首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Climate change and land use may significantly influence metal cycling in dynamic river systems. We studied temporal variation of sediment characteristics in a floodplain lake, including concentrations of dissolved organic carbon, acid volatile sulfide and trace metals. The sampling period included a severe winter inundation and a dramatic water level drop during summer. Temporal changes were interpreted using multivariate analysis and chemical equilibrium calculations. Metal concentrations in sediment increased with depth, indicating a gradual improvement of sediment quality. In contrast, dissolved metal concentrations were highest in top layers due to mobilization from oxyhydroxides and precipitation with sulfides in deeper layers. Inundation had a mobilizing effect as it stimulated resuspension and oxygenation of sediment top layers. Water table lowering combined with organic matter decomposition led to immobilization due to sulfide formation. The chemistry of the sediments was consistent with model calculations, especially for macro-elements. The results illustrate the importance of seasonality for metal risk assessment.  相似文献   

2.
Demirak A  Yilmaz F  Tuna AL  Ozdemir N 《Chemosphere》2006,63(9):1451-1458
Concentrations of heavy metals (Cd, Cr, Cu, Pb and Zn) were measured in water, bottom sediment and tissues (muscle and gills) of Leuciscus cephalus from the Dipsiz stream in the Yatagan basin (southwestern Turkey), the site of a thermal power plant. Results for levels in water were compared with national and international water quality guidelines, as well as literature values were reported for streams and rivers. Comparisons were made of metal concentrations in water and sediment with those in the muscle and gills of L. cephalus caught from the Dipsiz stream. We found that there was metal accumulation in the gills compared to the muscle. Concentrations of Cd, Pb, Zn and Cr in the gills were higher than that in the muscle; however, Cu levels were higher in muscle than that in gills. Concentrations of heavy metals in L. cephalus muscle were below the legal limits for human consumption, although Cr, Pb and Zn levels in the gills were above the limits in the fish taken from the Dipsiz stream. On the other hand, no correlation was found between metal concentrations in water and sediment or between metal concentrations in water and muscle and gills of L. cephalus. A positive correlation was found between concentrations of Cu and Zn in the sediment and in fish tissue, whereas there was no relationship between other metal concentrations in the sediment and water, and muscle and gills of L. cephalus. As with water, Pb and Cd concentrations in particular were higher in sediment than that in background levels. The results show that the pollutants from the thermal power plant may be a source of these elements.  相似文献   

3.
To determine the extent of metal accumulation in some aquatic macrophytes from contaminated urban streams in southeast Queensland, plants were sampled from six sites, along with contiguous sediments. In all, 15 different species were collected, the most common genera being Typha (Cattails or Bulrushes) and Persicaria (Knotweeds). Before heavy metal analysis, plants were further separated into various morphological tissues, and five selected samples were separated into various physiological tissues. The cadmium, copper, lead and zinc content of the plants were analysed using flames AAS. In general, plant roots exhibited higher metal concentrations than the contiguous sediments. Of the metals of interest, only for zinc was there a relatively clear pattern of increasing accumulation in aquatic macrophytes with increasing sediment metal concentrations. Comparison between morphological tissues of the sampled plants found that roots consistently presented higher metal concentrations than either the stems or leaves, however unlike previous studies, this investigation revealed no consistent trend of stems accumulating more metals than the leaves. For Typha spp., metal concentrations followed the order of roots > rhizomes > leaves, while for Persicaria spp. the order was roots > leaves > stems. The submerged species Myriophyllum aquaticum accumulated the highest levels of metals overall (e.g. Zn 4300 micrograms g-1 dry weight and Cd 6.5 micrograms g-1), and the emergent macrophytes also exhibited relatively high metal contents in their roots. The leaves of the submerged and floating-leafed species collected contained relatively high quantities of the four metals of interest, compared with the leaves of emergent aquatic macrophytes. In the Typha rhizome and Persicaria stem samples analysed for internal variation in metal content, there was a pattern of increasing metal concentrations towards the external sections of the stem, both for subterranean stems (rhizomes) and above-substrate stems. For Persicaria stems, no clear pattern was observed for cadmium and lead, the two metals investigated that are not required by plants for survival.  相似文献   

