首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
In 1984 and 1985 algal, macrofaunal and meiofaunal standing stocks were estimated on a exposed rocky shore along the west coast of False Bay, South Africa, using comparable, area-based sampling techniques. The shore supported a rich growth of algae, particularly in summer, when a maximum standing crop of 403 g m-2 was recorded in the low shore. In winter, the largest component of macrofaunal biomass comprised the filter-feeding barnacle Tetraclita serrata, which attained 75 g m-2 in the middle balanoid; but as a result of late recruitment and high mortality of this species, the summer shore was dominated by herbivorous gastropods, particularly Patella cochlear, which attained a maximum biomass of 66 g m-2 on the low shore. Meiofaunal numbers and biomass were closely correlated to the distribution of algal turfs and associated trapped sediments. Numerically, the most important components of the meiofauna were nematodes and copepods, while the biomass was more evenly shared among foraminifera, minute gastropods, copepods and insect larvae. Numbers and biomass peaked in the lower balanoid during winter (1.9×106 individuals, or 8.5 g m-2). Macrofauna:meiofauna numbers and biomass ratios are presented for each zone and the distribution patterns discussed in relation to the conditons in each. Numerically, meiofauna exceed macrofauna by an overall ratio of 1:391, with values ranging from 1:556 in the lower balanoid to 1:18 in the Littorina zone. Macrofaunal biomass exceeds that of meiofauna in all zones by an overall ratio of 10:1, but values range from 2.1:1 in the upper balanoid to 48:1 in the middle balanoid. By incorporating turnover ratios extrapolated from the literature, mean annual productivity ratios have been calculated. These indicate that macrofauna account for 75% of total secondary production and meiofauna for 25%. Failure to incorporate meiofauna in analyses of energy flow on rocky shore ecosystems would thus lead to considerable errors. The possible trophic role of meiofauna in such systems is discussed.  相似文献   

2.
The estuary Byfjord (Sweden) is characterized by high primary production, a well developed meiofauna compared to the macrofauna, high epifaunal biomass, a low number of herbivorous copepods and a small fish stock. A simplified energy flow model of the ecosystem of the fjord is given. The energy transfer is approximated to 15%. About one-fourth-300 (metric) tons of carbon — of the annual primary production is suggested to be directly consumed and to produce 5 tons of zooplankton carbon and 40 tons of epifaunal (mainly Mytilus edulis) carbon. About 500 tons of carbon from the detritus pool are probably utilized in animal production. This amount will produce 5 tons of zooplankton carbon, 6 tons of meiofaunal carbon, and 3 tons of carbon from the benthic macrofauna. Production of fish is estimated at 0.3 ton carbon per year. M. edulis seems to be the only food resource in the fjord worth harvesting by man.  相似文献   

3.
A survey of the intertidal biota of a sandy beach on the west coast of South Africa has shown standing stocks of macrofauna, meiofauna and bacteria of 241.23, 200.17 and 663.07 g dry wt m-1 of shoreline respectively, an approximate biomass ratio of 1:1:3. The distribution of the macrofauna was the reverse of the usual pattern, with highest biomass occurring at the level of the current driftline. This appears to be related directly to the ready availability of food in the form of drift algae. Peak meiofaunal numbers were also found below the driftline and it is proposed that meiofaunal distribution is governed by dissolved organic matter (DOM) levels in the interstitial environment. Bacteria were abundant up to 1.2 m below the sediment surface, with the highest concentrations occurring at low tidal levels. The significance of the various biotic components in the energetics of the sandy intertidal is discussed. Turnover estimates suggest that bacteria may account for about 87% of annual production, with meiofauna and macrofauna making up 10 and 3% respectively. Despite this overwhelming importance of bacteria, the macro-and meiofauna probably play a vital role in making small organic particles available to bacteria for mineralization and in optimising conditions for microbial growth.  相似文献   

