首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
An index known as leachate pollution index (LPI) for quantifying the leachate contamination potential of municipal landfills had been developed and reported by the authors. It is a quantitative tool by which the leachate pollution data of landfill sites can be reported uniformly. LPI is an increasing scale index and has been formulated based on the Delphi technique. It provides a convenient means of summarizing complex leachate pollution data and facilitates its communication to the general public, field professionals and policy makers. However, it is observed that the LPI, like any other environmental index, fails to effectively communicate the details about the strength of various pollutants/pollutant groups present. In an effort to make the LPI more informative and useful, it is proposed to divide the LPI into three sub-indices. The aggregation of these three sub-LPIs will result in the overall LPI. The formulation and the application of LPI and its three sub-indices are presented in this paper. It has been concluded that the splitting of LPI into three sub-indices provides a better insight on the strength of various pollutants and can be useful to the experts in deciding various management issues regarding leachate treatment. The leachate characteristics of a UK landfill have been used as a case study to demonstrate the calculation of three sub-LPIs and the overall LPI.  相似文献   

2.
Environmental diagnosis methodology for municipal waste landfills   总被引:4,自引:0,他引:4  
A large number of countries are involved in a process of transformation with regard to the management of municipal solid waste. This process is a consequence of environmental requirements that occasionally materialise in legislation, such as the European Council Directive 31/99/EC on waste release in the European Union. In some cases, the remediation of old landfills can be carried out in compliance with environmental requirements; in other cases, it is necessary to proceed with the closure of the landfill and to assimilate it into its own environment. In both cases, it is necessary to undertake a diagnosis and characterisation of the impacted areas in order to develop an adequate action plan. This study presents a new methodology by which environmental diagnosis of landfill sites may be carried out. The methodology involves the formulation of a series of environmental indeces which provide information concerning the potential environmental problems of the landfills and the particular impact on different environmental elements, as well as information related to location, design and operation. On the basis of these results, it would be possible to draw up action plans for the remediation or closure of the landfill site. By applying the methodology to several landfills in a specific area, it would be possible to prioritize the order of actions required.  相似文献   

3.
Leaching behaviour of hazardous demolition waste   总被引:1,自引:1,他引:0  
Demolition wastes are generally disposed of in unlined landfills for inert waste. However, demolition wastes are not just inert wastes. Indeed, a small fraction of demolition waste contains components that are hazardous to human health and the environment, e.g., lead-based paint, mercury-contained in fluorescent lamps, treated wood, and asbestos. The objective of this study is to evaluate the release potential of pollutants contained in these hazardous components when they are mixed with inert wastes in unlined landfills. After identification of the different building products which can contain hazardous elements and which can be potentially pollutant in landfill scenario, we performed leaching tests using three different lysimeters: one lysimeter containing only inert wastes and two lysimeters containing inert wastes mixed with hazardous demolition wastes. The leachates from these lysimeters were analysed (heavy metals, chlorides, sulphates fluoride, DOC (Dissolved Organic Carbon), phenol index, and PAH). Finally, we compared concentrations and cumulative releases of elements in leachates with the limits values of European regulation for the acceptance of inert wastes at landfill. Results indicate that limit values are exceeded for some elements. We also performed a percolation column test with only demolition hazardous wastes to evaluate the specific contribution of these wastes in the observed releases.  相似文献   

4.
Overview of waste disposal and landfills/dumps in Asian countries   总被引:4,自引:0,他引:4  
Many cities in developing Asian countries face serious problems in managing solid wastes. The annual waste generation increases in proportion to the rises in population and urbanization. Asian countries with greater rural populations produce more organic waste, such as kitchen wastes, and fewer recyclable items, such as paper, metals, and plastics. Reliable data on solid waste compositions are difficult to obtain, and even if available, they are often not updated. We report the most recent waste composition data in some developing Asian countries. We suggest that a better classification system for landfills is needed to address inconsistencies in data for sanitary landfill sites versus waste dumps. We also discuss the information on waste disposal trends and problems associated with general solid waste management in developing Asian countries.  相似文献   

5.
Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society’s interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.  相似文献   