4.
To determine changes in metal distribution, bioavailability and toxicity with sediment depth, two 20-cm-long replicate cores were collected from a lake historically subjected to the influence of metal mining and smelting activity. The vertical distribution of Pb, Cd and Cu in sediment was similar for all three metals, with the surface layers showing enrichment and the deeper (pre-industrial) layers showing lower concentrations. Toxicity of each sediment core section was determined in laboratory tests with the freshwater amphipod Hyalella azteca. Bioavailable metal in each sediment slice was estimated from metal concentrations in overlying water in these toxicity tests and, for Cd, also from metal bioaccumulation. The profile for Cd in tissue was comparable to Cd in sediment and overlying water, but relative Cd bioavailability from sediment increased with sediment depth. Survival increased with increasing sediment depth, suggesting that surface sediments were probably less or non-toxic before industrialization.  相似文献   

5.
The utility of stable isotope tracers for investigating the relationship between cadmium (Cd) partitioning in artificial sediment-water systems and Cd accumulation in a benthic detritivore (Asellus racovitzai, Isopoda) was explored. In the laboratory, Cd isotopes were applied to synthetic sediment and isotope concentrations were measured in sediment, overlying water and exposed asellids over a 10-day period. Isotope ratios measured in sediment and water were compared to ratios measured in asellids to determine whether Cd partitioning could predict metal bioaccumulation. Two different parameters which might affect Cd partitioning between the sediment and overlying water compartments were investigated: the chemical form in which Cd was added to systems, and the organic matter content of the sediment. To test the effect of chemical form on Cd partitioning, three isotopes of cadmium were individually applied to formulated sediment in varying combinations of 113Cd(NO3)2, 112Cd-humic acid (HA) 114CdSO4. The results demonstrated that chemical form did not influence partitioning, as the Cd isotope that was applied to sediment in the nitrate form exhibited similar partitioning between sediment and overlying water as the isotope that was applied in the sulfate or HA form. However, Cd isotope concentrations in overlying water were strongly related to the pattern of isotope accumulation in asellids suggesting that overlying water concentrations determined Cd bioaccumulation. In contrast, when the organic matter content of sediment was increased through the addition of Sphagnum peat moss, total Cd concentrations in overlying water and tissue were low, and there was no relationship between Cd-isotope concentrations in tissue and water. These results indicate that Cd accumulation occurred primarily from water, and factors that increase metal partitioning to sediment, such as increased sediment organic matter content, decrease Cd accumulation in asellids. The stable isotope tracer method described herein appears to be a useful technique for investigating the relationship between metal partitioning and bioaccumulation in simple sediment systems, but could also be extended to more complex systems, and used with different metals that have multiple stable isotopes.  相似文献   

6.
Stormwater ponds have become common features of modern development and often represent significant amounts of open space in urbanized areas. Although stormwater ponds may provide habitat for wildlife, factors responsible for producing variation in wildlife use of ponds have received limited attention. To investigate the role of variation in species tolerances of pollutants in structuring pond-breeding amphibian assemblages, we exposed species tolerant (Bufo americanus) and not tolerant (Rana sylvatica) of urbanization to pond sediments in laboratory microcosms. Pond microcosms had elevated sediment metal levels and chloride water concentrations. Among R. sylvatica embryos, exposure to pond sediments resulted in 100% mortality. In contrast, B. americanus embryos and larvae experienced only sublethal effects (i.e., reduced size at metamorphosis) due to pond sediment exposure. Our results suggest variation in pollutant tolerance among early developmental stages of amphibians may act in concert with terrestrial habitat availability to structure amphibian assemblages associated with stormwater ponds.  相似文献   

