首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
还原法修复六价铬污染土壤的研究   总被引:1,自引:0,他引:1  
摘要:铬渣中含有毒性较强的六价铬化合物,其严重污染环境。本文通过实验室模拟试验,研究了硫代硫酸钠、亚硫酸钠、抗坏血酸和硫酸亚铁等还原剂对铬渣污染土壤中六价铬的解毒效果。探讨了还原剂的浓度、pH和反应时间对六价铬还原效果的影响。结果表明:亚硫酸钠浓度为1mol/L、pH9.5和反应时间为15min时对六价铬的还原效果最佳。  相似文献   

2.
Fenton试剂处理活性艳红印染废水的实验研究   总被引:3,自引:1,他引:2  
采用Fenton试剂对活性艳红印染废水进行了处理。通过正交实验考察了反应时间、反应温度、双氧水/硫酸亚铁摩尔比以及pH对印染废水的色度及COD去除率的影响,确定了Fenton试剂处理废水的最佳条件。结果表明,随着反应时间的延长,色度及COD去除率增大,最佳反应时间为20 min;色度及COD的去除率随着反应温度的升高而增大,最佳反应温度为50℃。色度及COD的去除率在双氧水(30%)的用量与硫酸亚铁用量之比为1:3.1时,去除效果最好;最佳pH值为4.5。出水达到排放标准。此法具有去除率高,设备简单,占地面小,操作方便,不产生二次污染等优点。  相似文献   

3.
实验室重金属废水处理研究   总被引:1,自引:0,他引:1  
根据实验室废水中Hg2+和Cr3污染特点,以硫酸亚铁、硫化钠作为还原剂,将废水中的Cr6+还原为Cr3+,Hg2+和Cr3+以沉淀的形式混凝去除。分别考察pH值、反应时间及还原剂投加量对两种重金属去除率的影响,结果表明过低的反应时间不利于Cr6+和Hg2+的去除,pH2.0时,Cr6+和Hg2+的还原效率较高,FeSO4和Na2S加量分别在1 000 mg/L和667 mg/L时,Cr6+和Hg2+具有较高的去除效率。利用正交实验对污染物去除条件进行优化,结果表明,两种无机还原剂投加比例对铬、汞两种重金属离子的去除率影响大,pH值次之,反应时间对去除率的影响最小,在pH为2.0、FeSO4和Na2S加量分别在1 000 mg/L和667 mg/L,反应时间为30 min时,废水中Hg2+和Cr6+的去除率最高,分别达到98.23%、95.97%,处理后废水达到国家污水排放标准。  相似文献   

4.
以硫代硫酸钠为还原剂,将铬渣中的六价铬(Cr(VI))解毒转化为三价铬(Cr(III)),并加入磷酸盐作为稳定剂稳定解毒后的铬渣,考察不同反应时间和药剂用量对铬渣中Cr(VI)去除效果的影响.结果表明:硫代硫酸钠可以有效去除铬渣中的Cr(VI),当其与Cr(VI)的摩尔比为理论摩尔比的12倍、处理时间15d时铬渣中Cr(VI)的去除率达到最高(70%),继续增加还原剂用量或延长反应时间均不能有效提高Cr(VI)的去除率.随后加入磷酸钠作为稳定剂,当其物质的量为生成Cr(III)的4倍时,硫代硫酸钠与磷酸钠分步加入(两步法)比同时加入(一步法)处理铬渣的效果较好,处理效果最好时总铬浸出浓度为6.1mg/L,低于危险废物浸出鉴别的总铬标准(15mg/L),而且形成稳定的铬的化合物(CrPO4·6H2O).铬渣pH值变化、五态变化、XRD及XPS分析等结果表明,两步法的处理效果好于一步法.  相似文献   

5.
项目采用硫酸亚铁-絮凝法处理高浓度含氰废水,寻找优化工艺条件,以进一步提高CN-的去除率,亚铁法降总氰的最佳反应条件为:亚铁质量:总氰含量大于50:1(质量比),有搅拌时反应时间短,随沉淀时间延长,去除效果增大。反应过程中通过投加过量亚铁生成普鲁士蓝沉淀,由于实际反应过程中反应产物复杂,现场亚铁使用量远远高于理论计算量,在酸性和碱性条件下,对总氰去除效果均较高,去除率达到96%以上。工业应用结果表明,出水中总氰由1500mg/L降至20-30mg/L,满足内部工业循环水排放的标准,通过限制总量排放,保证总排口达标排放(总氰<0.5mg/L)。  相似文献   

6.
采用Fenton试剂氧化法处理模拟金刚烷胺废水,研究不同反应条件下Fenton试剂对金刚烷胺的去除效果,确定反应的最佳条件.结果表明:当反应温度为常温(23 ~ 25℃),pH为4,H2O2投加量为3 000 mg/L,H2O2与Fe2+的质量比为1.28时,处理含金刚烷胺浓度为500 mg/L废水,CODCr去除率为...  相似文献   

