首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
根据食品添加剂废水水质变化大,成分复杂特点,提出了"水解酸化—接触氧化—臭氧催化氧化—曝气生物滤池(BAF)"的组合工艺。废水COD从进水2000~7000mg/L降到100mg/L以下,最低为33mg/L,排放水质达到国家排放标准。水解酸化系统使废水平均COD从5290mg/L降到2323mg/L,并使大颗粒难降解分子部分转化为小颗粒可降解分子,为后续的接触氧化系统处理提供良好的条件,接触氧化出水平均COD为268mg/L。接触氧化出水含较多难生物降解有机物,经O3氧化预处理后在COD下降45%的情况下其BOD5/COD由0.3升为0.44,更易于生化降解。废水经曝气生物滤池平均出水COD为66mg/L。中试研究表明,水解酸化系统和臭氧催化氧化(负载MnO2的陶粒为催化剂)-曝气生物滤池深度处理系统是该工艺处理高浓度废水稳定达标的关键。  相似文献   

2.
付丽亚  李敏  周鉴  吴昌永  朱晨  于茵  宋玉栋 《环境工程》2021,39(11):159-165
为强化石化生化出水COD的去除,采用微絮凝砂滤-臭氧催化氧化工艺处理石化生化出水,比较了臭氧催化氧化反应器不同氧化方式和不同回流比组合方式下COD的去除,开展了臭氧催化氧化深度处理单元小试、中试和生产性规模研究,确立了以双级臭氧催化氧化Ⅰ级自回流工艺(回流比100%)为双级臭氧催化氧化推荐的优化工艺。生化出水ρ(COD)为70~120 mg/L时,微絮凝砂滤出水ρ(COD)达到65~113 mg/L,Ⅱ级氧化出水COD平均去除率达到35.0%~42.6%,出水满足GB 31571-2015《石油化学工业污染物排放标准》排放限值要求。生产性试验条件下,优化工艺装置去除单位COD消耗臭氧量平均为1.04 g/g,比对照组现阶段生产工艺(仅Ⅰ级臭氧曝气)降低了21.2%。  相似文献   

3.
李德生  黄利 《中国环境科学》2012,32(7):1196-1202
通过现场中试实验对曝气微电解、强化混凝、催化电氧化作预处理提高兰炭污水的可生化性进行了探讨.并对通过预处理与生化处理的组合实现兰炭污水达到污水排放标准的可行性进行了研究.结果表明,原水首先调节pH值为3左右,在通过120min的曝气微电解处理后,可使有机物由25000mg/L下降到10000mg/L,氨氮由3000mg/L降到1200mg/L,COD和NH3-N的去除均可达到60%;然后调节曝气微电解出水的pH值为8~9,通过投加200mg/L PAC、4.5mg/L PAM强化混凝后,出水COD和NH3-N可去除50%;强化混凝后出水再通过120 min的催化电氧化反应器的高级氧化处理,废水中COD去除率可达65%,NH3-N去除率为60%;催化电氧化反应器出水最后通过厌氧/好氧生物接触处理,其出水COD<150mg/L,NH3-N<25 mg/L.  相似文献   

4.
方广君  王叶鑫  李理 《环境工程》2021,39(11):154-158
以山东某钛白粉厂二级压滤出水为研究对象,通过自主设计的中试设备考察了催化臭氧氧化工艺与NaClO工艺对钛白粉废水处理情况,确定催化臭氧氧化的最佳工艺实验条件为:在室温条件下,催化臭氧氧化反应时间为60 min,臭氧投加浓度为125 mg/L。对原有NaClO工艺进行优化,优化后的最佳工艺为:NaClO投加量为1.2%,反应时间为30 min。当平均进水ρ(COD)与ρ(NH3-N)分别为109.7,12.8 mg/L,则催化臭氧工艺平均出水ρ(COD)与ρ(NH3-N)分别为43.5,3.8 mg/L,平均去除率分别为60%和70.4%,NaClO工艺平均出水ρ(COD)与ρ(NH3-N)分别为49.8,4.7 mg/L,平均去除率分别为54.5%和63.1%。在30 d内,催化臭氧氧化出水达标率为100%,NaClO出水达标率为26.7%,催化臭氧氧化处理费用为1.12元/t,NaClO处理费用为12元/t,催化臭氧氧化工艺相较于NaClO氧化工艺更适用于处理钛白粉废水。  相似文献   

5.
制药废水成分复杂、毒性大、含难生物降解物质,是较难处理的工业废水,本文针对制药废水的特点,选用铁屑过滤-催化电解-生化-复合催化氧化的组合工艺对此废水进行针对性处理.实验数据表明:采用铁屑过滤-催化电解-生化-复合催化氧化的组合工艺处理农药废水,可以使废水COD从17 954 mg/L降至86mg/L,去除率达到99%以上,出水COD降至100 mg/L以下,达到《污水综合排放标准》(GB 8978-1996)一级排放标准要求.  相似文献   

