首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
通过对比研究典型有害微藻海洋原甲藻(Prorocentrum micans Ehrenberg)自然消亡(A1组)及改性黏土絮凝(A2组)两种体系,考察两体系中氮、磷等主要水质因子的变化情况.结果表明,改性黏土能有效去除P.micans并影响其后期生长状态,0.4g/L改性黏土添加3.5h后去除率可达60%以上,且藻密度无二次增长.改性黏土絮凝藻华过程中能有效去除水体营养元素,A2组DIP和DIN较A1组分别降低85%和35%.另外,添加改性黏土对水体有机氮、磷影响值得关注,第33d A2组TON和TOP较A1组分别减少约120,6μmol/L.改性黏土对有机氮、磷存在一定的埋存保护作用,通过吸附絮凝、螯合等作用使有机氮、磷脱离水体系统,而自然消亡体系中的微藻消亡后将通过分解、矿化等过程快速进入水体参与再循环.该研究系统阐述了改性黏土絮凝P.micans对水体营养环境的影响,以期为现场治理提供理论支持.  相似文献   

2.
研究了改性粘土对虾夷扇贝稚贝的急性和慢性影响,探索了改性粘土除藻过程中对虾夷扇贝稚贝的影响。96 h急性毒性实验发现,改性粘土对虾夷扇贝稚贝的半致死浓度为2.3 g/L,安全浓度为0.23 g/L,高于现场使用的浓度0.1 g/L。慢性毒性实验显示,0.1~1.0 g/L的改性粘土对虾夷扇贝稚贝的存活率、壳长和壳高略有影响,但是影响不显著。对稚贝滤食率的研究发现,加入改性粘土会影响其摄食,并且随着改性粘土浓度的增高影响越明显。模拟养殖水体爆发藻华后喷洒改性粘土的实验表明,改性粘土在有效去除藻细胞,改善水体环境的同时,还能使虾夷扇贝稚贝的存活率从22%提高到38%。另外,如采用先改性粘土治理后投放稚贝的策略,稚贝的存活率大大提高,约是对照组的3倍。本文的实验结果说明采取适当的策略和适当用量的改性粘土即可有效去除有害藻华,也对虾夷扇贝稚贝之类的养殖生物无害甚至有益,是一种极具应用前景的藻华治理技术方法。  相似文献   

3.
采用给水厂副产物铝污泥代替黏土作为下沉载体,利用壳聚糖改性,将其用于铜绿微囊藻的絮凝去除.结果表明,壳聚糖与铝污泥以1:50的质量比复合改性后除藻效果明显提高:对于藻密度约为4.88×106cells/mL的含藻水,当改性铝污泥最佳投加量为0.25g/L,30min后藻密度和浊度去除率分别达到100%和98.92%,形成的絮体完整紧实,分形维数值为1.719.通过Zeta电位、SEM等表征分析,此过程主要依靠壳聚糖、铝污泥及藻类之间的"电性中和"与"吸附架桥"等的作用,混凝絮凝过程快速高效且投加量小,最佳环境pH值介于7~9.5,外加NaCl、CaCl2在离子强度较低情况下基本不影响絮凝沉淀过程.加之铝污泥对水体中的磷具有良好的吸附作用,因此壳聚糖改性铝污泥对淡水水体中铜绿微囊藻的去除及生长抑制具有良好的效果,实现了"以废治污".  相似文献   

4.
研究了改性小麦秸秆对赤潮异弯藻的去除作用和机制.结果表明,在与未改性秸秆相同用量(0.10 g/L)的情况下,在120 m in时,改性秸秆对赤潮异弯藻的去除率可以从10%左右提高到80%以上.为了探讨改性秸秆对赤潮异弯藻的去除机制,测定了核苷酸在260 nm时的吸光度,结果发现水体内核苷酸物质浓度增大,说明在此作用过程中,藻细胞膜结构遭到破坏,核苷酸物质由胞内释放.当改性秸秆用量为0.15 g/L时,释放核苷酸在260nm时吸光度与正常细胞的吸光度比值为1.17,此时改性秸秆对赤潮异弯藻造成的损害是不可逆的.实验发现,改性秸秆对赤潮异弯藻同时具有吸附作用和灭杀作用.当浓度较低时,改性秸秆通过吸附细胞体,或者与细胞膜结合,从而导致部分藻细胞的絮凝;而当浓度进一步增加时,改性秸秆可以破坏细胞膜的结构,导致大量膜内物质的释放,进而导致藻细胞的死亡.  相似文献   

