首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用活性污泥制造活性炭的研究   总被引:11,自引:0,他引:11  
万洪云 《干旱环境监测》2000,14(4):202-206,225
论述了利用在活性污泥法处理废水过程中产生的好氧污泥和厌氧污泥制造活性炭的过程,选择出最佳的制作条件,并进一步测试了产品的性能。实验结果表明,利用剩余活性污泥制造活发现灰这一方法是可行的,并且在最佳条件下制成的活性炭的吸附性能比较令人满意。  相似文献   

2.
Bulking of activated sludge is a world-widely prevalent problem and can lead to loss of bio-oxidation, further deterioration of effluent quality, and even to a complete breakdown of the entire treatment process. Most common reasons of bulking are bacterial community changes, especially excessive growth of filamentous bacteria or excess of biopolymers on surface of non-filamentous microbes. Because of complex nature of the bulking phenomenon, the successful bulking control strategy finding is still a very important need awaiting new options and advices. The repetitive extragenic palindromic PCR (REP-PCR) fingerprinting method has been applied to distinguish bacterial community in non-bulking and bulking activated sludge. The characteristic REP-PCR fingerprinting patterns, using the Ward??s clustering method, have been analyzed to determine homology/similarity relation between particular non-bulking and bulking sludge sampling. The received clustering results were in high concordance with activated sludge typing done based on physicochemical sludge analysis. The choice and application of molecular typing method in sludge analysis will depend upon the needs, skill level, and resources of the laboratory. The proposed REP-PCR method and statistical analysis of fingerprinting patterns seems to be simple, rapid, and effective methods to show differences between population in non-bulking and bulking activated sludge. It is easy to implement, and it may be useful for routinely activated sludge monitoring as well as may be helpful in early detection of bulking process.  相似文献   

3.
Proper control of the activated sludge process is essential in ensuring production of good effluent. COD adsorption capacity (CAC) of the activated sludge could be used as a control parameter. CAC is determined by mixing the activated sludge with the settled sewage and measuring the instantaneous COD reduction per unit mass of activated sludge. CAC measures substrate removal by physical adsorption and reflects the quality of the activated sludge. CAC of a healthy activated sludge increases with the flow along the aeration units. CAC could be used for process decision on variation in air supply and feed pattern to the aeration units. In a modified process to cope with sludge bulking problem, CAC could be used to estimate the air supply to the aeration unit which is merely used for reaerating the returned sludge.  相似文献   

4.
通过实验,建立了活性污泥中金属和重金属的测定方法。活性污泥样品经硝酸—氢氟酸或硝酸—高氯酸微波消解处理后,Pb、Ni、Cu、Zn、Cr、K选用火焰原子吸收分光光度法测定,Cd用石墨炉原子吸收分光光度法测定,As、Hg用原子荧光光度法测定。该方法操作简单,结果准确,重现性好。样品加标回收率为93%-108%,相对标准偏差〈5%。  相似文献   

5.
This investigation aims to represent aerobic utilization of biodegradable organic matter present in wastewater by a rate equation. This rate equation can then be used to develop a substrate utilization (removal) kinetic model for unsteady state activated sludge process. To achieve this objective, theoretical utilization of biodegradable organic matter in batch process and growth pattern theory were studied. Also, experimental data representing removal of organic matter in different types of wastewaters were collected and analyzed for batch and continuous activated sludge assays. A rate equation was proposed to describe the utilization of biodegradable organic matter based on theoretical analysis of batch process. This rate equation was then verified through differential and integral analysis of the experimental data. Furthermore, a substrate kinetic model for batch and continuous processes was developed. The developed rate equation will facilitate the analysis and design of sequencing batch reactor (SBR) technology for biological treatment of wastewater.  相似文献   

