首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT: Land application of sewage sludge requires careful monitoring because of its potential for contamination of surface water and ground water. A rainfall simulator was used the investigate the effects of freshly applied sludge on infiltration, and on runoff of sediment and nutrients from agricultural crop lands. Rain was applied to 16 experimental field plots. A three-run sequence was used to simulate different initial moisture conditions. Runoff, sediment, and nutrient losses were monitored at the base of each plot during the simulated rainfall events. Sludge was surface applied and incorporated at conventionally-tilled plots and surface applied at no-till plots, at rates of 0, 75, 150 kg-N/ha. Steady-state infiltrability increased as a result of sludge application, although the no-till practice was more effective in increasing the infiltrability than the sludge application. No-till practices greatly reduced runoff, sediment, and nutrient losses from the sludge treated plots, relative to the conventional tillage practices. Incorporation of the sludge was effective in reducing nutrient yields at the conventionally-tilled plots. This effect was more pronounced during the third rainstorm, with wet initial conditions. Peak loadings of nutrients appeared during the rainstorm with wet initial conditions.  相似文献   

2.
Incorporation of manure into cultivated soils is generally recommended to minimize nutrient losses. A 3-yr study was conducted to evaluate sediment and nutrient losses with different tillage methods (moldboard plow, heavy-duty cultivator, double disk, and no-incorporation) for incorporation of beef cattle manure in a silage barley (Hordeum vulgare L.) cropping system. Runoff depths, sediment losses, and surface and subsurface nutrient transfers were determined from manured and unmanured field plots at Lethbridge, Alberta, Canada. A Guelph rainfall simulator was used to generate 30 min of runoff. Sediment losses among our tillage treatments (137.4-203.6 kg ha(-1)) were not significantly different due to compensating differences in runoff depths. Mass losses of total phosphorus (TP) and total nitrogen (TN) in surface runoff were greatest from the no-incorporation (NI) treatments, with reductions in TP loads of 14% for double disk (DD), 43% for cultivator (CU), and 79% for moldboard plow (MP) treatments. Total N load reductions in 2002 were 26% for DD, 70% for CU, and 95% for MP treatments compared to the NI treatments. Nutrient losses following incorporation of manure with the DD or CU methods were not significantly different from the NI treatments. Manure treatments generally had lower runoff depths and sediment losses, and higher phosphorus and nitrogen losses than the control treatments. Subsurface concentrations of NH4-N, NO3-N, and TN were greatest from the MP treatments, whereas subsurface phosphorus concentrations were not affected by tillage method. Tillage with a cultivator or double disk minimized combined surface and subsurface nutrient losses immediately after annual manure applications.  相似文献   

3.
Aeration has been promoted as improving infiltration of rainfall and extending grass or forage productivity, but research on the impact of this practice on P losses from grasslands has had mixed results. We designed a study to determine at the field scale, using a paired watershed approach, the impact of slit aeration on runoff volume and P losses in runoff from fescue (Festuca arundinacea Schreb.)/bermudagrass (Cynodon dactylon L.) hay fields fertilized with broiler litter. Three pairs of 0.8-ha fields, each with similar soils (Typic Kanhapludults, Aquic Hapludults, and Aquultic Hapludalfs), were fertilized with broiler litter and monitored under similar management from 1995 through 1998, then one field in each pair received aeration treatment from 2001 through 2003. In the field with mostly well-drained soils, grassland aeration reduced surface runoff volume and mass losses of dissolved reactive P (DRP) in runoff by approximately 35%. In contrast, when poorly drained soils dominated, grassland aeration increased runoff volume (4.8 mm/runoff event) and mass losses of DRP and total P (0.25 kg TP ha-1 per runoff event). This implies that aeration of well-drained soils in the top poultry-producing counties of Georgia (0.2 million ha) could decrease dissolved phosphorus losses by more than 500 Mg P each year. This is not the case if soils are poorly drained.  相似文献   

