首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ensemble of thirty physico-chemical characteristics was used to assess the quality of well waters in four urban centers in southern Nigeria: Lagos, Benin City, Warri, and Ekpoma. The characteristics investigated include pH; color; turbidity; salinity; electrical conductivity, EC; total dissolved solids, TDS; total suspended solids, TSS; dissolved oxygen, DO; total hydrocarbon, THC; biochemical oxygen demand, BOD; chemical oxygen demand, COD; and nitrate, nitrite, ammonia, sulfate, and phosphate concentrations. Also monitored were the concentrations of sodium, calcium, potassium, magnesium, chloride, bicarbonate, iron, lead, copper, manganese, zinc, chromium, nickel, and cadmium. The results obtained were compared with World Health Organization, WHO, and Nigerian Federal Ministry of Environment, FME, drinking water standards. The results show that with the well water obtained from Lagos, turbidity, 11.80 NTU; pH, 5.68; EC, 1065.55 μS/cm; TDS, 539.00 mg/L; concentrations of iron, 1.83 mg/L; manganese, 0.14 mg/L; and lead, 1.35 mg/L did not meet the WHO standards. In Warri, pH, 5.19; concentrations of lead, 1.35 mg/L; and chromium, 0.10 mg/L in the well water were above the WHO desirable limits. The results also indicated that the well water from Benin City contained concentrations of chromium, 0.18 mg/L; and lead, 0.20 mg/L that exceeded the recommended WHO limits. In Ekpoma, the pH, 6.00; concentrations of chromium, 0.15 mg/L; and lead, 0.44 mg/L were higher than the desirable limits of WHO. Generally, the assessments revealed that the waters were good and fit for drinking and other domestic application without serious threat to public health.  相似文献   

2.
An assessment of the heavy metal content and biological pollution burden of an abattoir dumpsite, an automobile carwash, the Ikpoba River, and a private water borehole located near the abattoir dumpsite was conducted in Benin City in Southern Nigeria, during the rainy and dry seasons. The water samples’ pH was lower than the permissible values, with the river water displaying color and possessing a slight odor. Iron concentrations exceeded the permissible limits for drinking water at all four of the sampling stations in the study area, although not in samples collected from the control station, station 5, a public water borehole that is located some distance away. Lead values were higher than drinking water standards in the samples collected from stations 1 through 4, with some exceptions during the rainy season. Copper, nickel, arsenic, chromium, and aluminum were detected in three out of the four sampling stations located within the study area. However, these metals were detected at levels that were within regulatory limits. The detection of three metals (iron, lead, and zinc) within the study area at levels exceeding drinking water limits suggested that a complete cycle of movement of pollutants into the sampling stations had occurred. Significant biological presences were also detected, as the Ikpoba River water had a standard plate count (SPC) of 130 most probable number (MPN) and a 22 MPN presumptive coliform count (PCC) or 22 MPN. However, Escherichia coli (E. coli) confirmatory tests recorded less than 2 MPN in both seasons. The study has shown that the quality of water in the river may be compromised by effluent discharges from the dumpsite and the carwash channel. Therefore, this situation requires more stringent enforcement of local environmental laws and maintenance of safe distances between domestic and industrial waste sources and domestic or private water wells.  相似文献   