6.
Upon partial degradation of polar organic micropollutants during activated sludge treatment, transformation products (TPs) may be formed that enter the aquatic environment in the treated effluent. However, TPs are rarely considered in prospective environmental risk assessments of wastewater-relevant compound classes such as pharmaceuticals and biocides. Here, we suggest and evaluate a tiered procedure, which includes a fast initial screening step based on high resolution tandem mass spectrometry (HR-MS/MS) and a subsequent confirmatory quantitative analysis, that should facilitate consideration of TPs formed during activated sludge treatment in the exposure assessment of micropollutants. At the first tier, potential biotransformation product structures of seven pharmaceuticals (atenolol, bezafibrate, ketoprofen, metoprolol, ranitidine, valsartan, and venlafaxine) and one biocide (carbendazim) were assembled using computer-based biotransformation pathway prediction and known human metabolites. These target structures were screened for in sludge-seeded batch reactors using HR-MS/MS. The 12 TPs found to form in the batch experiments were then searched for in the effluents of two full-scale, municipal wastewater treatment plants (WWTPs) to confirm the environmental representativeness of this first tier. At the second tier, experiments with the same sludge-seeded batch reactors were carried out to acquire kinetic data for major TPs that were then used as input parameters into a cascaded steady-state completely-stirred tank reactor (CSTR) model for predicting TP effluent concentrations. Predicted effluent concentrations of four parent compounds and their three major TPs were corroborated by comparison to 3-day average influent and secondary effluent mass flows from one municipal WWTP. CSTR model-predicted secondary effluent mass flows agreed within a factor of two with measured mass flows and confidence intervals of predicted and measured mass flows overlapped in all cases. The observed agreement suggests that the combination of batch-determined transformation kinetics with a simple WWTP model may be suitable for estimating aquatic exposure to TPs formed during activated sludge treatment. Overall, we recommend the tiered procedure as a realistic and cost-effective approach to include consideration of TPs of wastewater-relevant compounds into exposure assessment in the context of prospective chemical risk assessment.  相似文献   

7.
Bioassay using cultured human cell lines was applied to an effluent of a wastewater treatment plant (WWTP) in Sapporo to assess their toxicity, and in order to investigate the fate of toxicity in the WWTP, bioassay of the water samples from several points in WWTP (influent, effluent, return flow from thickener, from dewatering process and from incineration process) was performed. We also applied bioassay to the mixture of the activated sludge from the investigated plant and artificial sewage. These results showed that the toxicity of the effluent was more intensive than the influent, and organic matter released from activated sludge bacteria during their decay process contributed to the increase of toxicity in the effluent.  相似文献   

8.
综述了活性污泥法、膜生物反应器、人工湿地等国内外常见抗生素生化去除方法的优缺点与适用范围,通过工艺对比发现,膜生物反应器和人工湿地能有效去除污水中的抗生素,活性污泥法对抗生素的去除率不高,且选择性较强;污泥龄和水力停留时间对抗生素的去除率有着显著影响,多数情况下反应器的运行改进也能提高抗生素的去除效果。针对抗生素污染问题,提出了采取加强型的复合式处理工艺、开展分区研究、出台相关管理政策等建议。  相似文献   

9.
The present study investigated the effects of heavy metals (Ni, Zn, Cd, Cu, and Pb) toxicity on the performance of 18 MLD activated sludge process-based sewage treatment plant (STP) during celebration of Holi (festival of colors in India). The composite sampling (n?=?32) was carried out during the entire study period. The findings show a significant decrease in chemical oxygen demand removal efficiency (20%) of activated sludge system, after receiving the heavy metals laden wastewater. A significant reduction of 40% and 60% were observed in MLVSS/MLSS ratio and specific oxygen uptake rate, which eventually led to a substantial decrease in biomass growth yield (from 0.54 to 0.17). The toxic effect of metals ions was also observed on protozoan population. Out of the 12 mixed liquor species recorded, only two ciliates species of Vorticella and Epistylis exhibited the greater tolerance against heavy metals toxicity. Furthermore, activated sludge shows the highest metal adsorption affinity for Cu, followed by Zn, Pb, Ni, and Cd (Cu?>?Zn?>?Pb?>?Ni?>?Cd). Finally, this study proves the robustness of activated sludge system against the sudden increase in heavy metal toxicity since it recovered the earlier good quality performance within 5?days.  相似文献   

10.
No doubt, operator is one of the main fundaments in wastewater treatment plants. By identifying the inadequacies, the operator could be considered as an important key in treatment plant. Several methods are used for wastewater treatment that requires spending a lot of cost. However, all investments of treatment facilities are useable when the expected efficiency of the treatment plant was obtained. Using experienced operator, this goal is more easily accessible. In this research, the wastewater of an urban community contaminated with moderated, diluted and highly concentrated pollution has been treated using surface and deep aeration treatment method. Sampling of these pilots was performed during winter 2008 to summer 2009. The results indicate that all analyzed parameters were eliminated using activated sludge and surface aeration methods. However, in activated sludge and deep aeration methods in combination with suitable function of operator, more pollutants could be eliminated. Hence, existence of operator in wastewater treatment plants is the basic principle to achieve considered efficiency. Wastewater treatment system is not intelligent itself and that is the operator who can organize even an inefficient system by its continuous presence. The converse of this fact is also real. Despite the various units and appropriate design of wastewater treatment plant, without an operator, the studied process cannot be expected highly efficient. In places frequently affected by the shock of organic and hydraulic loads, the compensator tank is important to offset the wastewater treatment process. Finally, in regard to microbial parameters, existence of disinfection unit is very useful.  相似文献   