6.
The magnitude of annual global emissions of methane from municipal solid waste landfills without landfill gas control systems implies that these landfills are significant contributors to the atmospheric load of greenhouse gases. There have been a number of field studies undertaken internationally to measure actual fluxes of methane and carbon dioxide from landfills, with a view to corroborating modelled predictions of the contribution of landfills to the global greenhouse gas budget. The vast majority of these studies have been undertaken in more temperate climates and in developed countries. This paper reports a study of landfill gas emissions from four large landfills located in the semi-arid interior of South Africa. A static accumulation chamber was used and measurements were made at each site over a period of two to three days. The results were analysed by three different methods, all of them leading to the same general conclusion that landfill gas emission rates were lower than expected. A common conclusion based on results from all four sites was that capping of landfills in semi-arid climates with low permeability covers would probably significantly retard the already low rate of waste degradation and thus gas generation. While this may be regarded as advantageous in the short term, it cannot be relied upon in perpetuity as clayey landfill covers will inevitably desiccate and crack in a semiarid environment. In addition, reasonable after-care periods for such landfills are likely to extend well beyond the currently stipulated 30-year period, and efforts to encourage energy recovery from landfills may be hampered because gas generation rates decrease as the waste dries out under conditions of minimal recharge from precipitation. A landfill cover that allows small amounts of percolation of rainfall into the waste may therefore in fact be beneficial in semiarid climates, although care would need to be taken to carefully regulate this infiltration.  相似文献   

7.
Malaysia is in dire need of alternatives to landfilling for solid waste management. Recently, landfills have faced the problems of overfilling, overflowing of leachates leading to pollution of water resources, and uncontrolled dust emissions adversely affecting the local environment. With the rising cost of urbanization coupled with the high rate of waste generation, one possible method of waste treatment that is receiving particular attention by the government is incineration. Incineration of solid waste is rather new in Malaysia, with limited usage in handling small sources of waste generation such as the municipal solid waste (MSW) of resort islands; however, its potential in ameliorating the problems associated with solid waste treatment may make it an attractive alternative to landfill. This article presents the results of test runs conducted to investigate the performance of a locally designed and manufactured rotary kiln incinerator (RKI). The test runs were conducted using MSW collected from the Shah Alam municipality. The combustion efficiency was analyzed by looking at the temperature profiles and chemical species concentrations. To complement the combustion characteristics measurements, predictions of the air flow in the incinerator during the process were also investigated. The overall performance of the RKI suggests that it is suitable for treating MSW.  相似文献   

8.
This article discusses the appropriateness of using landfills as part of remediating hazardous chemical and Superfund sites, with particular emphasis on providing for true long‐term public health and environmental protection from the wastes and contaminated soils that are placed in the landfills. On‐site landfilling or capping of existing wastes is typically the least expensive approach for gaining some remediation of existing hazardous chemical/Superfund sites. The issues of the deficiencies in US EPA and state landfilling approaches discussed herein are also applicable to the landfilling of municipal and industrial solid “nonhazardous” wastes. These deficiencies were presented in part as “Problems with Landfills for Superfund Site Remediation” at the US EPA National Superfund Technical Assistance Grant Workshop held in Albuquerque, New Mexico, in February 2003. They are based on the author's experience in investigating the properties of landfill liners and the characteristics of today's landfills, relative to their ability to prevent groundwater pollution and to cause other environmental impacts. Discussed are issues related to both solid and hazardous waste landfills and approaches for improving the ability of landfills to contain wastes and monitor for leachate escape from the landfill for as long as the wastes in the landfill will be a threat. © 2004 Wiley Periodicals, Inc.  相似文献   