3.
A conventional activated sludge treatment facility was the subject of this study. The assessment was directed at determining the characteristics of the raw wastewater, the quality of the treated effluent and the efficiency of the various treatment units. Furthermore, the water quality along the effluent irrigation canal was monitored. The assessment of the quality of the treated effluent for irrigation is based on the guidelines established by the World Health Organization and the Egyptian decree 9/89 for the use of wastewater in agriculture. The results of the study indicated that the concentration of the raw wastewater was considered moderate. The mean values of the COD (Chemical Oxygen Demand), BOD (Biological Oxygen Demand) and total suspended solids (TSS) were around 250, 102 and 142 mg l–1, respectively. This was attributed to the high quantities of wastewater from industrial sources. The overall efficiency of the treatment facility was good. The mean residual COD, BOD and TSS were 25, 8 and 21 mg l–1 and the corresponding percentage removal values were 90, 92 and 85%, respectively. The maximum percentage removal of oil and grease was 84% with a mean residual concentration of 24 mg l–1. The total viable count (22°C and 37°C), faecal coliform and aecal streptococci were reduced by 99.9% compared to only 99.5% for Salmonella. Bacteriological examination of the dried sludge indicated a reduction of nine logs of faecal coliform and faecal streptococci, as compared to thickened sludge. Analysis of the Ni, Cu, Pb and Cr in the dried sludge indicated that their concentrations are within the permissible limits. Zinc exceeded the consent standards by 50%. The results of the analyses of samples collected at the beginning of the irrigation canal indicated insignificant changes from the characteristics of the final effluent. Samples collected at a distance of 2km along the irrigation canal showed mean reductions in the COD and BOD of 28.6 and 47%, respectively, which could be attributed to sedimentation and/or a self-purification effect. An increase in the total nitrogen, total phosphorus and total viable count was also recorded, which could be due to seepage from the agricultural land. From the data available it is evident that the treated wastewater could be used for restricted irrigation. The design and implementation of a monitoring programme is recommended.  相似文献   

4.
ABSTRACT: The Oregon Water Quality Index (OWQI) is a single number that expresses water quality by integrating measurements of eight water quality variables (temperature, dissolved oxygen, biochemical oxygen demand, pH, ammonia+nitrate nitrogen, total phosphorus, total solids, and fecal coliform). Its purpose is to provide a simple and concise method for expressing the ambient water quality of Oregon's streams for general recreational use, including fishing and swimming. The OWQI, originally developed in the 1970s, has been updated based upon improved understanding about water quality behavior. This report describes the historical basis of the OWQI and defines the improved design of the present OWQI. The index allows users to easily interpret data and relate overall water quality variation to variations in specific categories of impairment. This report demonstrates the value of the OWQI in presenting spatial and temporal water quality information. The OWQI improves comprehension of general water quality issues, communicates water quality status, and illustrates the need for and effectiveness of protective practices.  相似文献   

5.
Earthworms’ body works as a ‘biofilter’ and they have been found to remove the 5 days’ BOD (BOD5) by over 90%, COD by 80–90%, total dissolved solids (TDS) by 90–92%, and the total suspended solids (TSS) by 90–95% from wastewater by the general mechanism of ‘ingestion’ and biodegradation of organic wastes, heavy metals, and solids from wastewater and also by their ‘absorption’ through body walls. Earthworms increase the hydraulic conductivity and natural aeration by granulating the clay particles. They also grind the silt and sand particles, increasing the total specific surface area, which enhances the ability to ‘adsorb’ the organics and inorganic from the wastewater. Intensification of soil processes and aeration by the earthworms enable the soil stabilization and filtration system to become effective and smaller in size. Suspended solids are trapped on top of the vermifilter and processed by earthworms and fed to the soil microbes immobilized in the vermifilter. There is no sludge formation in the process which requires additional expenditure on landfill disposal. This is also an odor-free process and the resulting vermifiltered water is clean and disinfected enough to be reused for farm irrigation and in parks and gardens G. Bharambe—GU & Research Assistant (Under Rajiv K. Sinha), U. Chaudhari—GU (Worked on vermiculture project).  相似文献   

6.
The inorganic anion pollution of the New Calabar River surface water was investigated. Results showed seasonal variations in the inorganic anion levels. Water parameters such as sulfite, nitrate, phosphate, and alkalinity showed significantly higher values in the rainy season than in the dry season. Dissolved oxygen, pH, sulfide, sulfate, ammonia, and nitrite showed no significant differences between their rainy and dry season levels. Upstream-downstream changes were shown by conductivity, total dissolved solids, chloride, salinity, and temperature. Exceptions occurred in the nitrite levels, where the effect was minimal. Although the concentrations of some anions analyzed fell within internationally acceptable limits, the New Calabar River water is, in the main, polluted with inorganic anions and may be unacceptable for potable and industrial uses without treatment.  相似文献   