4.
Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss.  相似文献   

5.
The effect of mechanically aerating grassland before liquid manure application in the fall on surface runoff and transport of nutrients and solids was studied in a high rainfall area. The two treatments were control and aeration, the latter receiving one pass with an aerator perpendicular to the slope before fall application of liquid manure (dairy in Years 1-3 and swine in Year 4). Treatments were randomly assigned on 3 to 5% sloping land with a silt loam surface soil (Aquic Dystroxerept) planted in orchardgrass (Dactylis glomerata L.). Runoff from natural rainfall events was sampled for nutrient and solids analysis. Aeration significantly reduced runoff and loads of suspended solids, total Kjeldahl N (TKN), and dissolved reactive P in all years. Annual runoff amounts were reduced by 47 to 81%, suspended and volatile solid loads by 48 to 69% and 42 to 83%, respectively, TKN loads by 56 to 81%, and total P (TP) loads by 25 to 75%. Loads of the soluble nutrient NH4-N, dissolved reactive P, and K were reduced by 41 to 83%. The first three runoff events after manure application accounted for approximately one-third of the annual total runoff and solid and nutrient loads when averaged across treatments, with loads of TKN, K, and NH4-N totaling 4.4, 3.3, and 1.9 kg ha-1, respectively. Aeration slightly increased downward movement of NO3-N, but not other nutrients in the soil. Thus mechanical aeration can be an effective tool for reducing runoff and loads of solids and nutrients after surface application of liquid manure on sloping grassland.  相似文献   

6.
Reducing the delivery of phosphorus (P) from land-applied manure to surface water is a priority in many watersheds. Manure application rate can be controlled to manage the risk of water quality degradation. The objective of this study was to evaluate how application rate of liquid swine manure affects the transport of sediment and P in runoff. Liquid swine manure was land-applied and incorporated annually in the fall to runoff plots near Morris, Minnesota. Manure application rates were 0, 0.5, 1, and 2 times the rate recommended to supply P for a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Runoff volume, sediment, and P transport from snowmelt and rainfall were monitored for 3 yr. When manure was applied at the highest rate, runoff volume and sediment loss were less than the control plots without manure. Reductions in runoff volume and soil loss were not observed for spring runoff when frozen soil conditions controlled infiltration rates. The reduced runoff and sediment loss from manure amended soils compensated for addition of P, resulting in similar runoff losses of total P among manure application rates. However, losses of dissolved P increased with increasing manure application rate for runoff during the spring thaw period. Evaluation of water quality risks from fall-applied manure should contrast the potential P losses in snowmelt runoff with the potential that incorporated manure may reduce runoff and soil loss during the summer.  相似文献   

7.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   

8.
A study was conducted to estimate the retention efficiency of vegetative buffers for Escherichia coli deposited on grasslands in cattle fecal deposits and subject to natural rainfall-runoff conditions. The study was conducted on annual grasslands in California's northern Sierra Nevada foothills, a region with a distinct wet-dry season Mediterranean climate. We used 48, 2.0- by 3.0-m runoff plots to examine the efficacy of 0.1-, 1.1-, and 2.1-m buffers at three land slopes (5, 20, and 35%) and four dry vegetation matter levels (225, 560, 900, and 4500 kg/ha) across 27 rainfall-runoff events during two rainfall seasons. Buffer width treatments were implemented by placement of cattle fecal material containing known loads of E. coli 0.1, 1.1, or 2.1 m upslope of the plot runoff collector. Mean total runoff to total rainfall ratio per plot ranged from 0.014:1 to 0.019:1 and reflected the high infiltration capacity of these soils. Approximately 94.8 to 99.995% of total E. coli load applied to each plot appears to be either retained in the fecal pat and/or attenuated within 0.1 m downslope of the fecal pat, irrespective of the presence of a wider vegetated buffer. Relative to a 0.1-m buffer, we found 0.3 to 3.1 log10 reduction in E. coli discharge per additional meter of vegetative buffer across the range of residual dry vegetation matter levels, land slope, and rainfall and runoff conditions experienced during this project. Buffer efficiency was significantly reduced as runoff increased. These results support the assertion that grassland buffers are an effective method for reducing animal agricultural inputs of waterborne E. coli into surface waters.  相似文献   