7.
The role of land use on fate of metals in soils is poorly understood. In this work, we studied the incorporation of lead in two neighboring soils with comparable pedogenesis but under long-term different agricultural management. Distributions of anthropogenic Pb were assessed from concentrations and isotopic compositions determined on bulk horizon samples, systematical 5-10 cm increment samples, and on 24-h EDTA extracts. Minor amounts of anthropogenic lead were detected until 1-m depth under permanent grassland, linked to high earthworm activity. In arable land, exogenous Pb predominantly accumulated at depths <60 cm. Although the proximity between the two sites ensured comparable exposition regarding atmospheric Pb deposition, the isotopic compositions clearly showed the influence of an unidentified component for the cultivated soil. This work highlights the need for exhaustive information on historical human activities in such anthropized agrosystems when fate of metal pollution is considered.  相似文献   

8.
The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system.  相似文献   

9.
Root and shoot samples of Eriocaulon septangulare, Nuphar variegatum, Nymphaea odorata and Pontederia cordata were collected from 15 lakes in central Ontario during the summer of 1988 to investigate possible relationships between zinc and chromium levels in aquatic macrophytes and water and sediment variables. Although concentrations of zinc and chromium differed greatly among the four species, both metals were consistently higher in Eriocaulon. Generally, root and rhizome tissue contained higher zinc and chromium than shoot tissues of the same species and site. Zinc concentrations (dry weight) ranged from 6.3 microg g(-1) in Nuphar shoots to 87.7 microg g(-1) in whole Eriocaulon. Chromium ranged from 0.23 microg g(-1) in Pontederia shoots to 23.9 microg g(-1) in whole Eriocaulon. No significant trends were detected throughout the growing season in macrophyte or sediment concentrations of either metal. Results of multiple linear regression analyses of several water quality and environmental variables on Eriocaulon indicated that sediment zinc was the best predictor of plant zinc, and sediment chromium and calcium were the best predictors of plant chromium.  相似文献   

10.
Metal concentrations of the inshore greentail prawn, Metapenaeus bennettae, and surface sediments from locations within Sydney estuary and Port Hacking (Australia) were assessed for bioaccumulation and contamination. The current study aimed to assess metal concentrations in prawn tissue (tail muscle, exoskeleton, hepatopancreas and gills), relate whole body prawn tissue metal concentrations to sediment metal concentrations and animal size, as well as assess prawn consumption as a risk to human health. Metal concentrations were highest in sediment and prawns from contaminated locations (Iron Cove, Hen and Chicken Bay and Lane Cove) in Sydney estuary compared with the reference estuary (Port Hacking). Concentrations in sediments varied considerably between sites and between metals (As, Cd, Cr, Cu, Ni, Pb and Zn), and although concentrations exceeded Interim Sediment Quality Guideline-Low values, metals (As, Cd, Cr, Cu, Ni, Pb and Zn) were below Australian National Health and Medical Research Council human consumption guidelines in prawn tail muscle tissue. Metal concentrations in prawn tail muscle tissue were significantly different (p?≤?0.05) amongst locations for Pb, Zn and Cd, and metal concentrations were generally highest in gills tissue, followed by the hepatopancreas, exoskeleton and tail muscle. The exoskeleton contained the highest Sr concentration; the hepatopancreas contained the highest As, Cu and Mo concentrations; and the gills contained the highest Al, Cr, Fe and Pb concentrations. Concentrations of Pb, As and Sr were significantly different (p?≤?0.05) between size groups amongst locations.  相似文献   