11.
This study was conducted to biologically treat wastewater discharged from the textile industry (textiles made of cotton and/or synthetic fiber) using sequencing batch reactor (SBR) technology (activated sludge process operating on batch mode). To achieve the objectives of the study, the characteristics of textile wastewater and the biodegradation of its organic constituents under unsteady state conditions were studied. Then, a bench-scale pilot plant was used to study the performance of SBR by monitoring the settleability and change in the constituents (chemical oxygen demand and solids) over time. Results of the study showed that textile wastewater has different types of pollutants: heat, basicity, suspended solids, organic and inorganic matter, and heavy metals. The factors affecting the biodegradation of organic matter were determined as the reaction time and the ratio of initial substrate to sludge concentrations. Also, removal of solids was monitored, and the settling velocity as affected by sludge concentration was graphically presented to enable the determination of settling time. Finally, the outcome of this study was used to suggest a procedure for the design of a full-scale SBR unit for treatment of textile wastewater.  相似文献   

12.
微生物监测在啤酒工业废水处理中的应用研究   总被引:1,自引:0,他引:1  
用活性污泥工艺处理啤酒工业废水,通过长期对活性污泥生物相中主要微生物的监测表明,其种类和数量变化与处理系统进、出水水质变化密切相关。以此了解系统运行状况、判断工艺故障获得了满意效果。  相似文献   

13.
The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.  相似文献   

14.
脱氢酶活性检测方法及其在环境监测中的应用   总被引:13,自引:0,他引:13  
介绍了脱氢酶活性检测的方法及其在活性污泥活性检测、细菌菌落总数检测、水质毒性检测、土壤污染等检测与研究领域的应用。  相似文献   

15.
When a domestic wastewater treatment plant (DWWTP) is put into operation, variations of the wastewater quantity and quality must be predicted using mathematical models to assist in operating the wastewater treatment plant such that the treated effluent will be controlled and meet discharge standards. In this study, three types of gray model (GM) including GM (1, N), GM (1, 1), and rolling GM (1, 1) were used to predict the effluent biochemical oxygen demand (BOD), chemical oxygen demand (COD), and suspended solids (SS) from the DWWTP of conventional activated sludge process. The predicted results were compared with those obtained using backpropagation neural network (BPNN). The simulation results indicated that the minimum mean absolute percentage errors of 43.79%, 16.21%, and 30.11% for BOD, COD, and SS could be achieved. The fitness was higher when using BPNN for prediction of BOD (34.77%), but it required a large quantity of data for constructing model. Contrarily, GM only required a small amount of data (at least four data) and the prediction results were analogous to those of BPNN, even lower than that of BPNN when predicting COD (16.21%) and SS (30.11%). According to the prediction, results suggested that GM could predict the domestic effluent variation when its effluent data were insufficient.  相似文献   

16.
The occurrence and fate of fourteen androgens, four estrogens, five glucocorticoids and five progestagens were investigated in two different types of wastewater treatment plants (Plant A: activated sludge with chlorination, and Plant B: oxidation ditch with UV) of Guangdong province, China. 14, 14, and 10 of 28 target compounds were detected in the influent, effluent and dewatered sludge samples with the concentrations ranging from below 1.2 ± 0.0 ng L(-1) (stanozolol) to 1368 ± 283 ng L(-1) (epi-androsterone), below 1.0 ± 0.0 ng L(-1) (progesterone) to 23.1 ± 1.0 ng L(-1) (5α-dihydrotestosterone), 1.0 ± 0.1 ng g(-1) (estrone) to 460 ± 4.4 ng g(-1) (5α-dihydrotestosterone), respectively. The concentrations of total androgens (1554-1778 ng L(-1) in influent, 13.3-47.8 ng L(-1) in effluent, 377-923 ng g(-1) in dewatered sludge) were much higher than those of total estrogens (41.5-60.2 ng L(-1) in influent, 5.6-13.5 ng L(-1) in effluent, 13.9-57.8 ng g(-1) in dewatered sludge), glucocorticoids (171-192 ng L(-1) in influent, 2.2-6.3 ng L(-1) in effluent, N.D.-4.4 ng g(-1) in dewatered sludge), and progestagens (39.6-40.5 ng L(-1) in influent, 6.9-12.1 ng L(-1) in effluent, N.D. in dewatered sludge) in these two WWTPs. According to mass balance analysis, the removal rates of most target steroids in Plant A had exceeded 90%, while those in Plant B for nearly half of detected target steroids were lower than 80%. It is obvious that the treatment capacity of the activated sludge system (Plant A) is superior to the oxidation ditch (Plant B) in the degradation of steroids in sewage treatment systems. Androgens, estrogens and progestagens were mainly removed by sorption and degradation, while the reduction of glucocorticoids was primarily due to degradation.  相似文献   