4.
Coral reef lagoons are generally regarded as zones of net heterotrophy reliant on organic detritus generated in more productive parts of the reef system, such as the seaward reef flat. The abundance and biomass of sediment infauna were measured seasonally for one year (1986) within the lagoon of Davies Reef, central Great Barrier Reef, to test the hypothesis that macrofaunal biomass and production of coral reef lagoons would decrease with distance from the reef flat and would change seasonally. In general, there were no simple relationships between infaunal standing stock or production and distance from the reef flat or season. Bioturbation by callianassid shrimps negatively affected the abundance of smaller infauna, suggesting a community limited by biogenic disturbance rather than by supply of organic material. Polychaetes and crustaceans were dominant amongst the smaller infauna (0.5 to 2mm) while larger animals (> 2 mm) were mostly polychaetes and molluscs. Mean biomass of infauna at both sites and all seasons was 3 181 mg C m?2. The smaller animals (0.5 to 2 mm) contributed about 40% of total macrofaunal respiration and production although they represented only 15% of the total macrofaunal biomass. The biomass of macrofauna was about equal to that of the bacteria and meiofauna, while respiration represented 10 to 20% of total community respiration. Consumption by macrofauna accounts for only 3 to 11% of total organic inputs to sediment, with a further 14 to 17% being lost by macrofaunal respiration.  相似文献   

5.
M. Keller 《Marine Biology》1985,89(3):293-302
A quantitative analysis of meiofauna was carried out at ten sample stations distributed along a transect off Marseilles' (France) sewage outfall in November, 1981. The meiofauna was counted and average and total biomass of nematodes and copepods were calculated for each station. Comparison of data between stations or groups of stations was made using statistical tests. The results revealed three sectors in which effects of pollution on meiofauna differed: (1) A heavily polluted coastal zone (at a distance of 30 to 150 m from the outfall), relatively poor in meiofauna, which, however, was not completely absent-as were macrobenthic organisms; the meiofauna was composed mainly of nematodes and copepods, but acarians and naupliar larvae (probably copepods) were also numerous; the copepods were uncommonly large in size, and alone consituted most of the total benthic biomass in this zone. (2) An intermediate zone (400 to 1 150 m away from the coast), also polluted and much richer in meiofauna than the coastal zone; the meiofauna groups were more diversified, annelids (mainly polychaetes) increasing in number, while acarians became scarce and copepods decreased in size; at 400 m away from the outfall, where the sediment is strongly polluted, the nematode population consisted of large individuals which contributed greatly to the biomass; at 400 and 800 m, the distribution of both meiofauna and macrobenthos was heterogeneous; at 1 150 m away from the outfall, maximal meiofaunal densities were recorded, due primarily to an increase in nematode numbers; here, unlike all the stations nearer to the coast, total nematode biomass was greater than copepod biomass. (3) An off-shore zone (1.8 to 4 km distant from the coast), slightly polluted, where meiofauna densities were reduced and individuals decreased in size with increasing depth. Generally, an enrichment in the meiofauna was evident from the coastal to the intermediate zone. Enrichments induced by urban pollution have been recorded previously, but not, as in the present study, at a distance of 1 km away from the outfall, succeeding to a highly impoverished coastal zone. Thus, by supplying organic matter and nutrients, Marseilles' sewage can enrich sediments, but only to a certain distance away from the outfall, where the deleterious effects of pollutants are attenuated.  相似文献   

6.
Data are presented on the biomass of the invertebrate megafauna at 22 stations on the continental slope in the Porcupine Seabight (PSB) (northeast Atlantic Ocean). Samples were collected between 1980 and 1982. Several units of biomass are used, all of which illustrate a decrease by a factor of about 30 from 500 to 4100 m. Lognormal curves were fitted to the data, the gradients of which were very similar for all biomass units and similar to the value for a transect down the continental slope in the western Atlantic. Biomass levels in the PSB are compared with those from other deep-sea environments. Some published values are more than ten times higher than the values reported here, while others are less than a tenth. The reasons for these differences and trends are discussed in terms of food supply. Sampling variability was examined at two stations, but by chance one (at 1300 m) appeared to encompass a sharp faunal discontinuity of the dominant fauna and the other (at 4000 m) contained very small numbers of large animals. For these reasons, sample variability was high at the repeat stations. Suspension-feeders and crustaceans dominated the biomass at upper-slope depths, while echinoderms were dominant on the middle and lower slope. As a result of this phyletic change, there was a small but insignificant decrease in mean body weight with increasing depth. Within phyla there was also a small but insignificant decrease with depth. If large species are excluded from the biomass/depth regression, the gradient changes considerably, demonstrating the increasing importance of small species at greater depths. The size distribution of megafaunal biomass was examined at several stations. This indicated that the megafauna form a functional group distinct from the macrofauna, just as the macrofauna are distinct from the meiofauna.  相似文献   