6.
采用臭氧-移动床生物膜组合工艺深度处理河北省某制革园区综合废水,通过考察臭氧投加量、臭氧接触时间对废水COD、UV254、色度处理效果的影响,确定臭氧最佳投加量为20 mg/L,最佳接触时间为40 min。在臭氧最佳运行条件下,MBBR停留时间为15 h,臭氧-移动床生物膜组合工艺出水COD、氨氮、色度可达GB 18918—2002《城镇污水处理厂污染物排放标准》一级A排放标准,出水COD为41~50 mg/L、氨氮为0.5~0.7 mg/L、色度为10~20。  相似文献   

7.
采用逐步提高进水负荷的方式,耗时65 d,成功启动了水解酸化-接触氧化-MBR生物反应器。反应器启动成功后,COD与NH_3-N的去除率分别为85%和80%,MBR膜过滤时间为100 min,反洗时间为4 min。将调试完成的"水解酸化-接触氧化-MBR"一体化设备用于处理农村污水,系统运行90 d后,出水ρ(COD)为35 mg/L,ρ(NH_3-N)为3.7 mg/L,ρ(SS)为5.1 mg/L,ρ(TP)为0.3 mg/L,均达到DB 13/2171—2015《农村生活污水排放标准》一级A标准和GB 18918—2002《城镇污水处理厂污染物排放标准》一级A排放标准,且设备运行稳定可靠。  相似文献   

8.
采用Fenton试剂氧化法针对某大型钢铁联合企业焦化厂的焦化生化出水进行了深度处理。结果表明:在初始pH=4、H2O2投加量为600mg/L、H2O2与Fe2+的质量比为2.5、反应时间为60min的条件下,COD浓度为162mg/L的焦化生化出水经Fenton氧化处理后的COD浓度小于100mg/L,COD去除率达到40%,达到国家综合污水排放一级标准(GB8978-1996)。  相似文献   

9.
油田采油污水处理工艺的试验研究   总被引:7,自引:1,他引:6  
采用化学絮凝与SBR联合的二段法对采油污水进行处理,采油污水经第一段化学破乳絮凝后,COD去除率可达到85%以上,油去除率可达到95%以上;第一段处理出水再经第二段SBR处理后COD又得到进一步去除,出水中COD≤60mg/L,BOD_5≤30mg/L、SS<30mg/L、油<10mg/L,达到了油田回注水标准和含油污水的国家二级排放标准,可实现废水的资源化。  相似文献   

10.
依据机械加工中产生的含油废水的特点,采用"破乳+膜过滤+Fenton试剂氧化+生化"的组合工艺进行处理,进入生物滤池前采用间歇操作,处理后出水再与生活污水混合后进入生物滤池进行连续处理。连续运行结果表明:该组合工艺能够有效的去除机械加工过程产生的含油污水中的污染物,即工艺进口ρ(COD)从171 641 mg/L下降到小于50 mg/L,达到地方排放标准,处理效果良好。  相似文献   

11.
X741.031200600410混凝-催化氧化处理含油污水实验研究/邹东雷…(吉林大学环境与资源学院)∥吉林大学学报(地球科学版)/吉林大学.-2005,35(2).-239~242环图N-108采用复合化学混凝及催化氧化联合工艺对油田生产废水进行了实验研究。结果表明:含油废水经混凝处理后,剩余ρ(CODCr)可以达到300mg/L左右,剩余悬浮物质量浓度小于10mg/L;再经活性炭载Cu、Pd催化剂的深度处理,含油污水中的ρ(CODCr)值由315mg/L降至50mg/L以下,达到了国家的相关排放标准。催化剂可以再生重复使用。图5表2参6X741.031200600411生物强化处理油田含油污泥的试验…  相似文献   

12.
采用混凝沉淀-酸化水解-悬挂链曝气-生物接触氧化组合工艺处理皮革和毛皮加工生产废水。实验结果表明;进水COD为2400mg/L,处理后出水COD≤100mg/L,去除率≥95.8%。各项水质指标均稳定地达到了GB8978-96污水综合排放一级标准。  相似文献   

13.
催化臭氧氧化预处理垃圾渗滤液   总被引:2,自引:0,他引:2  
采用浸渍法制备载铜活性炭催化剂,系统地研究了催化氧化法对垃圾渗滤液中的COD和氨氮去除效果,对臭氧氧化和催化臭氧氧化效率进行了对比。在该方法下制备的催化剂中,活性组分金属铜的含量为2.89%。结果表明:在投加催化剂的情况下,COD的去除效率可得到显著提高。实验结果表明:处理COD为4980mg/L,氨氮为2100mg/L的垃圾渗滤液废水,在室温、pH为3、反应时间为120min、催化剂投加量为150g/L、臭氧的流量为5.2mg/min的条件下,废水中的COD及氨氮的去除率分别达到达81.9%和99.04%。  相似文献   

14.
生物接触氧化+混凝沉淀工艺处理医院综合污水   总被引:2,自引:1,他引:1  
利用生物接触氧化、混凝沉淀工艺改造原处理工艺,处理中型医院综合污水,设计能力100 m3/d,处理效果显著且稳定达标。废水进水水质ρ(COD)为408~594 mg/L、ρ(SS)为211~280 mg/L;调试稳定后,出水水质ρ(COD)为12~40 mg/L、ρ(SS)为11~18 mg/L,COD、SS去除率分别为90.2%~97.9%、91.5%~96.1%,出水水质达山东省DB37/596-2006《医疗污染物排放标准》的二级排放标准。  相似文献   