17.
Pharmaceuticals and personal care products (PPCPs) represent pollutants of emerging concern, originating in surface and drinking waters largely from their persistence in wastewater effluent. Accordingly, a wealth of recent investigations has examined PPCP fate during wastewater treatment, focusing on their removal during conventional (e.g., activated sludge) and advanced (e.g., ozonation and membrane filtration) treatment processes. Here, we compile nearly 1500 data points from over 40 published sources pertaining to influent and effluent PPCP concentrations measured at pilot- and full-scale wastewater treatment facilities to identify the most effective series of technologies for minimizing effluent PPCP levels. Available data suggest that at best a 1-log(10) concentration unit (90%) of PPCP removal can be achieved at plants employing only primary and secondary treatment, a performance trend that is maintained over the range of reported PPCP influent concentrations (ca. 0.1-10(5) ng L(-1)). Relatively few compounds (15 of 140 PPCPs considered) are consistently removed beyond this threshold at facilities using solids removal and conventional activated sludge (CAS), and most PPCPs are removed to a far lesser extent. Further, increases in CAS hydraulic retention time or sludge retention time do not appreciably increase removal beyond this limit. In contrast, plants employing advanced treatment methodologies, particularly ozonation and/or membranes, remove the vast majority of PPCPs beyond 1-log(10) concentration unit and oftentimes to levels below analytical detection limits in effluent. Data also indicate that passive approaches for tertiary treatment (e.g., wetlands and lagoons) represent promising options for PPCP removal. We conclude by addressing future challenges and frontiers in wastewater management posed by PPCPs including analytical needs for their real-time measurement, energy demands associated with advanced treatment technologies, and byproducts arising from transformation of PPCPs during treatment.  相似文献   

18.
Nitrification and carbon removal are investigated in aerobicbatch digestion of various sludges. The experiments arecarried out with activated sludge (Test 1) and with amixture of activated and primary settling sludge (Test2). The nitrification rate was monitored, measuring theNO2 - concentration. At the 3rd day of thedigestion 40.7 mgNO2-N/l and 3.89 mgNO2-N/l werefound in Tests 1 and 2 respectively. In a digestion process,the degradation of biomass indicates the beginning of theendogenous phase. Our measure for biomass content of thesludge was protein analysis. In Test 1, the first day valuesof 50.93 mgTOC/ gdry matter/day and 138.53mgprotein-C/gdry matter/day for specific TOC andprotein-C removal rates showed, that the digestion processbegan in the endogenous phase. For Test 2, since theendogenous phase began after removal of raw organic matter inprimary settling sludge, specific TOC and protein-C removalrates were observed to be 60.12 mgTOC/gdry matter/dayand 26.72 mgprotein-C/gdry matter/day,respectively.  相似文献   

19.
本文着重介绍射流曝气活性污泥法在外贸冷藏厂废水治理中的应用。此法既适用于大流量的污水处理,也适用于小流量的污水处理,运行方式灵活,日常运行费用较低。经调试运行结果表明,处理效果明显,并取得了一定的经济效益和环境效益。  相似文献   

20.
The removal capacity of different wastewater treatment plant (WWTP) technologies adopted in rural areas for phthalate was investigated in the Eastern Cape, South Africa. Wastewater samples collected from three selected WWTPs which use activated sludge (AS), trickling filter (TF), and oxidation pond (OP) technology were extracted using the solid-phase extraction method followed by gas chromatography-mass spectrometry (GC-MS) analysis. The six selected phthalate esters (PAEs) dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di(2-ethyl hexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP) were detected in all the samples collected from the WWTPs. DBP was the most abundant compound in the influent, effluent, and sludge samples with a maximum detection of 2497 μgL?1, 24.2 μgL?1, and 1249 μg/g dW, respectively, followed by DEHP and BBP. There was a relatively high removal capacity achieved by AS in Alice, TF in Berlin, and OP in Bedford with a removal efficiency that varied between 77 and 99%, 76 and 98%, and 61 and 98%, respectively. A high significant correlation of PAE removal with total suspended solids (TSS) and turbidity suggests that the removal performance proceeded more through adsorption on settling particles and sludge than on biodegradation. However, the concentrations of PAEs detected in the final effluent and sludge samples exceeded acceptable levels allowed internationally for a safe aquatic environment. AS may have exhibited a more stable and better performance across the different seasons; however, pollution source control still deserves a special attention to prevent the risk posed by these micropollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号