7.
Groundwater (well water) from a residential area within the vicinity of an industrial estate in Lagos, Nigeria were sampled and analysed by Flame Atomic Absorption Spectroscopy for their heavy metals content. This was with a view of assessing the quality of the water, which was being used for domestic activities, especially, drinking usually without treatment. Total trace metal determination by mineral acid digestion of water samples was applied. This method proved to be better than an extractive concentration technique in the quality assurance protocols with the recovery range being 90.7 ± 0.006–97.6 ± 0.003%. Mean concentration of trace metals in water samples ranged from Fe: 0.05–0.47 mg l−1; Al: 0.1–1.54 mg l−1; Cu: 0.14–1.39 mg l−1; Zn: 0.04–0.43 mg l−1; Cd: trace–0.02 mg l−1; Pb: trace–0.03 mg l−1, Mn: 0.01–0.18 mg l−1 and Ni: 0.02–0.11 mg l−1. Physical parameters of water samples examined were within the drinking water safety limits except for conductivity. Results generally indicate the presence of heavy metal constituents in groundwater samples. Detection of metals such as cadmium and lead which have serious health implications above WHO and USEPA limits in drinking water gives cause for concern.  相似文献   

8.
ABSTRACT: During the summer of 1971 about 150 water samples were examined for total and fecal coliform bacteria in the Upper Illinois Waterway at 19 river stations. The data per station were found to be normal geometric distributed. Bacteria densities changed with sampling dates and generally decreased with water movement downstream. Several sewage treatment effluents made marked pulses along the bacterial die-off curves. The observed fecal coliform results were evaluated in terms of the Illinois Pollution Control Board's standards. The FC:TC ratio on the waterway for each station were presented. Using Chick's Law, coliforms death rates were estimated. Efforts to correlate observed total and fecal densities with temperature, flow, algal densities, dissolved oxygen, and 5-day biochemical oxygen demand were not successful. (KEY TERMS: algae; biochemical oxygen demand; coliform bacteria; dissolved oxygen; flow; stream survey; temperature; water pollution; water quality standards)  相似文献   

9.
Istanbul, being one of the highly populated metropolitan areas of the world, has been facing water scarcity since the past decade. Water transfer from Melen Watershed was considered as the most feasible option to supply water to Istanbul due to its high water potential and relatively less degraded water quality. This study consists of two parts. In the first part, water quality data covering 26 parameters from 5 monitoring stations were analyzed and assessed due to the requirements of the “Quality Required of Surface Water Intended for the Abstraction of Drinking Water” regulation. In the second part, a one-dimensional stream water quality model with simple water quality kinetics was developed. It formed a basic design for more advanced water quality models for the watershed. The reason for assessing the water quality data and developing a model was to provide information for decision making on preliminary actions to prevent any further deterioration of existing water quality. According to the water quality assessment at the water abstraction point, Melen River has relatively poor water quality with regard to NH4+, BOD5, faecal streptococcus, manganese and phenol parameters, and is unsuitable for drinking water abstraction in terms of COD, PO43?, total coliform, total suspended solids, mercury and total chromium parameters. The results derived from the model were found to be consistent with the water quality assessment. It also showed that relatively high inorganic nitrogen and phosphorus concentrations along the streams are related to diffuse nutrient loads that should be managed together with municipal and industrial wastewaters.  相似文献   

10.
ABSTRACT The Cortaro Area is currently the depository for much of the liquid waste from the City of Tucson. In the past, more than one-half of the sewage effluent was used for crop irrigation. However, since 1970 virtually all of the sewage effluent has been percolated in the normally dry Santa Cruz River channel. Nitrate and chloride contents were monitored monthly in water samples from about 20 large-capacity irrigation wells. Contents and seasonal trends for these constituents were closely related to the disposal of sewage effluent. Water quality problems other than nitrate include total dissolved solids, boron, coliform, and lead. High lead contents in the area appear to be a natural phenomenon and the coliform contents are likely related to poor well construction. The other quality problems are primarily due to sewage effluent.  相似文献   