7.
The unique hydrography of the Western Mediterranean Sea does not favour the formation of typical estuaries, although it does favour that of other land-sea systems. However, in Els Alfacs, a shallow-water bay situated in the Ebre Delta (northeast Spain), where there are considerable continental inputs, the distribution patterns of the macrofauna and the meiofauna reflect a hydrographical regime very similar to that of an estuary. During July 1987, 23 stations were sampled in the Alfacs Bay using plastic cores. The distribution pattern of the meiofauna follows a gradient and presents a less marked zonation than the macrofauna. Nevertheless, in both cases the peak densities of both faunal components are spatially separated from the principal site of freshwater inflow. The average density of the macrofauna (10 430 individuals/m2) and the meiofauna (704 100 individuals/m2) occurs in the bay during the period of maximum flow (spring-summer), and as such this bay is one of the most productive areas of the Western Mediterranean.  相似文献   

8.
Growth and production of the bathyal ophiurid brittle star Ophiocten gracilis was studied from skeletal growth bands and disc size frequencies of specimens collected in sled and trawl samples taken on the continental slope off Scotland. Growth bands showed up in SEM examination as ring-like zones in surface relief and texture of the stereom microstructure of the intervertebral muscle insertions on the arm ossicles. Seasonal variability in somatic growth, presumed to underlie this growth pattern, may reflect reproduction and/or a possible non-feeding period during gonad maturation. Disc size-at-age was back-calculated from size-at-age interpreted from growth-band series on the vertebral ossicles from arms of O. gracilis. Pooled growth-band frequency data and normal-distribution mixtures based on size-at-age data were used to test for overgrowth of early growth bands on the ossicles from larger individuals. Von Bertalanffy and Gompertz growth models were fitted to the finalised back-calculated disc size-at-age data. These were used along with the modal structure of the observed disc size frequencies to develop a demographic model based on normal-distribution mixtures constrained by the growth model. These and other defining parameters were fitted by non-linear regression to size structure observed in a sample of the breeding population from 997 m depth on the Hebrides Terrace. Recruitment was estimated according to available data from sediment-trap time series. A ratio of somatic production/biomass, PS/B, in the range of 0.43–0.54 was estimated using a fitted size/mass relationship and the increment summation method (ISM) applied to the fitted growth models. A narrower, but otherwise similar, range in estimated PS/B ratios (0.48–0.49) was obtained in a parallel approach using the mass-specific growth rate method (MSGRM), whereby the same size/mass relationship was applied to the observed frequencies and growth parameters fitted to growth banding. Using previously obtained data on population density, a standing crop of 4.8 g wet weight (~0.58 mg AFDW) m?2 would provide annual wet weight production in the range of 1.9–2.4 g (~0.23–0.29 mg AFDW) m?2 in the population between ca. 700–1000 m depth. Somewhat greater production estimates (PS/B=0.73–0.98) were obtained from MSGRM by pooling the sample with size frequencies from other large samples in which postlarval sizes were more numerous, but larger sizes less numerous. Similarly high production was estimated by MSGRM from a box corer sample from the Wyville-Thomson Ridge. Explanations for variability in size structure are discussed, but even the lower estimates are comparable to boreal shallow-water brittle stars. The high rate of growth and production by accepted deep-sea standards may be related to a capability for interface feeding.  相似文献   

9.
The response of benthos to sedimentation of the spring phytoplankton bloom in the Kiel Bight (Western Baltic Sea) is described in terms of biomass (ATP) and activity (heat production and ETS-activity). Input of the bloom (11.5 g C m-2) over a period from March 25 to April 19, 1980 to the sediment surface was in the form of cells and fresh phytodetritus as indicated by low C/N ratios (7) and high energy charge values (0.78). Benthic microbial activity was immediately stimulated by this input as heat production doubled and the activity of ETS tripled over winter values within 12 d in the absence of a significant increase in ambient temperature. A comparison of the two activity parameters suggests that anaerobic metabolism is more important during the winter (February and March) than after input of the bloom. Meiofauna was not able to take part in the first activity outburst. Benthic ATP-biomass (excluding macrofauna) doubled in late April due to microbial production, and doubled again in early May when meiofauna started reproductive activity. For macrofauna a general statement was not possible, although the sediment surface feeder Macoma baltica commenced a build up of glycogen and lipid resources immediately following bloom input whereas Nephtys ciliata, feeding on sediment and small macrofauna, showed a less pronounced and delayed effect from this input. An energy budget based on heat production measurements was calculated. A daily heat loss of the benthic community of 21.7 KJ m-2 d-1 (35.5 KJ m-2 d-1) was found, when a depth of 3 cm sediment (5 cm) was assumed. Heat production of macrofauna contributed less than 5% of this activity. The input of the bloom was burned within 21 (13) d. Preliminary estimations for an annual budget suggest that the vertical transport of particulate organic matter via sedimentation can only explain 25% (15%) of the benthic activity in the shallow water ecosystem of the Kiel Bight. This indicates the presence of other sources of organic carbon such as benthic primary production or other transport processes providing carbon to the sediments.Publication No. 384 of the Joint Research Program of Kiel University (Sonderforschungsbereich 95)  相似文献   

