燃煤和生活污染源的监管力度.   相似文献   

9.
利用高效液相色谱法对采集于2012年12月的部分千岛湖表层沉积物中多环芳烃(PAHs)进行了分析.结果表明,千岛湖表层沉积物中共检出属于美国EPA优先控制16种PAHs中的15种,各采样点位PAHs总量的浓度范围在258~906ng/g(干重)之间,平均值为558ng/g,属低污染水平.空间分布特征受周边区域内点源污染和河流输入污染物影响.沉积物中的多环芳烃以高分子量组分为主,通过特征组分比例可确认其主要来源于周边地区煤炭、木材不完全燃烧及车船尾气排放.利用沉积物质量基准法、沉积物质量标准法分别对千岛湖表层沉积物中PAHs的风险评价表明,千岛湖沉积物中不存在严重的多环芳烃生态风险,但部分点位按照质量标准法评价已经超过临界效应浓度值,需加强监测查明污染源,并采取措施控制污染物输入.  相似文献   

10.
昌盛  赵兴茹  付青  郭睿  王山军 《环境科学》2016,37(7):2530-2538
为调查输水期于桥水库流域水中多环芳烃(PAHs)的分布特征,采用气相色谱-质谱法对该区16种US EPA优先控制的PAHs进行了分析,并对PAHs的健康风险和生态风险进行了评估.结果表明,在18个点位采集的水样中均有PAHs检出,且上游水域和库区PAHs组分和浓度均存在着显著差异.上游水域水体(除洒河大桥点位外)中的PAHs以2~3环为主,其百分比介于86%~95%,ΣPAHs浓度介于13.7~104.1 ng·L~(-1)间,其中大黑汀水库渔业养殖密集区水体中PAHs污染水平较高;库区水体中低环数和高环数PAHs含量相当,ΣPAHs浓度介于1.6~3 512.5 ng·L~(-1)间,其中库区北岸水中PAHs浓度最高.Flu/Pyr、Fla/(Fla+Pyr)比值分析表明,于桥水库流域PAHs主要来自村镇居民燃煤供暖、生物质燃烧.分别采用US EPA健康风险评价模型和Kalf等使用的商值法对PAHs的饮水致癌风险和生态风险进行了评估,结果显示,库区水体的饮水致癌风险水平超过了10-6,以及库区B[a]A、B[k]F、Bap的商值(实际浓度/最大允许参考浓度)也均大于1,说明库区水体PAHs引发的致癌风险和生态风险均应当引起重视.  相似文献   

11.
太湖表层沉积物中PAHs和PCBs的分布及风险评价   总被引:24,自引:5,他引:19       下载免费PDF全文
采用GC-EI-MS联用技术分析了太湖18个表层沉积物样品中多环芳烃(PAHs)和多氯联苯(PCBs)的含量.共检出28种PAHs,其总浓度范围为90.6~1.04×103ng/g,其中16种优控PAHs的浓度范围为63.1~885ng/g,最高浓度出现在竺山湖;56种PCBs的浓度范围为1.35~13.8ng/g,最高浓度出现在新塘港.利用分子比和因子分析/多元线性回归模型分析PAHs的来源,结果显示,太湖PAHs主要来源于燃烧,其中木柴、煤炭燃烧和油料燃烧的贡献率分别为45%和50%.PCBs同族体组成分析结果表明,PCBs的同系物组成呈现Aroclor 1242和Aroclor 1254的混合来源特征.太湖表层沉积物中PAHs和PCBs的二 毒性当量(以TCDD计)范围为0.64~3.35pg/g,风险评价结果表明,太湖沉积物中的PAHs和PCBs尚未对周围环境造成不利影响.  相似文献   