11.
We used the biomonitor, Corbicula fluminea, to investigate the contributions of trace elements associated with different point sources and land uses in a large river. Trace elements were analyzed in tissues of clams collected from 15 tributary streams draining five land use or point source types: agriculture, forest, urban, coal-fired power plant (CFPP), and wastewater (WWTP). Clams from forested catchments had elevated Hg concentrations, and concentrations of arsenic and selenium were highest (5.0+/-0.2 and 13.6+/-0.9 microg g(-1) dry mass (DM), respectively) in clams from CFPP sites. Cadmium concentrations were significantly higher in clams from urban and CFPP sites (4.1+/-0.2 and 3.6+/-0.9 microg g(-1) DM, respectively). Non-metric multidimensional scaling (NMS) of tissue concentrations in clams clustered at CFPP and forest/agriculture sites at opposite ends of the ordination space, and the distribution of sites was driven by Cu, Zn, Cd, and Hg.  相似文献   

12.
This study assesses the applicability of a sentinel fish species as a biomonitor of metal pollution. Gudgeon (Gobio gobio) were collected from 14 sites in metal polluted lowland rivers in Flanders, including a clear Cd and Zn pollution gradient. Fish tissues were analysed for Cd, Cr, Cu, Ni, Pb and Zn. Metal levels in organs were related to levels in water and sediment. At some sites Cd and Zn levels were up to 50 times higher compared to reference values and literature. Significant relationships between Cd and Zn in fish tissue and environmental levels were found, especially in the pollution gradient where up to 70% of the observed variation could be described. Condition factor differed significantly among the sampling sites but could not be directly related to the environmental metal levels. Nevertheless, in the pollution gradient, threshold tissue concentrations could be defined above which the condition factor was always low.  相似文献   

13.
Prairie wetlands may be important sites of mercury (Hg) methylation resulting in elevated methylmercury (MeHg) concentrations in water, sediments and biota. Invertebrates are an important food resource and may act as an indicator of MeHg exposure to higher organisms. In 2007-2008, invertebrates were collected from wetland ponds in central Saskatchewan, categorized into functional feeding groups (FFGs) and analyzed for total Hg (THg) and MeHg. Methylmercury and THg concentrations in four FFGs ranged from 0.2-393.5 ng · g(-1) and 9.7-507.1 ng · g(-1), respectively. Methylmercury concentrations generally increased from gastropods with significantly lower average MeHg concentrations compared to other invertebrate taxa. Surrounding land use (agricultural, grassland and organic agricultural) may influence MeHg concentrations in invertebrates, with invertebrate MeHg concentrations being higher from organic ponds (457.5 ± 156.7 ng · g(-1)) compared to those from grassland ponds (74.8 ± 14.6 ng · g(-1)) and ponds on agricultural lands (32.8 ± 6.2 ng · g(-1)).  相似文献   

14.
This study determined the metal levels in sediments and tissues of a common estuarine fish, Tetractenos glaber (smooth toadfish), from two metal contaminated and two reference estuaries near Sydney, Australia. Metal levels were highest in sediments and fish from contaminated estuaries. Gonads contained the highest metal levels followed by muscle, gill and liver. Metal accumulation was gender-dependant (e.g. male gonads were >20 times higher in As than females; female gills were >30 times higher than males for Pb). Cadmium, Pb and Ni levels in fish tissues reflected sediment levels, indicating sediment and/or dietary metal uptake. Levels of As, Co, Cd & Pb in gills showed similar patterns to other tissues, suggesting that metals may have been taken up by gills through contaminated water. Similar metal patterns in tissues and sediments suggest more than one uptake pathway. This study indicates that multiple factors influence metal accumulation in fish.  相似文献   