11.
ABSTRACT: A residential single family dwelling was retrofitted to recycle graywater for landscape irrigation and toilet flushing. The objective of this study was to determine improvements in graywater quality by evaluating five simple graywater treatment systems that were easily adapted to the household plumbing. The treatment systems consisted of (1) water hyacinths and sand filtration, (2) water hyacinths, copper ion disinfection, and sand filtration, (3) copper ion disinfection and sand filtration, (4) copper/silver ion disinfection and sand filtration, and (5) 20–μm cartridge filtration. Water quality parameters measured were fecal and total coliform indicator bacteria, nitrates, suspended solids, and turbidity. Reductions in bacterial concentration, suspended solids and turbidity were achieved by all systems tested. Treatment reduced nitrate concentrations to an average of 2.6 mg/liter. Reductions in suspended solids, and turbidity were influenced more by the quality of the graywater entering the treatment system than the efficiency of the systems themselves. The water hyacinths and sand filtration system provided the best graywater quality in terms of the concentrations of fecal indicator bacteria. The system providing the best water quality in regard to average suspended solids after treatment was the water hyacinths, copper ion, and sand filtration system, and the best average turbidity was achieved by the copper/silver ion generating unit with sand filtration. All systems were capable of significant reductions in fecal indicator bacteria, suspended solids, and turbidity; however, additional treatment or disinfection would be necessary to further reduce the level of coliform and fecal coliform bacteria to achieve regulatory standards in the State of Arizona.  相似文献   

12.
Good water quality of the Rio San Juan is critical for economic development of northeastern Mexico. However, water quality of the river has rapidly degraded during the last few decades. Societal concerns include indications of contamination problems and increased water diversions for agriculture, residential, and industrial water supplies. Eight sampling sites were selected along the river where water samples were collected monthly for 10 mo (October 1995-July 1996). The concentration of heavy metals and chemical constituents and measurements of bacteriological and physical parameters were determined on water samples. In addition, river discharge was recorded. Constituent concentrations in 18.7% of all samples exceeded at least one water quality standard. In particular, concentrations of fecal and total coliform bacteria, sulfate, detergent, dissolved solids, Al, Ba, Cr, Fe, and Cd, exceeded several water quality standards. Pollution showed spatial and temporal variations and trends. These variations were statistically explained by spatial and temporal changes of constituent inputs and discharge. Samples collected from the site upstream of El Cuchillo reservoir had large constituent concentrations when discharge was small; this reservoir supplies domestic and industrial water to the city of Monterrey.  相似文献   

13.
Water samples from streams and springs in the Great Smoky Mountains National Park were analyzed for fecal coliform, fecal streptococcus, and total coliform bacteria. Levels of bacteria were found to be highly variable but related to elevation, time of year, type of water source, and water level of the streams. Visitors did not seem to be major contributors to bacterial contamination. Levels of fecal coliform and total coliform in most water samples were unsuitable for drinking without treatment. Tennessee state standards for body contact recreation (swimming and wading) were exceeded in a few samples but none from streams suitable for swimming. As a result of these findings, park managers increased efforts to inform visitors of the need to treat drinking water and removed improvements at backcountry springs which tended to give the springs the image of safe, maintained water sources.  相似文献   

14.
《环境质量管理》2018,27(4):65-72
The most common problems in water distribution systems are corrosion and scaling, which cause both economic and customer health problems. The aim of the present study is to report the relationship between Urmia Lake's drying and the corrosion and scaling potential of groundwater used as drinking water during the spring and summer of 2015. Groundwater samples were collected from all of the catchments of the Urmia Lake basin, and the characteristics of the water were used to determine the corrosive and scaling indices using the Langelier Saturation Index and the Ryznar Stability Index. The results showed that the total dissolved solids measurement of the samples collected from the islands of Urmia Lake was higher than the maximum value of the standard level. In addition, the hardness in 36% of the zones was higher than that of the maximum suggested level. The concentration of calcium was lower than that of the standard, but the rest of the parameters were in the standard level range. Also, the results showed that the water of the Urmia Lake basin tends to be very scaling and corrosive. In order to control the corrosion and scaling caused by groundwater drawn from the catchments around Urmia Lake, measures should be taken to prevent Urmia Lake's drying and to manage the groundwater around this area. It is also suggested that a laboratory study regarding the condition of the distribution system be carried out to adjust the effective parameters, such as the pH.  相似文献   