12.
对淀山湖湖体6个站位表层沉积物中多环芳烃(PAHs)进行了季节测定,结果表明,16种美国EPA优先控制的PAHs均有检出,PAHs总含量(干重)波动范围54.6~1331.2ng/g,均值373.4ng/g.与国内外大多数湖泊相比,淀山湖沉积物中PAHs含量水平属中等偏下.总含量季节变化大体为冬季 > 春季 > 秋季 > 夏季.另对出入湖口河流6个站位表层沉积物中PAHs含量测定,表现为入湖口 > 出湖口 > 湖体,季节变化特征与湖体相一致.PAHs环数所占比重为4环 > 5~6环 > 2~3环,采用特征比值法进行源解析,其主要来源是煤炭和生物质的不完全燃烧,主因子分析显示贡献率为80.22%.基于沉积物质量基准法(SQGs),提出一种PAHs风险量化评价新方法--风险度指数法(RIM),用此方法风险评价表明,部分单体(Acy、Ace、Ant和BaA)风险度指数RI为3.09~3.29,属中等风险水平,大多数PAHs单体风险度指数RI为0.79~2.73,相对处于中低风险水平,总体PAHs风险度指数TRI为2.64,污染状况处于中低风险水平.淀山湖作为上海市一个重要水源地,PAHs污染的潜在风险仍不可忽视.  相似文献   

13.
鄱阳湖区PAHs的多介质迁移和归趋模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析鄱阳湖区PAHs(多环芳烃)的多介质迁移和归趋行为,以可获取模型验证数据的BaP(苯并芘)、BaA(苯并蒽)、Chr()、Pyr(芘)、Fla(荧蒽)、Phe(菲)6种典型PAHs为研究对象,采用逸度模型Level Ⅲ,预测和模拟鄱阳湖区环境多介质中PAHs的分布和归趋状况. 结果表明:鄱阳湖区水相中ρ(BaP)、ρ(BaA)、ρ(Chr)、ρ(Pyr)、ρ(Fla)、ρ(Phe)的计算值分别为0.043 3、0.050 9、0.021 4、0.149 0、0.122 0、0.295 0 μg/L,与实测值基本一致. 气相、土壤相及沉积物相中6种PAHs的计算值与实测值吻合较好,模型可靠. 土壤相和沉积物相中PAHs残留量(以n计)占该区总残留量的92.6%,远高于气相和水相. PAHs在鄱阳湖区多介质中的相间迁移通量以气相→土相、水相→沉积物相、沉积物相→水相为主. 鄱阳湖区各介质中高环PAHs主要源于外来污水和外来废气输入,外来污水输入量(以n计)和外来废气输入量分别占59.4%和33.6%. 中环和低环PAHs主要源于当地的废气排放和外来污水输入. 土壤相和沉积物相是鄱阳湖区PAHs主要的汇,由土壤和沉积物的内源释放而可能引起的二次污染应引起重视.   相似文献   

14.
以无污染饲养鲫鱼为监测生物,采取主动生物监测法(ABM)对太湖北部梅梁湖与贡湖污染区进行生物监测,并分析各监测点常规水质指标及表层沉积物中多环芳烃(PAHs)、多氯联苯(PCBs)、有机氯农药(OCPs)与重金属含量,同时定期(7,14,2,28d)采集生物样,分析鲫鱼大脑组织及肌肉组织中总抗氧化能力(TAOC)活性.结果表明,鲫鱼脑组织TAOC活性比肌肉组织TAOC活性值高出约4倍,并且对污染物协迫反应敏感.实验第14d开始,脑组织TAOC呈显著诱导效应(P<0.05),最大值出现在PCBs污染严重的梅梁湖4号站点,相比参照点活性增加62.19%.其次是重金属污染严重的梅梁湖3号监测点,而污染最小的贡湖1号监测点TAOC变化较小.肌肉组织中TAOC对污染物反应不敏感,不适合作微污染区生物标志物.  相似文献   