15.
Relations between urbanization and particle-associated contaminants in New England were evaluated using a combination of samples from sediment cores, streambed sediments, and suspended stream sediments. Concentrations of PAHs, PCBs, DDT, and seven trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were correlated strongly with urbanization, with the strongest relations to percentage commercial, industrial, and transportation (CIT) land use. Average PAH and metal concentrations in the most urbanized watersheds were approximately 30 and 6 times the reference concentrations, respectively, in remote, undeveloped watersheds. One-quarter to one-half of sampling sites had concentrations of PAHs, Cu, Pb, or Zn above the probable effects concentration, a set of sediment quality guidelines for adverse effects to aquatic biota, and sediments were predicted to be toxic, on average, when CIT land use exceeded about 10%. Trends in metals in cores from urban watersheds were dominantly downward, whereas trends in PAHs in a suburban watershed were upward. A regional atmospheric-fallout gradient was indicated by as much as order-of-magnitude-greater concentrations and accumulation rates of contaminants in cores from an undeveloped reference lake in Boston compared to those from remote reference watersheds. Contaminant accumulation rates in the lakes with urbanization in their watersheds, however, were 1-3 orders of magnitude greater than those of reference lakes, which indicate the dominance of local sources and fluvial transport of contaminants to urban lakes. These analyses demonstrate the magnitude of urban contamination of aquatic systems and air sheds, and suggest that, despite reductions in contaminant emissions in urban settings, streams and lakes will decline in quality as urbanization of their watersheds takes place.  相似文献   

16.
Filter-feeding bivalves have been used extensively as an indicator of ecosystem condition and in management of estuarine environments. The current study aimed to determine whether sedimentary metals could predict metal concentrations in tissue of filter-feeding mussels (Mytilus galloprovincialis) and to identify areas of the estuary where mussel consumption posed a human health risk. Mussel tissue Cu and Zn concentrations (wet weight) were below guideline values for human consumption in all parts of the waterway, whereas Pb tissue concentrations exceed these guidelines (2.0 μg?g?1 wet weight) in the upper reaches of some embayments of the estuary. Concentrations of Cu and Pb in the fine fraction (<62.5 μm) of bottom sediment reasonably predicted concentrations (dry weight) of these metals in mussel tissue (r 2?=?0.460 and p?=?0.001 and r 2?=?0.669 and p?<?0.0001, respectively) as these materials are resuspendable and available to filter-feeding estuarine animals, whereas total sediment and mussel tissue were poorly related. Lead concentrations (>350 μg?g?1) in fine sediments indicated areas of this estuary where human health was at risk due to high tissue concentrations of this metal. These results give encouragement for the use of the metal concentration in fine sediments as an indicator of estuarine condition and risk to human health in this waterway. Mussels were distributed in all parts of the estuary, even in areas where metal concentrations exceeded sediment quality guidelines.  相似文献   

17.
Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic and predictive modelling were performed, using a mass balance approach for three different catchments in the vicinity of three smelters. The catchments differ in their hydrology and geochemistry. The historic modelling results indicate that leaching to groundwater is spatially very heterogeneous due to variation in soil characteristics, in particular soil pH. In the saturated zone, cadmium is becoming strongly retarded due to strong sorption at neutral pH, even though the reactivity of the sandy sediments is low. A comparison between two datasets (from 1990 to 2002) on shallow groundwater and modelled concentrations provided a useful verification on the level of statistics of "homogeneous areas" (areas with comparable land use, soil type and geohydrological situation) instead of comparison at individual locations. While at individual locations observations and the model varies up to two orders of magnitude, for homogeneous areas, medians and ranges of measured concentrations and the model results are similar. A sensitivity analysis on metal input loads, groundwater composition and sediment geochemistry reveals that the best available information scenario based on the median value of input parameters for the model predicts the range in observed concentrations very well. However, the model results are sensitive to the sediment contents of the reactive components (organic matter, clay minerals and iron oxides). Uncertainty in metal input loads and groundwater chemistry are of lesser importance. Predictive modelling reveals a remarkable difference in geochemical and hydrological controls on subsurface metal transport at catchment-scale. Whether the surface water load will peak within a few decades or continue to increase until after 2050 depends on the dominant land use functions in the areas, their hydrology and geochemical build-up.  相似文献   