9.
Grass vegetation has been recommended for use in the prevention and control of soil erosion because of its dense sward characteristics and stabilizing effect on the soil. A general assumption is that grassland environments suffer from minimal soil erosion and therefore present little threat to the water quality of surface waters in terms of sediment and sorbed contaminant pollution. Our data question this assumption, reporting results from one hydrological year of observations on a field-experiment monitoring overland flow, drain flow, fluxes of suspended solids, total phosphorus (TP), and molybdate-reactive phosphorus (<0.45 mum) in response to natural rainfall events. During individual rainfall events, 1-ha grassland lysimeters yield up to 15 kg of suspended solids, with concentrations in runoff waters of up to 400 mg L(-1). These concentrations exceed the water quality standards recommended by the European Freshwater Fisheries Directive (25 mg L(-1)) and the USEPA (80 mg L(-1)) and are beyond those reported to have caused chronic effects on freshwater aquatic organisms. Furthermore, TP concentrations in runoff waters from these field lysimeters exceeded 800 mug L(-1). These concentrations are in excess of those reported to cause eutrophication problems in rivers and lakes and contravene the ecoregional nutrient criteria in all of the USA ecoregions. This paper also examines how subsurface drainage, a common agricultural practice in intensively managed grasslands, influences the hydrology and export of sediment and nutrients from grasslands. This dataset suggests that we need to rethink the conceptual understanding of grasslands as non-erosive landscapes. Failure to acknowledge this will result in the noncompliance of surface waters to water quality standards.  相似文献   

10.
ABSTRACT: A loading function methodology is presented for predicting runoff, sediment, and nutrient losses from complex watersheds. Separate models are defined for cropland, forest, urban and barnyard sources, and procedures for estimating baseflow nutrients are provided. The loading functions are designed for use as a preliminary screening tool to isolate the major contributors in a watershed. Input data sources are readily available and the functions do not require costly calibrations. Data requirements include watershed land use and soil information, daily precipitation and temperature records and rainfall erosivities. Comparison of predicted and measured water, sediment, and nutrient runoff fluxes for the West Branch Deleware River in New York, indicated that runoff was underpredicted by about 14 percent while dissolved nutrients were within 30 percent of observed values. Sediment and solid-phase nutrients were overpredicted by about 50 percent. An annual nutrient budget for the West Branch Delaware River showed that cornland was the major source of sediment, solid phase nutrients, and total phosphorus. Waste water treatment plants and ground water discharge contributed the most dissolved phosphorus and dissolved nitrogen, respectively.  相似文献   

11.
Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.  相似文献   

12.
There is growing interest in evaluating the effects of corn silage harvesting methods on erosion control. Increasing the silage cutting height will increase residue cover and could conceivably minimize off-site migration of sediments compared with conventional silage harvesting. The effects of residue level and manure application timing on runoff and sediment losses from no-till corn were examined. Treatments included conventional corn grain (G) and silage (SL) and nonconventional, high-cut (60-65 cm) silage (SH). Corn harvesting treatments were subjected to different manure application regimes: no manure (N) or surface application in fall (F) or spring (S). Simulated rainfall (76 mm/h; 1 h) was applied in spring and fall for two years (2002-2003), runoff from 2.0- x 1.5-m plots collected, and a subsample analyzed for sediment concentration and aggregate size distribution. Runoff volume was inversely related to residue cover. Manure addition to silage plots reduced spring runoff by 71 to 88%, attributable to an increase in soil organic matter content, compared with SH-N and SL-N. Differences in sediment concentration between SH and SL were not significant. For silage plots, spring-applied manure had the greatest influence on sediment export reducing it by 84 to 93% in spring runoff compared with corresponding N plots. Sediment loads were also 85 to 97% lower from SH-S compared with SL-N in all four seasons. Except for spring 2003, sediment export was lower from G compared with SL. The combination of manure and higher residue associated with high-cut silage often lowered sediment export compared with low-cut silage. Nearly identical aggregate size distributions were observed in sediments from SH and SL plots. High residue levels combined with spring-applied manure led to enrichment in the clay-sized fraction of runoff sediment. Recently applied manure and higher residue levels achieved by high-cutting silage can substantially lower sediment losses in spring runoff when soil is most susceptible to erosion.  相似文献   