7.
采用铁碳微电解/Fenton试剂组合工艺对炼油碱渣废水混凝沉淀处理后出水,进行降解研究。实验结果表明:pH值为3,废水与铁碳填料的体积比为2∶1,微电解反应时间2 h,曝气的条件下,废水的处理效果最好,COD的去除率超过42.5%。Fenton试剂处理微电解反应出水的最佳操作条件是:pH值在2~3之间、反应时间2.5 h、Fe2+浓度为800 mg/L左右、H2O2浓度为0.25 mol/L,在此条件下,Fenton试剂处理微电解处理后的炼油碱渣废水COD平均去除率为63.8%以上,微电解/Fenton工艺对COD的总去除率在79.2%左右,可生化性由0.16提高到0.56。  相似文献   

8.
项目采用硫酸亚铁-絮凝法处理高浓度含氰废水,寻找优化工艺条件,以进一步提高CN-的去除率,亚铁法降总氰的最佳反应条件为:亚铁质量:总氰含量大于50:1(质量比),有搅拌时反应时间短,随沉淀时间延长,去除效果增大.反应过程中通过投加过量亚铁生成普鲁士蓝沉淀,由于实际反应过程中反应产物复杂,现场亚铁使用量远远高于理论计算量,在酸性和碱性条件下,对总氰去除效果均较高,去除率达到96%以上.工业应用结果表明,出水中总氰由1500mg/L降至20-30mg/L,满足内部工业循环水排放的标准,通过限制总量排放,保证总排口达标排放(总氰<0.5mg/L).  相似文献   

9.
魏婕  王若男  蒋毓婷  刘树鑫 《环境工程》2020,38(12):13-18,85
采用微纳米气泡曝气的方式处理染料蓝1为原料配制的模拟水性油墨废水,以废水中的染料浓度、COD及氨氮去除效果作为考察指标,探讨废水中不同初始pH值、NaCl投加量、H2O2添加量对微纳米气浮法处理油墨废水的影响效果。实验结果表明:采用微纳米气浮去除油墨废水污染物能达到较好的效果,不同的反应条件有效促进了微纳气泡的曝气吸附作用,其中在pH为5的条件下处理效果最佳,染料浓度和COD去除率分别达到90.0%以上,氨氮去除率也达到75.4%。  相似文献   

10.
为了应对水体中六价铬的污染问题,文章研究了活性氧化铝(AA)对六价铬的吸附效果。实验考察了吸附过程中的影响因素pH、六价铬初始浓度、投加量和吸附时间对吸附效果的影响。研究结果表明:活性氧化铝对六价铬的吸附效果受pH的影响较大,六价铬的去除率随着pH值的升高先升高然后降低,最佳pH为3,去除率为84.04%。六价铬的去除率随着活性氧化铝的投加量和吸附时间的增加逐渐升高然后趋于稳定,最佳的投加量和吸附时间分别为10 g/L和90 min,去除率分别为87.34%和84.04%。随着初始浓度的不断上升,六价铬的去除率逐渐下降。在原水条件下的吸附速度和吸附容量都比在纯水条件下低。平衡吸附数据符合Freundlich和Langmuir吸附等温线模型。活性氧化铝对六价铬吸附效果非常好,可以作为去除水中六价铬的吸附剂。  相似文献   

11.
Fenton试剂法处理青霉素废水   总被引:3,自引:0,他引:3  
利用Fenton试剂处理青霉素废水,研究了pH、H2O2投加量、Fe2 投加量、反应时间和H2O2投加次数对废水COD去除效果的影响.结果表明,通过Fenton试剂氧化可使废水COD去除率达到83%.  相似文献   

12.
印染废水由于色度高,处理难度较大.通过生化处理的印染废水,仍然具有一定的色度.本研究使用混凝剂和Fenton试剂对膜生物反应器(MBR)出水进行深度处理.实验分别考察了混凝沉淀法和Fenton试剂法中加药比、投药量、pH值及反应时间对印染废水色度去除率的影响.结果显示Fenton试剂法效果明显优于混凝沉淀法,色度去除率达到92%.Fenton试剂法的最优参数如下:加药摩尔比(双氧水:硫酸亚铁)为1:3.1,投药量为500 mL膜出水投加10 mL浓度为10 g/L的FeSO4+0.126 mL浓度为30%的H2O2,pH值为4.45,反应时间为5 min.  相似文献   

13.
刘帅霞  陈勇  陈亮 《环境工程》2013,(Z1):527-529,617
比对了多种还原剂处理六价铬的解毒效果,确定了焦亚硫酸钠、硫酸亚铁两段式还原处理铬渣浸出液中六价铬和总铬的还原剂投加顺序和投加量。结果表明,该技术能使解毒后铬渣中Cr6+浓度达到0.17 mg/L,满足HJ/T 301—2007《铬渣污染治理环境保护技术规范(暂行)》解毒后铬渣六价铬≤0.5 mg/的要求,且具有较好的长期稳定性,解毒彻底,可为该技术的工程应用提供理论依据。  相似文献   

14.
采用Fenton试剂对含分散红E-4B和活性艳兰KN-R染料组成的模拟印染废水进行氧化处理,考察了H2O2和Fe2+浓度、pH、反应时间等因素对去除效果的影响。在H2O2投加量为5.0ml/L,Fe-SO4.7H2O投量为1.1g/L,pH为3,反应25min后静置5min的条件下,初始COD为700mg/L,色度为1200倍的废水的COD去除率可达到95%,脱色率达97%。结果表明,Fenton试剂对该废水可以起到很好的处理效果。  相似文献   