15.
太湖水体多环芳烃生态风险的空间分布   总被引:5,自引:0,他引:5       下载免费PDF全文
以太湖梅梁湾、贡湖湾和胥口湾水体多环芳烃(PAHs)含量水平为基础,通过物种敏感度分布曲线计算三湖湾水体PAHs对水生生物的潜在危害比例,以此表征PAHs对太湖三湖湾水体的生态风险,并对其空间分布特征进行讨论.结果表明:PAHs对太湖三湖湾水体的生态风险大小依次是:Flua(1.1641%),Phe(0.2206%),Pyr(0.1633%),BaP(0.0175%),Ant(0.0021%),Flu(0.0005%), Ace(0.0000%),∑7PAH的联合生态风险(3.0954%)大于单体PAHs的生态风险. Ant, BaP和∑7PAH对梅梁湾(0.0209%,0.1237%和4.1018%)的生态风险显著高于贡湖湾(0.0023%,0.0085%,3.0414%)和胥口湾(0.0002%,0.0015%,2.3899%)(P0.05);Flu和Phe对胥口湾(0.0004%,0.1553%)的生态风险显著低于梅梁湾(0.0011%,0.2999%)和贡湖湾(0.0009%,0.2681%)(P0.05);Pyr和Flua对梅梁湾(0.3268%,1.7156%),贡湖湾(0.1697%,1.2386%)和胥口湾(0.1044%,0.8339%)水生生物的生态风险具有显著性差异(P<0.05).空间分布表明:梅梁湾西北部PAHs的生态风险最大,贡湖湾北部次之,胥口湾最小.  相似文献   

16.
A detailed investigation of seven heavy metals (Cu, Cd, Cr, As, Pb, Zn, Ni) in the water column, interstitial water and surface sediment was conducted to quantify the extent of their contamination in Taihu Lake. Results showed the average total concentrations ranged from 0.93 μg/L for Cd to 47.03 μg/L for Zn. The dissolved concentrations in the overlying water ranged from 0.06 μg/L for Cd to 15.86 μg/L for Zn. The metals in the Taihu Lake surface water were primarily in the particulate phase, especially for Cd, whose particulate concentration represented 94.3% of the total. In the surface sediment, the mean concentrations for Cr, Ni, Cu, Zn, As, Cd and Pb were 41.50, 28.72, 27.82, 65.46, 5.94, 0.82 and 41.17 mg/kg, respectively. The metals in the water column and sediments of Taihu Lake displayed significant spatial variations, and the higher metal concentrations mainly occurred in the north and west of Taihu Lake, especially in Zhushan Bay and West Taihu Lake. A quality assessment indicated that most of the metals in the surface water of Taihu Lake had no or low adverse health effects on organisms, except for Pb and Cu, which may cause chronic toxicity. Compared with the "Consensus-Based Sediment Quality Guidelines", the polluting metals were Cr, Ni and Cd, and the polluted regions were confined to Zhushan Bay, Meiliang Bay and the west of Taihu Lake, especially for north of Zhushan Bay. The polluted areas for Cr, Ni and Cd were 14.36, 34.70 and 13.24 km2, respectively. We suggest that Cr, Ni, and Cd in the polluted areas should be addressed and that tissue chemistry and sediment toxicity assessments be performed as soon as possible.  相似文献   

17.
百色市工业区表层土壤中多环芳烃污染特征及来源分析   总被引:2,自引:0,他引:2  
为完善我国实地的不同的PAHs污染特征数据库,系统采集了百色市5个工业区表层土壤样品,利用HPLC分析了16种US EPA 优控PAHs的含量和组分特征,运用同分异构体比率法和主成分因子载荷法揭示其污染来源.结果表明,工业区土壤中PAHs总含量范围在18.7~6437μg/kg之间,电厂2土壤中PAHs平均含量最高,达1923.4μg/kg.与国内外相关研究比较,处于中高等污染水平.5个工业区表层土壤样品中PAHs的残留大小顺序为:电厂2>电厂1>炼油厂>润滑油厂>水泥厂;电厂2、电厂1、炼油厂和润滑油厂4个工业区土壤中PAHs污染以4环为主,毒性较高的4环和5环PAHs均高于其他环数PAHs;水泥厂附近土壤中PAHs污染以2、3环为主.研究区域内土壤中Baa、Bkf、Chr和Fla等单体超标严重.工业区土壤中PAHs污染主要来自于燃烧源、石油源及石油源和燃烧源的混合源,燃烧源贡献最大(占45.0%),石油源和燃烧源混合贡献率为36.8%,而石油源所占比例相对较小(占18.2%).  相似文献   