10.
Structuring pelagic trophic networks from the biomass size spectra   总被引:1,自引:0,他引:1  
The selection and establishment of the structure (number and compartments, aggregation criteria, and trophic links) of the food webs is a critical task in trophic modelling. The present work proposes a systematic method to structure trophic networks in pelagic food webs. The biomass-size spectrum (BSS) is a well-established approach to analyze the structure of pelagic communities, and the body size is especially related to the ecological role of the organisms in the pelagic environment. To structure food webs, this work uses detailed arrangements of the community in size classes with increasing widths (like Sheldon-type BSS) as first aggregation criteria, and BSS theory as a framework to integrate the available knowledge about feeding selectivity in order to obtain a method to identify the trophic links between compartments. Diet composition matrices were estimated through the combination of a probability of encounter for each food type and a specific probability of ingestion related to the food size selectivity and other food quality characteristics (e.g., morphology and nutritional quality). The feasibility of this approach has been illustrated through data of size-structured communities extracted from the literature including different planktonic predator guilds (nanoflagellates, cladoceran-dominated zooplankton and copepod-dominated zooplankton) in a high mountain lake (La Caldera, Spain), two subtropical wetland lakes (meso-oligotrophic Laguna Galarza and eutrophic Laguna Iberá, Argentina) and a marine microcosm (Alborán Sea, Mediterranean). The identification of “who eats whom” and “by how much” also allows for more accurate analyses of the trophic control in the BSS. Extensive analyses of the balance between top-down and bottom-up controls were developed for the feeding interactions of the study cases.  相似文献   

11.
In contrast to specific large benthic invertebrates in chemosynthetic ecosystems such as hydrothermal vents, meiofaunal communities in such habitats have been reported to have strong taxonomic overlap with meiofauna in the adjacent “normal” environments. However, meiofauna have only recently been included in studies of those environments and detailed information on these communities is still rare. This is especially true in the Northwest Pacific Ocean, even though there are many seamounts with active vents in the calderas of the region. Nematode community composition at the genus level in sediments from a hydrothermal vent field in the caldera of Myojin Knoll (32°06′N, 139°52′E, depth 1,300 m), a seamount on the Izu-Ogasawara Arc, Japan, was investigated for the first time and was compared with adjacent non-vent areas inside and outside the caldera. Multivariate analyses showed that the composition of nematodes in the hydrothermal field was significantly different from that in the non-hydrothermal fields around the caldera. However, the common genera, such as Oxystomina, Pareudesmoscolex, Desmoscolex, and Microlaimus were found in two, or all three vent fields while their rank contributions differed among the three fields. When the data from Myojin Knoll were compared with those from other deep-sea vent environments in different regions (e.g., North Fiji Basin, East Pacific Rise, Mid-Atlantic Ridge), the nematode composition in the vent field of the Myojin caldera was more similar to that of the non-vent fields around the caldera than the composition in vent fields of other regions. These data from the Northwest Pacific Ocean also suggest the absence of long-range transport systems and local adaptations for meiofauna in hydrothermal vent fields.  相似文献   

12.
13.
Pelagic forms of the brown algae (Phaeophyceae) Sargassum spp. and their conspicuous rafts are defining characteristics of the Sargasso Sea in the western North Atlantic. Given rising temperatures and acidity in the surface ocean, we hypothesized that macrofauna associated with Sargassum in the Sargasso Sea have changed with respect to species composition, diversity, evenness, and sessile epibiota coverage since studies were conducted 40 years ago. Sargassum communities were sampled along a transect through the Sargasso Sea in 2011 and 2012 and compared to samples collected in the Sargasso Sea, Gulf Stream, and south of the subtropical convergence zone from 1966 to 1975. Mobile macrofauna communities exhibited changes in community structure and declines in diversity and evenness within a 6-month time period (August 2011–February 2012). Equivalent declines in diversity and evenness were recorded in the same region (Sargasso Sea, 25°–29°N) in 1972–1973. Recent community structures were unlike any documented historically, whether compared to sites of the same latitude range within the Sargasso Sea, or the broader historical dataset of sites ranging across the Sargasso Sea, Gulf Stream, and south of the subtropical convergence zone. Recent samples also recorded low coverage by sessile epibionts, both calcifying forms and hydroids. The diversity and species composition of macrofauna communities associated with Sargassum might be inherently unstable. While several biological and oceanographic factors might have contributed to these observations, including a decline in pH, increase in summer temperatures, and changes in the abundance and distribution of Sargassum seaweed in the area, it is not currently possible to attribute direct causal links.  相似文献   