15.
涪江流域遂宁段生态环境监测与水质污染现状评价   总被引:1,自引:0,他引:1  
为研究涪江遂宁段河流水环境质量和污染现状,对水体中基本理化指标和细菌总数、粪大肠茵群数、浮游藻类组成等生物指标进行了监测和综合分析,并采用了单因子评价法和综合污染指数法对其进行水质污染现状进行了评价。结果表明,该流域境内香山和郭江属地表水Ⅳ类中度污染,污染指标总氮、总磷和BOD;超标倍数分别为0.76、0.26、0.02和0.39、0.24、0.03;跑马滩属地表水Ⅳ类中度污染,总氮和BOD,超标倍数为0.08、0.13;米家桥和老池属于Ⅲ类轻度污染;总氮、总磷和BOD,断面超标率分别为60%、40%、60%。此外,各监测断面水体中细菌总数、大肠菌群数及藻类组成均差异明显,变化趋势与水质理化指标基本吻合。细菌总数变化趋势为郭江〉跑马滩〉香山〉米家桥〉老池,郭江细菌总数2.36×10^7cfu/mL,比跑马滩、香山高、米家桥和老池分别高23.7%和41.5%.56.25倍和65.5倍。  相似文献   

16.
Resuspension is a multiphase phenomenon where suspended solids encounter water layers differing in physico-chemical properties that affect the reactions of phosphorus (P). The role of resuspended sediment as a sink or source of dissolved P was determined in a laboratory study of P desorption-sorption equilibria. Gradual mixing was simulated using decreasing solid concentrations and varying environmental conditions (pH, redox, ionic strength). To describe the P exchange when the particles encounter dissimilar water layers, the extent of P sorption to or desorption from solids was expressed as a function of P concentration in the bath solutions. The equilibrium phosphorus concentration (EPC), at which there is no net P release from or retention to the particles, proved to be a suitable parameter for assessment of P load risk. Under oxic conditions at pH 7, commonly prevailing in lakes, the EPC values ranged from 11 to 27 microg P L(-1). The larger the water volume the suspended material was mixed with, the higher the P concentration, allowing desorption to occur. As for chemical factors affecting P mobilization, EPC followed the order: pH 7 < pH 7 anoxic < pH 9. A separate extraction experiment revealed that elevated pH enhanced P mobilization more as the concentration of solids decresed. The results demonstrate that high pH (a common characteristic in eutrophic lakes during summer), when linked with intensive resuspension, may markedly increase the internal P loading risk. As for the risk assessment, the quantification of the internal P loading would be improved by isotherm studies combined with field observations.  相似文献   

17.
Aquatic insect diversity in the Chandrabhaga, an important headwater stream of Garhwal Himalayas, was surveyed for a period of twelve months (October 1999 to September 2000). All the important physico-chemical environmental variables (temperature, water velocity, hydromedian depth, transparency, turbidity, total dissolved solids, pH, alkalinity, dissolved oxygen, free CO2, nitrates, phosphates, sodium and potassium) of the aquatic ecosystem were measured monthly for one year. Aquatic insects were sampled from three sites (S1, S2 & S3) of the headwater stream Chandrabhaga. Aquatic insects of Chandrabhaga were represented by the members of the orders of Ephemeroptera, Trichoptera, Coleoptera, Diptera, Plecoptera and Odonata. The maximum density of aquatic insects was recorded in the month of March (4,165 ind. m−2) and minimum in the month of August (680 ind. m−2). The annual contribution of Trichoptera (38%) and Ephemeroptera (32%) was observed to be maximum, while Odonata contributed minimum (2%) to the total aquatic insect density. The present study on the relationship between physico-chemical environmental variables and the density of aquatic insects revealed that the velocity of water, hydromedian depth, turbidity and dissolved oxygen in addition to composition and texture of the bottom substrates have significant impact on benthic aquatic insects’ density and their diversity. The ecological relevance of the measured hydrological attributes was investigated by composing their degree of correlation with insects density and diversity. The diversity index (Shannon–Weiner) of aquatic insects dwelling in the Chandrabhaga river ranged from 2.54 to 3.86. Some of the natural and anthropogenic environmental factors contributing towards the degradation of the watershed of the Chandrabhaga have been identified, and ameliorative measures for the conservation of the aquatic insect diversity have been suggested.  相似文献   