18.
Stormwater best management practices (BMPs) require regular maintenance. The impact on trace metal concentrations in a constructed stormwater wetland BMP on Staten Island, New York, was investigated by analyzing sediment concentrations and tissue residues of the dominant macroinvertebrates (Tubifex tubifex) prior and subsequent to maintenance. Trace metal concentrations were assessed using standard serial extraction (for sediment) and acid digestion (for tissue burdens) techniques, followed by quantitative determination using graphite furnace atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry, respectively. The results suggest that disturbance of sediment during maintenance of the BMP resulted in an increase in the most mobile fraction of trace metals, especially those associated with finer grained sediments (< 63 tm), and as a consequence, measured metal concentrations in macroinvertebrates increased. Regressions of a subset of metal concentrations (copper, lead, and zinc) in sediment and the macroinvertebrate tissue burden samples generally increased as a result of maintenance. A follow-up sampling event 9 months after maintenance demonstrated that the most readily available form of trace metal in the BMP was reduced, which supports (1) long-term sequestration of metals in the BMP and (2) that elevated bioavailability following maintenance was potentially a transient feature of the disturbance. This study suggests that in the long-term, performing sediment removal might help reduce bioavailability of trace metal concentrations in both the BMP and the receiving water to which a BMP discharges. However, alternative practices might need to be implemented to reduce trace metal bioavailability in the short-term.  相似文献   

19.
In-stream nitrogen, phosphorus, organic carbon, and suspended sediment concentrations were measured in 18 subbasins over 2 annual cycles to assess how land use and land cover (LULC) and stream discharge regulate water quality variables. The LULC was a primary driver of in-stream constituent concentrations and nutrient speciation owing to differences in dominant sources and input pathways associated with agricultural, urban, and forested land uses. Stream discharge was shown to be a major factor that dictated not only the magnitude of constituent concentrations, but also the chemical form. In high discharge agricultural subbasins, where nitrate was the dominant nitrogen form, there was a negative correlation between discharge and nitrate concentration indicating groundwater inputs as the dominant pathway. In urban settings, however, nitrate was positively correlated with discharge, and, in forested subwatersheds, where dissolved organic nitrogen (DON) was the dominant nitrogen form, there was a positive correlation between discharge and DON, indicating washoff from the watershed as the dominant input pathway. Similarly, phosphorus concentrations were strongly regulated by LULC, discharge, and seasonality. This comparative study highlights that different mechanisms regulate different forms of nitrogen, phosphorus, and carbon, and thus field programs or water quality models used for regulatory purposes must assess these nutrient forms to accurately apply management plans for nutrient reductions.  相似文献   

20.
Concentrations of Cd, Pb, Zn, Cu, Ni, Co, Cr, Mn and Fe in the soft tissue of Turbo coronatus, Acanthopleura haddoni, Ostrea cucullata and Pitar sp., as well as in associated surface sediments (bulk and bioavailable metal concentrations) from the Gulf of Aden, Yemen, were determined by atomic absorption spectrophotometry method. Large differences between size-classes of molluscs in metal concentrations were recorded. Significant spatial differences in metal concentrations in both the soft tissue of the molluscs and associated sediments studied were mostly identified. Statistically significant correlations (p<0.01) between concentrations of selected metals were observed. A slope of the linear regression is significantly higher than unity for Fe (9.91) and Cd (3.45) in A. haddoni and for Ni (4.15) in T. coronatus, suggesting that the bioavailability of these metals is disproportionally increased with a degree of enrichment of the sediments in Fe, Cd and Ni, respectively. A slope constant approximating to unity (1.14) for Cu in A. haddoni relative to its concentration in sediment extract implies that bioavailability of this metal proportionally increased with growing concentrations of its labile forms in the associated sediment. The degree of contamination of Gulf of Aden waters by the metals studied is discussed and the potential ability of molluscs, especially A. haddoni and T. coronatus, as biomonitors of metallic pollutants is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号