14.
The growth and production of the inshore marine copepod Pseudodiaptomus marinus was studied in the central part of the Inland Sea of Japan. The stage-specific growth rate was determined under controlled laboratory conditions by examining the length-weight relationship and development rates at various temperatures. The stage duration was short and constant from NII to CII, beyond which development was retarded. Males developed faster than females in CIV and CV. The specific growth rate was highest in copepodite stages followed by the nauplii and adult females (=egg production rate). The daily production of P. marinus was estimated from the stage-specific growth rate and stage-specific abundance in nature as the sum of the individual stages. The production changed seasonally with water temperature and population biomass. Daily production and biomass (P/B) ratios increased linearly with temperature. Total annual production was 20.7 mg C m-3 yr-1.  相似文献   

15.
The response of benthic macro-and meiofauna to severe hypoxia was studied in the deep basis (115 m) of Gullmar Fjord, western Sweden. Abundances and bionasses of the faunal taxa, the redox-potential of the sediment, and the temperature, salinity and dissolved oxygen in the bottom water were recorded over the period 1977 to 1981. In the winter of 1979/80, when a depressed oxygen level of 0.21 ml l-1 was recorded, the macrofaunal component of the fauna disappeared. The ensuing recolonization, with an initial peak of opportunistic capitellid polychaetes, proceeded slowly and the pre-collapse community was not reestablished within 1 1/2 yr after the hypoxia. In contrast, the permanent meiofauna exhibited no clear signs of being affected by the hypoxia. In the temporary meiofauna, polychaetes seemed to be negatively affected. The finding of a differential response of macro-and meiofauna confirms previous studies which indicate that macrofauna in general is more sensitive than meiofauna to low oxygen concentrations.  相似文献   

16.
J. M. Gee 《Marine Biology》1987,96(4):497-510
The extent to which energy is transferred directly from benthic meiofauna to epibenthic predators was investigated on an intertidal sand-flat in the Exe estuary, southwest England, during 1981–1982 and compared with data obtained from an intertidal mud-flat in the Lyhner estuary, also in south-west England, between 1978 and 1981. Two species of flatfish (Pleuronectes platessa L. and Platichthys flesus L.), two species of goby [Pomatoschistus microps (Krøyer) and P. minutus (Pallas)], brown shrimp (Crangon crangon L.) and shore crabs (Carcinus maenas L.) are the most common epibenthic predators feeding on the benthic invertebrates in these locatites. Harpacticoid copepods are the only component of the meiofauna to form a significant part of the diet of early juvenile stages of these predators, particularly the invertebrates. Harpacticoids are a more important source of food for predators feeding over the sand-flat than for those feeding on the mud-flat because in the sand-flat alternative prey of suitable size, such as small annelids, are absent. Moreover, the impact of predation on the mud-flat is spread over the whole harpacticoid species spectrum whereas on the sandflat it is confined almost entirely to a single species, Asellopsis intermedia (T. Scott). Flatfish, gobies and shrimp consume daily an estimated 0.01 to 0.1% of the standing stock of A. intermedia and account for between 12 and 22% of the observed reduction in the population of this species between July and October. Therefore, only a very small proportion of total meiofauna biomass is transferred directly to higher trophic levels.  相似文献   