9.
In China, controlling environmental pollution resulting from solid waste (SW) and hazardous waste (HW) has become one of the most pressing tasks in the field of environmental engineering. It is reported that the annual generation of industrial solid waste (ISW) in China exceeded 0.6 billion tons in the 1990s, and is increasing every year. Although ISW management has been strengthened in recent years, about 40% of SW is put in uncontrolled landfill without appropriate treatment. According to statistics from the national Environmental Protection Agency, the cumulative ISW uncontrolled landfill in China had reached 6.6 billion tons by the end of 1995, occupying around 55 000 hectares of land. Although some major uncontrolled landfills were constructed, nonetheless groundwater contamination resulted from the use of low-standard liners and poor management. Furthermore, about 20 million tons of ISW was discharged into the environment illegally, and a third of this waste was discharged directly into water bodies, making ISW one of the greatest pollution sources for surface water and ground water. Environmental pollution accidents resulting from SW occur about 100 times a year in China, and environmental issues frequently arise because of ISW pollution. The practices of SW management, treatment, and disposal started relatively late in China, and for a long time the management of SW pollution has received little attention compared with water and air pollution management. China faces problems such as the insufficiency of management laws and regulations, insufficient investment, inadequate treatment and disposal technology, and a lack of qualified technicians. At present, most treatment and disposal technology cannot meet the requests for solid waste pollution control. In order to protect, restore, and improve environmental quality in China and to realize sustainable development, the safe management and disposal of solid and hazardous wastes is a pressing challenge. In recent years, much attention has been paid to SW management in China, and investment to develop management and treatment technologies has increased. In 1995, the Law for Solid Waste Pollution Protection was issued, and work on solid waste treatment and disposal began to be legally managed. SW treatment and disposal facilities have been constructed, and now operate in some large and medium-sized cities. In particular, rapid improvements have been seen in ISW recycling, collection, and disposal of municipal solid waste and regional HW management. All the figures in this paper are from 1995, and represent the situation in China in that year. Received: April 18, 2000 / Accepted: May 15, 2000  相似文献   

10.
Unlike that of western countries, the solid waste of Asian cities is often comprised of 70-80% organic matter, dirt and dust. Composting is considered to be the best option to deal with the waste generated. Composting helps reduce the waste transported to and disposed of in landfills. During the course of the research, the author learned that several developing countries established large-scale composting plants that eventually failed for various reasons. The main flaw that led to the unsuccessful establishment of the plants was the lack of application of simple scientific methods to select the material to be composted. Landfills have also been widely unsuccessful in countries like India because the landfill sites have a very limited time frame of usage. The population of the developing countries is another factor that detrimentally impacts the function of landfill sites. As the population keeps increasing, the garbage quantity also increases, which, in turn, exhausts the landfill sites. Landfills are also becoming increasingly expensive because of the rising costs of construction and operation. Incineration, which can greatly reduce the amount of incoming municipal solid waste, is the second most common method for disposal in developed countries. However, incinerator ash may contain hazardous materials including heavy metals and organic compounds such as dioxins, etc. Recycling plays a large role in solid waste management, especially in cities in developing countries. None of the three methods mentioned here are free from problems. The aim of this study is thus to compare the three methods, keeping in mind the costs that would be incurred by the respective governments, and identify the most economical and best option possible to combat the waste disposal problem.  相似文献   

11.
Considering the quality of design and construction of landfills in developing countries, little information can be derived from randomly taken leachate samples. Leachate generation and composition under monsoon conditions have been studied using lysimeters to simulate sanitary landfills and open cell settings. In this study, lysimeters were filled with domestic waste, highly organic market waste and pre-treated waste. Results over two subsequent dry and rainy seasons indicate that the open cell lysimeter simulation showed the highest leachate generation throughout the rainy season, with leachate flow in all lysimeters coming to a halt during the dry periods. More than 60% of the precipitation was found in the form of leachate. The specific COD and TKN load discharged from the open cell was 20% and 180% more than that of the sanitary landfill lysimeters. Types of waste material and kind of pre-treatment prior to landfilling strongly influenced the pollutant load. Compared to the sanitary landfill lysimeter filled with domestic waste, the specific COD and TKN load discharged from the pre-treated waste lysimeter accounted for only 4% and 16%, respectively. Considering the local settings of tropical landfills, these results suggest that landfill design and operation has to be adjusted. Leachate can be collected and stored during the rainy season, and recirculation of leachate is recommended to maintain a steady and even accelerated degradation during the prolonged dry season. The open cell approach in combination with leachate recirculation is suggested as an option for interim landfill operations.  相似文献   