15.
针对印染废水中亚甲基蓝常规处理方式的不足,分别选择Fe3_O_4和Mn~(2+)代替传统芬顿试剂中的Fe~(2+),研究类芬顿试剂及H_2O_2浓度、溶液初始pH等因素对印染废水中亚甲基蓝去除效能的影响。实验结果表明,Fe3_O_4代替Fe Cl_2对亚甲基蓝的去除率低于50%,去除效果并不明显。反应溶液中H_2O_2浓度的变化对处理效果有略微影响,反应溶液中H_2O_2浓度越高,处理效果越好。Mn Cl_2作为类芬顿试剂代替Fe Cl_2,在酸性条件下对亚甲基蓝的处理效果明显增强。当Mn Cl_2浓度为0.04~0.06 mmol/L,pH值为3时处理效果最好,亚甲基蓝去除率接近100%。  相似文献   

16.
处理六价铬废水的方法比较   总被引:1,自引:1,他引:1  
曹宇  尹卿 《福建环境》1999,16(5):35-35
1 前言 化学法处理含铬废水一般均分为二步(简称“二步法”)1.1 在酸性条件下利用SO_2、NaHSO_3、FeSO_4等还原剂,将六价铬还原成三价铬;1.2 加碱提高废水的pH值使之成为氢氧化铬沉淀,然后除去。 还原反应要求在pH<3的酸性条件下进行,而沉淀的最佳条件 pH为 8.5~10.0。一般电镀废水的pH值达不到上述要求。因此在加还原剂前都有加  相似文献   

17.
采用Fenton试剂氧化法处理模拟金刚烷胺废水,研究不同反应条件下Fenton试剂对金刚烷胺的去除效果,确定反应的最佳条件。结果表明:当反应温度为常温(23~25℃),pH为4,H2O2投加量为3000mg/L,H2O2与Fe2+的质量比为1.28时,处理含金刚烷胺浓度为500mg/L废水,CODCr去除率为30%~80%,处理效果良好。因此,Fenton试剂可以有效降解金刚烷胺。通过Fenton反应,金刚烷胺废水的可生化性得到提高,B/C由0提高到0.1~0.4。对Fenton氧化金刚烷胺的中间产物的分析发现,Fenton氧化反应5min后,系统中没有检出金刚烷胺。反应30min后,中间产物已基本完全降解。  相似文献   

18.
不同的增强试剂对重金属污染场地土壤的电动修复影响   总被引:3,自引:0,他引:3  
选择重金属污染场地土壤为修复对象,研究了添加络合剂EDTA?有机酸乳酸和柠檬酸以及无机酸硝酸对电动修复该污染土壤的影响.结果表明,增强试剂的加入,显著促进了铜?铅?镍和六价铬在电场中的迁移和去除,电动过程促进了土壤重金属向有效态(醋酸铵提取)转化.其中,在阴极加入乳酸并控制pH3.5的处理,土壤中铜的去除率最高,达78.7%.在阴?阳极都加入EDTA的处理中,土壤中重金属的去除率在30%左右,重金属在靠近阴极的部分发生聚集.在阴极加入柠檬酸的处理中,土壤中铜?镍和六价铬的去除率均较高,分别为68.5%?53.3%和52.9%.阴极加入硝酸控制pH3.5对土壤中六价铬的去除率最高,达93.3%.  相似文献   

19.
《环境科学与技术》2021,44(4):131-139
该文选用硫酸亚铁、亚硫酸钠和葡萄糖作为还原剂将Cr(Ⅵ)还原为Cr(Ⅲ),采用清洗和土培实验考察铬污染稳定化效果。结果表明,硫酸亚铁有较好的稳定化效果,清洗和土培还原方式下最大去除率分别达到83.8%和91.1%,土培方式优于清洗。在此基础上,以硫酸亚铁为还原药剂,采用SEM-EDS、XRD和FTIR等表征手段分析确定六价铬转化机理,通过实验优化,确定最优投加量(n[Fe(Ⅱ)]∶n[Cr(Ⅵ)]=10∶1)和时间(18 d),并进行工程化应用,处理后降低到《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)中第一类用地的筛选值3.0 mg/kg以下。  相似文献   

20.
Fenton试剂处理苯酚废水的研究   总被引:4,自引:0,他引:4  
利用Fenton试剂对吉林某化工厂产生的苯酚废水进行试验研究,探讨了H2O2、FeSO4·7H2O、pH值、反应时间等因素对苯酚废水中COD去除效果的影响。结果表明:Fenton试剂处理苯酚废水时,受到影响因素的作用大小顺序为H2O2〉FeSO4·7H2O〉pH〉反应时间。并确定Fenton处理此类苯酚废水时最佳的运行条件为:H2O2=8mL/L,FeSO4·7H2O=1.5g/L,pH=3.5,反应时间为40min,且此条件下COD去除率为79%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号