17.
Benthic macrofaunal compositional variations in the northern Bering Sea   总被引:3,自引:0,他引:3  
Point sampling of soft-sediment macrofauna provided a regional-scale analysis of species composition, diversity, and demographic distributions in the northern Bering Sea (61°0??C65°30??N Lat) in spring 2006. Taxonomic differences distinguished subregions north and south of St. Lawrence Island (P?<?0.1%). High compositional variability occurred within and between sites, with higher variability among northern sites. One to two species dominated most assemblages, with moderately common or rare species. Ampeliscid amphipods characterized the north, and bivalves the south. Bivalves (Macoma calcarea Gmelin, Nuculana radiata Krause, Ennucula tenuis Montagu) were commonly widespread, in varied abundances and sizes. Overall, the extensive soft-sediment habitat supports a varied fauna composition with location, in species dominance, abundance, and size-class. This spatially heterogeneous regional structure is important in assessing ecosystem performance related to secondary production, biogeochemistry, bioturbation, top predator feeding strategy, recruitment, and in measuring change.  相似文献   

18.
Much is still to be learned about the spatial ecology of foraging marine turtles, especially for juveniles and adult males which have received comparatively little attention. Additionally, there is a paucity of ecological information on growth rates, size and age at maturity, and sex ratios at different life stages; data vital for successful population modelling. Here, we present results of a long-term (2002–2011) study on the movements, residency, growth and sex ratio of loggerhead turtles (Caretta caretta) in Amvrakikos Gulf (39°0′N 21°0′E), Greece, using satellite telemetry (N = 8) and ongoing capture–mark–recapture (CMR; N = 300 individuals). Individuals encountered at sea ranged from large juvenile to adult (46.2–91.5 cm straight carapace length) and demonstrated growth rates within published norms (<2.7 cm yr?1) that slowed with increasing body size. We revealed that an unexpectedly high proportion of animals were male (>44 % of captures above 65 cm straight carapace length), compared to region-wide female-biased hatchling production, indicating sex-biased survival or possible behavioural drivers for likelihood of capture in the region. Satellite tracking confirmed that some turtles establish discrete, protracted periods of residency spanning more than 1 year, whilst others migrated away from the site. These findings are underlined by CMR results with individual capture histories spanning up to 7 years, and only 18 % of individuals being recaptured.  相似文献   

19.
In-situ manipulative experiments were conducted over a 3-month period (May–August 1980) to examine the rate at which meiobenthos colonizes oiled and untreated azoic fine sands at a shallow subtidal site in the lower York River, Virginia. Three concentrations of fresh Prudhoe Bay crude oil were added to sediments: 100, 2 500 and 10000 mg oil kg-1 dry wt sediment. Untreated azoic and natural sediments served as controls. Within 16 d, meiofauna densities in all treatments were comparable to natural populations in surface oxidized sediments, but densities fluctuated greatly during the remainder of the sampling period. Nematodes slowly colonized the subsurface anoxic sediments below the redox potential discontinuity (RPD); some less common species did not significantly recover below the RPD in the two more heavily oiled treatments. Analysis of nematode community composition by reciprocal averaging ordination and numerical classification revealed generally lower abundances, but no distinct differences, in species composition in the oiled substrates as compared to untreated and natural community controls. Ordination of sequential samples suggested that the nematode species assemblages in the untreated controls fully recovered from these small-scale disturbances by 90 d. Life history characteritics and frequent tidal transport combine to make estuarine meiobenthos highly resilient following disturbance. Contrary to prior recolonization studies, a successional sequence was found for the colonizing nematodes which may be analogous to models of macrobenthic colonization (e.g. McCall, 1975). The comesomatid nematode Sabatieria pulchra, which is frequently dominant in polluted sediments, colonized relatively late in the experiment. Consequently, stress resistance and resilience may not be as coincident in meiofauna as in macrofauna because of differences in factors affecting their dispersal.  相似文献   

20.
Application of stable isotope analysis (SIA) in jellyfish allows definition of trophic patterns not detectable using gut content analysis alone, but analytical protocols require standardization to avoid bias in interpreting isotopic data. We determined δ13C and δ15N in Aurelia sp. from the northern Gulf of Mexico (30°00′N, 89°00′W–30°24′N, 88°00′W) to define differences in stable isotope composition between body parts and whole body, the effect of lipid extraction on δ13C in tissues, and fractionation values from medusa to prey. The isotopic composition of bell and whole Aurelia sp. was not different. The increase in δ13C values after lipid removal suggested a correction is needed. To aid future analyses, we derived a correction equation from empirical data for jellyfish samples. Laboratory feeding experiments indicated medusae increased +4 ‰ in δ13C and +0.1 ‰ in δ15N compared to their diet. These results suggest protocols commonly applied for other species may be inaccurate to define Aurelia sp. trophic ecology. Because Aurelia spp. are commonly found in marine ecosystems, accurately defining their trophic role by use of SIA has implications for understanding marine food webs worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号