18.
太湖氮素出入湖通量与自净能力研究   总被引:12,自引:5,他引:7  
陈小锋  揣小明  曾巾  刘涛  杨柳燕 《环境科学》2012,33(7):2309-2314
为了探索太湖氮素迁移转化过程,对2009~2010水文年环太湖25条主要河流及太湖梅梁湾、东太湖等典型区域的各形态氮素进行分析,并利用太湖出入湖水量、蓝藻人工打捞量和鱼产量等相关数据,分析计算太湖氮素流动和转化潜力.结果表明太湖全年河道输入氮素总量约7.00×104t,河道出湖氮素总量约4.01×104t.整个水文年中,太湖氮素自净量约3.22×104t,其中反硝化约3.02×104t,沉积物吸附约0.20×104t.在反硝化潜力上,太湖西湖区(如梅梁湾)反硝化潜力远高于东部湖区(如东太湖),而夏季太湖反硝化潜力又高于其它季节.因此,太湖氮素自净作用在湖泊氮素迁移转化中发挥重要作用.  相似文献   

19.
太湖湖滨带底泥氮、磷、有机质分布与污染评价   总被引:22,自引:0,他引:22       下载免费PDF全文
采集了环太湖湖滨带表层(0~10cm)底泥,研究分析了湖滨带底泥中有机质(OM)、总氮(TN)、总磷(TP)的空间分布特征,并对太湖湖滨带底泥进行营养评价.结果表明,湖滨带底泥中OM含量在1.42%~9.96%之间,空间分布趋势为:东太湖>竺山湾>贡湖>梅梁湾>南部沿岸>东部沿岸>西部沿岸; TN含量在458~5211mg/kg之间,空间变化趋势为东太湖>竺山湾>东部沿岸>贡湖>南部沿岸>梅梁湾>西部沿岸; TP含量在128.56~1392.16mg/kg之间,空间变化趋势为竺山湾>梅梁湾>东太湖>南部沿岸>贡湖>东部沿岸>西部沿岸,OM与TN分布趋势相似,TN与OM之间极显著正相关(r = 0.903, P<0.01),TP与OM之间弱相关(r = 0.073, P<0.332).结合综合污染指数和有机指数评价法可知,太湖湖滨带底泥环境质量整体较好,氮、磷污染除东太湖和竺山湾属重度污染外其他各区属轻中度污染;有机污染除东太湖外大部分区域属较清洁区.  相似文献   

20.
2002-10~2005-11采集珠江三角洲典型区域(东莞市、惠州市、中山市、珠海市和佛山市顺德区)的农业土壤表层样品260个,运用气相色谱-质谱方法对美国EPA优控的16种多环芳烃(PAHs)进行分析测定.结果显示,研究区农业土壤中16种PAHs含量范围在3.3~4 079.0 ng·g-1,平均含量244.2 ng·g-1,以3环和4环的PAHs为主;中心城区土壤中PAHs含量高于远郊区,菜地>水稻田>香蕉地>旱坡地果园地>甘蔗地.依据荧蒽/芘及2+3环与4环以上PAHs化合物分布特点,表明该区域农业土壤中PAHs主要来源于化石燃料的不完全燃烧.通过与国内外土壤中PAHs含量的对比,研究区的农业土壤受到一定程度的PAHs污染,含量处于中等水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号