13.
Beneficial effects of leaving residue at the soil surface are well documented for steep lands, but not for flat lands that are drained with surface inlets and tile lines. This study quantified the effects of tillage and nutrient source on tile line and surface inlet water quality under continuous corn (Zea mays L.) from relatively flat lands (<3%). Tillage treatments were either fall chisel or moldboard plow. Nutrient sources were either fall injected liquid hog manure or spring incorporated urea. The experiment was on a Webster-Canisteo clay loam (Typic Endoaquolls) at Lamberton, MN. Surface inlet runoff was analyzed for flow, total solids, NO(3)-N, NH(4)-N, dissolved P, and total P. Tile line effluent was analyzed for flow, NO(3)-N, and NH(4)-N. In four years of rainstorm and snowmelt events there were few significant differences (p < 0.10) in water quality of surface inlet or tile drainage between treatments. Residue cover minimally reduced soil erosion during both snowmelt and rainfall runoff events. There was a slight reduction in mineral N losses via surface inlets from manure treatments. There was also a slight decrease (p = 0.025) in corn grain yield from chisel-plow plots (9.7 Mg ha(-1)) compared with moldboard-plow plots (10.1 Mg ha(-1)). Chisel plowing (approximately 30% residue cover) alone is not sufficient to reduce nonpoint source sediment pollution from these poorly drained flat lands to the extent (40% reduction) desired by regulatory agencies.  相似文献   

14.
Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.  相似文献   

15.
In flat areas, transport of dissolved nutrients by water through the soil matrix to groundwater and drains is assumed to be the dominant pathway for nutrient losses to ground- and surface waters. However, long-term data on the losses of nutrients to surface water and the contribution of various pathways is limited. We studied nutrient losses and pathways on a heavy clay soil in a fluvial plain in The Netherlands during a 5-yr period. Average annual nitrogen (N) and phosphorus (P) losses to surface water were 15.1 and 3.0 kg ha(-1) yr(-1), respectively. Losses were dominated by particulate N (50%) and P (70%) forms. Rapid discharge through trenches was the dominant pathway (60-90%) for water and nutrient transport. The contribution of pipe drains to the total discharge of water and nutrients was strongly related to the length of the dry period in the preceding summer. This relationship can be explained by the very low conductivity of the soil matrix and the formation of shrinkage cracks during summer. Losses of dissolved reactive P through pipe drains appear to be dominated by preferential flow based on the low dissolved reactive P concentration in the soil matrix at this depth. Rainfall occurring after manure application played an important role with respect to the annual losses of N and P in spring when heavy rainfall occurred within 2 wk after manure application.  相似文献   

16.
Because surface-applied manures can contribute to phosphorus (P) in runoff, we examined mechanical aeration of grasslands for reducing P transport by increasing infiltration of rainfall and binding of P with soil minerals. The effects of three aeration treatments and a control (aeration with cores, continuous-furrow "no-till" disk aeration perpendicular to the slope, slit aeration with tines, and no aeration treatment) on the export of total suspended solids, total Kjeldahl P (TKP), total dissolved P (TDP), dissolved reactive P (DRP), and bioavailable P (BAP) in runoff from grasslands with three manure treatments (broiler litter, dairy slurry, and no manure) were examined before and after simulated compaction by cattle. Plots (0.75 x 2 m) were established on a Cecil soil series with mixed tall fescue (Festuca arundinacea Schreb.)-bermudagrass [Cynodon dactylon (L.) Pers.] vegetation on 8 to 12% slopes. Manures were applied at a target rate of 30 kg P ha(-1), and simulated rainfall was applied at a rate of 85 mm h(-1). Although the impact of aeration type on P export varied before and after simulated compaction, overall results indicated that core aeration has the greatest potential for reducing P losses. Export of TKP was reduced by 55%, TDP by 62%, DRP by 61%, total BAP by 54%, and dissolved BAP by 57% on core-aerated plots with applied broiler litter as compared with the control (p < 0.05). Core and no-till disk aeration also showed potential for reducing P export from applied dairy slurry (p < 0.10). Given that Cecil soil is common in pastures receiving broiler litter in the Southern Piedmont, our results indicate that pairing core aeration of these pastures with litter application could have a widespread impact on surface water quality.  相似文献   

17.
Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions, were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications of the general mathematical formulations and the experimental values of the model parameters provided by the study can be used in further application of these methodologies in watersheds with similar characteristics.  相似文献   