18.
To ascertain the water quality for human consumption, chemical parameters such as pH, conductivity and total dissolved calcium, magnesium, iron, aluminum, zinc, copper and manganese were measured during four sampling periods (November 2002; March, May and July 2003) in drinking water wells which supply several forest camps and rural populations located in the eastern Llanos of Venezuela. Copper levels in drinking water in November 2002 were found to be significantly higher (P<0.05) than the other assessed periods. Temporal variations of the other parameters considered were not statistically significant. Calcium and magnesium concentrations were found to be extremely low (mean concentration+/-S.D. of 0.27+/-0.25mg/l for Ca and 0.219+/-0.118 for Mg) during the four sampling periods, probably because of the carbonate bearing scarcity in the soils lithic component. The rest of the metals complied with the Venezuelan and International guidelines of quality criteria for drinking water.  相似文献   

19.
Ecological treatment systems can provide a sustainable, plant-based alternative to traditional wastewater treatment. One factor essential to the success of these systems is ensuring their ability to reduce coliform concentrations in wastewater. Wastewater is the primary source of fecal contamination in aquatic ecosystems, containing total and fecal coliforms on the order of 10(8)-10(10) and 10(7)-10(9) CFU L(-1), respectively. This study assessed the ability of an ecological treatment system to reduce concentrations of total coliforms and Escherichia coli from dairy wastewater. Low strength wastewater was pumped into the system during July of 2005 and high strength in September 2005. Wastewater passes through a series of anaerobic, aerobic, and clarifier reactors and wetland cells before exiting the system. Regardless of wastewater strength, average total coliform and E. coli concentrations were consistently reduced by at least 99% from influent to effluent, with the majority of the reduction (76%) occurring in the first two reactors. Relationships between internal concentrations of solids and coliforms indicated that increased reduction of solids may further reduce coliform concentrations. Although U.S. Environmental Protection Agency discharge requirements for E. coli were not always met, the substantial reductions achieved indicate that ecological treatment systems have the potential to successfully reduce coliforms in wastewater to meet discharge limits. The results from this study will be used to guide design and management of future ecological treatment systems, so that larger and more consistent coliform reductions can be achieved.  相似文献   

20.
Sedimentation basins (SBs) are commonly used during highway construction for erosion and sedimentation pollution control as well as for attenuation of overland storm waters. In order to evaluate the sediment removal capacity of these SBs, four basins were selected for monitoring from a new highway construction that extends I-99 to I-80, in Pennsylvania. Between September 2004 and August 2005, ten sampling trips were conducted during which basin inlet and outlet water samples were obtained. The SB samples were analyzed for pH, color, turbidity, total suspended solids (TSS), volatile suspended solids (VSS), total and dissolved iron, magnesium, manganese, aluminum, calcium, sulfate and phosphate. The data showed peaks in concentrations of TSS, total aluminum, total manganese, total iron and total phosphate that closely correlated to localized rainfall peaks. For certain samples, the concentration of TSS in the outlet was higher than the TSS concentration at the basin inlet, suggesting sediment re-suspension. In general SBs managed high flows during wet weather events, but were not effective in capturing particulates. This paper discusses the need for Best Management Practices (BMPs) for the design of SBs that reflect contemporary concerns for management of particle removal and to control the release of particulate-bound metals. This paper also evaluates the water quality impacts of naturally occurring acidic drainages into SBs, as several acidic seeps with pH in the range of 5-6 and having high dissolved concentrations of metals (Fe, Mn, Mg and Ca), sulfate and phosphate were observed draining into the SBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号