15.
城镇污水处理厂深度处理单元采用臭氧氧化和臭氧催化氧化工艺可对溶解性难降解有机物进行强化去除。针对臭氧氧化的选择性和臭氧催化氧化去除COD的稳定性,以污水处理厂二级出水为研究对象进行臭氧氧化小试和中试试验,考察不同进水水质情况下臭氧氧化的效果,臭氧氧化后污水可生化性和NH3-N的变化情况以及臭氧催化氧化去除COD的稳定性。研究结果表明:臭氧氧化对不同水质进水COD的去除效果差异较大,对含有较多饱和有机酸的污水处理效果有限,且臭氧氧化处理后污水BOD5和NH3-N均未升高。臭氧催化氧化去除COD的效果与催化剂的吸附饱和程度相关。因此,建议设计城镇污水处理厂臭氧氧化和臭氧催化氧化工艺前需进行小试实验明确对COD的去除效果,臭氧催化氧化小试实验需进行90 d以上或试验至臭氧催化剂达到吸附饱和,不建议在臭氧氧化工艺后增设生物滤池和曝气生物滤池。  相似文献   

16.
生物接触氧化法在矿区生活污水处理中的应用   总被引:6,自引:0,他引:6  
应用生物接触氧化法处理矿区生活污水,针对矿区生活污水水质COD为240mg/L,BOD为120mg/L,SS为100mg/L,pH为7.6的特点,处理后出水可达GB8978—96一级排放标准。该工艺能有效去除生活污水中的污染物,工艺设备简单,占地少,运行便利,又剩余污泥量少。  相似文献   

17.
O_3/木屑强化SBR法处理垃圾渗滤液的研究   总被引:1,自引:0,他引:1  
黄智  李飞  莫钰  周振明 《环境工程》2009,27(4):10-12
木屑作为强化剂加入SBR反应器中,采用O3+SBR强化生化处理法组合工艺对垃圾渗滤液进行处理,结果表明:臭氧前处理垃圾渗滤液时,60 min内,空气流量为400 mL/min,臭氧浓度为10.4 mg/L时,垃圾渗滤液COD降低42%。加入木屑作为SBR强化剂,可在进水垃圾渗滤液COD为4 200 mg/L,有机负荷达到1.7 kg/(kg.d)时,COD的去除率稳定在80%,二级强化法串联使用,出水水质达到国家污水综合排放一级排放标准。  相似文献   

18.
某工业园区综合废水处理厂设计规模5.0×104m3/d,原设计出水执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级B标准,需将出水标准提高到一级A排放标准.分别采用混凝沉淀法和高级氧化法深度处理二级生化出水.小试试验结果表明:二级生化出水CODcr在62~75 mg/L左右,PAC、Al2(SO4)3及PFS三种絮凝沉淀药剂处理出水CODcr去除效果均不明显,不能稳定达到一级A排放标准.芬顿催化氧化的pH=5,FeSO4+H2O2投加量为(200+100)mg/L;臭氧氧化的O3投加量33 mg/L,其出水CODcr均能达到一级A排放标准.  相似文献   

19.
臭氧-曝气生物滤池深度处理垃圾焚烧渗滤液可行性研究   总被引:6,自引:0,他引:6  
研究了臭氧-曝气生物滤池(BAF)代替纳滤和反渗透深度处理垃圾焚烧渗滤液达标排放的技术可行性.半间歇臭氧氧化试验表明,实验用水的可生化性随着氧化时间的增加而增加,色度及UV254, 15min内去除率分别达91%和64%;氧化时间为45min时COD去除率59%, 45min后COD去除较慢, 120min时去除率77%.确定臭氧氧化时间为1h,在同样臭氧浓度与流量下进行了臭氧-BAF处理垃圾焚烧渗滤液的连续实验.结果发现,此工艺对COD、色度和UV254的去除率分别可达75%,95%和90%,其中2/3运行时间里COD低于排放标准100 mg/L.其中出水色度可稳定保持在40度以下达标排放.经过进一步优化,臭氧-BAF有望用于垃圾焚烧渗滤液的达标处理.GC-MS检测表明烷烃,芳香族化合物及含氮杂环化合物是试验用水的主要污染物,臭氧-BAF能够有效去除后两类化合物,但难以去除烷烃.  相似文献   

20.
水解—好氧处理制药废水的试验研究   总被引:2,自引:1,他引:2  
采用水解与好氧相结合技术处理制药废水,在加入生活污水后制药废水易于处理。试验结果表明,进水CODCr和BOD5的浓度为2800mg/L和1040mg/L,经过水解酸化和两级接触氧化处理后,出水COD和BOD浓度分别为98.6mg/L和28.5mg/L,COD和BOD的总去除率分别为96.5%和97.3%,能满足国家污水综合排放标准的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号