12.
In situ ammonia removal in bioreactor landfill leachate   总被引:11,自引:0,他引:11  
Although bioreactor landfills have many advantages associated with them, challenges remain, including the persistence of NH(3)-N in the leachate. Because NH(3)-N is both persistent and toxic, it will likely influence when the landfill is biologically stable and when post-closure monitoring may end. An in situ nitrogen removal technique would be advantageous. Recent studies have shown the efficacy of such processes; however, they are lacking the data required to enable adequate implementation at field-scale bioreactor landfills. Research was conducted to evaluate the kinetics of in situ ammonia removal in both acclimated and unacclimated wastes to aid in developing guidance for field-scale implementation. Results demonstrate that in situ nitrification is feasible in an aerated solid waste environment and that the potential for simultaneous nitrification and denitrification (even under low biodegradable C:N conditions) in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. All rate data fit well to Monod kinetics, with specific rates of removal of 0.196 and 0.117 mgN/day-g dry waste and half-saturation constants of 59.6 and 147 mgN/L for acclimated and unacclimated wastes, respectively. Although specific rates of ammonia removal in the unacclimated waste are lower than in the acclimated waste, a relatively quick start-up of ammonia removal was observed in the unacclimated waste. Using the removal rate expressions developed will allow for estimation of the treatment times and volumes necessary to remove NH(3)-N from recirculated landfill leachate.  相似文献   

13.
In today’s context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON–ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.  相似文献   

14.
Environmental problems posed by municipal solid waste (MSW) are well documented. Scientifically designed landfills and/or open dumpsites are used to dispose MSW in many developed and developing countries. Non-availability of land and need to reuse the dumpsite space, especially in urban areas, call for rehabilitation of these facilities. A variety of options have been tried to achieve the goals of rehabilitation. In the last couple of decades, phytoremediation, collectively referring to all plant-based technologies using green plants to remediate and rehabilitate municipal solid waste landfills and dumpsites, has emerged as a potential candidate. Research and development activities relating to different aspects of phytoremediation are keeping the interest of scientists and engineers alive and enriching the literature. Being a subject of multi-disciplinary interest, findings of phytoremediation research has resulted in generation of enormous data and their publication in a variety of journals and books. Collating data from such diverse sources would help understand the dynamics and dimensions of landfill and dumpsite rehabilitation. This review is an attempt in this direction.  相似文献   

15.
16.
Landfilling in South Africa is controlled by a set of statutory Minimum Requirements, based on a landfill classification system. Landfills are classified according to the type of waste, the projected final size of the landfill and the climate. Climate is important as climatic conditions in South Africa vary from humid sub-tropical in the east, to semi-arid on the central plateau, to semi-desert in the west. Anti-pollution measures are closely related to climate and size, with the pollution potential of small, general (i.e. domestic) waste landfills in dry climates being regarded as negligible. At the other end of the scale, large landfills where hazardous wastes are disposed have a serious pollution potential and must be designed as containment systems. The paper describes the method currently in use for deciding on the climatic classification of a site, followed by the new method that will be adopted when the latest revision of the Minimum Requirements appears shortly.  相似文献   

17.
Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.  相似文献   

18.
Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices.  相似文献   

19.
Development of a database of landfills and dump sites in Asian countries   总被引:1,自引:0,他引:1  
This article briefly summarizes the limited landfill/dump information available for developing Asian countries, and introduces a database that aims to close the information gap through collecting and sharing data. Developing nations usually try to adapt the systems and technologies of developed countries. However, this approach may not be appropriate because of differences in socioeconomic, cultural, and political backgrounds. Many waste management projects fail after operations are transferred to local authorities owing to a lack of funds to cover the high operational expenses. Some successful projects have been adapted to local conditions, although the information on these successes is not often available for others. Nevertheless, only a few developing countries even have a national inventory of their dumps/landfills, and decision-makers have little awareness of the dumps and their impacts. The database introduced here will gather landfill/dump information from each country and organize it in a comparable format, and it will then be published on the Internet.  相似文献   

20.
Environmental risks are a growing public concern in America. The threat of contaminated drinking water from municipal solid waste (MSW) landfills is receiving increased attention from citizens and from the United States Environmental Protection Agency (USEPA). Examination of USEPA data collected from MSW landfills reveals approximate risks posed by these landfills. USEPA research suggests that 60% of MSW landfills present less than a 1 in 10 billion risk of cancer incidence. Another 6% pose risks less than 1 in a billion, while 17% present risks less than 1 in a million. This study addresses the USEPA risk assessment techniques and models for estimating MSW landfill risks. USEPA data for toxic constituents of landfill leachate are also analysed in order to better understand the difficulties encountered in estimating landfill risks. The study also presents a brief discussion of public perceptions of risk as they relate to communicating the USEPA landfill model results to those who might be affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号