18.
Most beneficial management practices (BMPs) recommended for reducing nutrient losses from agricultural land have been established and tested in temperate and humid regions. Previous studies on the effects of these BMPs in cold-climate regions, especially at the small watershed scale, are rare. In this study, runoff and water quality were monitored from 1999 to 2008 at the outlets of two subwatersheds in the South Tobacco Creek watershed in Manitoba, Canada. Five BMPs-a holding pond below a beef cattle overwintering feedlot, riparian zone and grassed waterway management, grazing restriction, perennial forage conversion, and nutrient management-were implemented in one of these two subwatersheds beginning in 2005. We determined that >80% of the N and P in runoff at the outlets of the two subwatersheds were lost in dissolved forms, ≈ 50% during snowmelt events and ≈ 33% during rainfall events. When all snowmelt- and rainfall-induced runoff events were considered, the five BMPs collectively decreased total N (TN) and total P (TP) exports in runoff at the treatment subwatershed outlet by 41 and 38%, respectively. The corresponding reductions in flow-weighted mean concentrations (FWMCs) were 43% for TN and 32% for TP. In most cases, similar reductions in exports and FWMCs were measured for both dissolved and particulate forms of N and P, and during both rainfall and snowmelt-induced runoff events. Indirect assessment suggests that retention of nutrients in the holding pond could account for as much as 63 and 57%, respectively, of the BMP-induced reductions in TN and TP exports at the treatment subwatershed outlet. The nutrient management BMP was estimated to have reduced N and P inputs on land by 36 and 59%, respectively, in part due to the lower rates of nutrient application to fields converted from annual crop to perennial forage. Overall, even though the proportional contributions of individual BMPs were not directly measured in this study, the collective reduction of nutrient losses from the five BMPs was substantial.  相似文献   

19.
The recent growth in the size of dairy cattle farms and the concentration of farms into smaller areas in Finland may increase local water pollution due to increased manure production and slurry application to grass. Therefore, a field study was conducted to monitor losses of total phosphorus (TP), dissolved reactive phosphorus (DRP), and fecal microorganisms in surface runoff from a perennial ley. Cattle slurry was added once a year in June 1996-1997 (Study I) and biannually in June and October 1998-2000 (Study II). The slurry was surface broadcast or injected into the clay soil. The field had a slope of 0.9 to 1.7%. Mineral fertilizer was applied on control plots. Biannual slurry broadcasting increased DRP (p < 0.001) and TP losses (p < 0.001) and numbers of fecal microorganisms in surface runoff waters. The highest losses of TP (2.7 kg ha(-1) yr(-1)) and DRP (2.2 kg ha(-1) yr(-1)) and the highest numbers of fecal coliforms (880 colony-forming units [CFU] per 100 mL) and somatic coliphages (2700 plaque-forming units [PFU] per 100 mL) were measured after broadcasting slurry to wet soil followed by rainfall in fall 1998. Injection reduced the TP and DRP losses in surface runoff by 79 and 86%, respectively, compared with broadcasting (17 Oct. 1998-27 Oct. 1999). Corresponding numbers for fecal coliforms were 350 CFU (100 mL)(-1) and for somatic coliphages were 110 PFU (100 mL)(-1) in surface runoff after injection in October 1998. Slurry injection should be favored when spreading slurry amendments to grassland to avoid losses of P and fecal microorganisms in runoff to surface waters.  相似文献   

20.
Nutrient and sediment runoff from newly constructed levee embankments pose a threat to water quality during soft armor vegetation establishment. Research was initiated in 2008 and 2009 to evaluate the effect of bermudagrass ( L.) coverage and N source on nutrient and sediment runoff from levee embankments during establishment. Bermudagrass plots were seeded at 195.3 kg pure live seed ha and fertilized at 50 kg N ha using a water-soluble N source, urea or NH-NO, or slow-release N source, S-coated urea (SCU) or urea formaldehyde (UF), with controls unfertilized. Vegetative cover percentage, time until the onset of runoff, runoff volume, and total solids (TS), NO-N, and NH-N concentrations were measured from simulated and natural rainfall events for 70 d in 2008 and 56 d in 2009. Bermudagrass at 90% grass cover delayed the onset of runoff an additional 441 to 538 s and reduced runoff volumes 74 to 84% of that exhibited at 10% grass cover. Nitrogen fertilizers did not accelerate bermudagrass growth sufficiently, however, to reduce TS loading compared with unfertilized bermudagrass in either year of the study. The application of urea and SCU resulted in cumulative N losses of 2.45 and 3.13 kg ha compared with 1.59 kg ha from the unfertilized bermudagrass in 2008, and 1.73 kg ha from NH-NO vs. 0.24 kg ha from controls in 2009. Only UF increased bermudagrass establishment without increasing cumulative N losses compared with unfertilized bermudagrass. Therefore, the benefit of greater erosion and runoff resistance expected from N-accelerated vegetative growth did not occur but had the unintended consequence of higher N losses when water-soluble N and SCU fertilizers were applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号