5.
以海藻酸钠为藻源有机质的模式化合物,考察了赤潮水体中藻源有机化合物对改性黏土絮凝速率及絮凝体特征的影响;并利用图像分析法,测定了絮凝体的分形维数Df,借助分形维数对改性黏土的絮凝形态学特征进行了半定量化分析.结果表明:当海藻酸钠浓度在10~100mg/L范围内时,可以提高改性黏土絮凝的速率,絮凝体的分形维数Df、絮凝体强度呈现出先增大后减小的规律;其中,最佳浓度为50mg/L,其最大絮凝速率达到44.13、Df 为1.6823.低浓度(100mg/L)海藻酸钠能促进改性黏土的絮凝效率,但促进作用呈现减小的趋势,表现为最大絮凝效率减小,Df降低、絮凝体的空隙率增大.  相似文献   

6.
邹华  潘纲  陈灏 《环境科学》2005,26(2):148-151
研究了水体的离子强度对粘土和壳聚糖改性粘土絮凝去除铜绿微囊藻的影响 .离子强度的增加有利于粘土对藻类的絮凝去除 .与一般粘土除藻相反 ,壳聚糖改性粘土却在离子强度低的条件下具有更好的除藻效果 ,是适合在湖泊 ,水库和江河等淡水 (低含盐量 )水体中应用的应急除藻技术 .当离子强度从 0.17mol/L降到 0mol/L时 ,海泡石除藻率从 90 %以上降为 70 %以下(投加量700mg/L) ,而壳聚糖改性海泡石的除藻率却从 70%左右升至 95% (投加量仅为 11mg/L) .用粘度法研究了壳聚糖改性海泡石的絮凝机理 ,发现相对低的离子强度更有利于壳聚糖分子链上阳电荷的相互排斥作用 ,有利于壳聚糖分子链的舒展 ,从而可以充分发挥架桥网捕作用 ,利于絮凝除藻 .  相似文献   

7.
通过研究不同氮源对双胞旋沟藻(Cochlodinium geminatum)生长和链状结构的影响,探索双胞旋沟藻生长、形态建成和藻华发生的影响因素。研究发现,高浓度NH4-N对双胞旋沟藻具有毒害作用,而NO3-N和尿素支持双胞旋沟藻的生长及双细胞链状结构的形成。双胞旋沟藻偏好吸收尿素,其最大生物量(1.2×107/L),最高生长率(0.19 d-1)均高于NO3-N组,并且尿素组指数生长期约40%的细胞以双胞链状结构存在,其数量达到2 146/mL,亦明显高于NO3-N组。近海水体中日益增加的尿素含量有助于提高旋沟藻藻华的发生规模和频率。  相似文献   

8.
壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除   总被引:36,自引:7,他引:29  
邹华  潘纲  陈灏 《环境科学》2004,25(6):40-43
研究了壳聚糖改性对粘土絮凝去除铜绿微囊藻的影响.经壳聚糖包覆改性后的海泡石在投加总量仅为11 mg/L时,0.5h即可去除80%的藻细胞,2h去除率达到90%.不同粘土改性后絮凝除藻能力均有大幅度提高,原来除藻能力相去甚远的不同粘土,包括一般的黄土,改性后除藻能力被提升到相近的水平,投加量11 mg/L,可去除铜绿微囊藻90%以上.改性粘土和一般絮凝剂一样有一最佳投加量(本研究为11 mg/L),低于或超过此最佳值,絮凝除藻效果均下降.  相似文献   

9.
采用天然无毒的壳聚糖改性海泡石作为絮凝剂去除微囊藻,考察不同投加量的壳聚糖改性海泡石的絮凝除藻效果,并通过低强度超声波(功率为40W、作用时间为10s)强化絮凝除藻试验,研究低强度超声波对微囊藻沉降性能以及微囊藻生长和藻细胞形态结构的影响。结果表明:采用壳聚糖改性海泡石去除微囊藻的最佳投加量为20mg/L;低强度超声波处理10s时对改性海泡石去除微囊藻的强化效果最佳,微囊藻液浊度和藻细胞的去除率分别提高了34.95%和32.58%;低强度超声波对微囊藻的生长和细胞形态结构无显著影响,但可显著提高微囊藻细胞的沉降性能,从而有利于藻细胞进行絮凝沉淀去除。本研究可降低除藻药剂投加量,有助于开发一套更环保、经济和高效的除藻方法。  相似文献   

10.
以固定化微藻颗粒为原料,通过搭建流化床反应器强化微藻对氨氮(NH4+-N)的去除,设计了藻种、污水上升流速、光周期和光照强度四组单一变量实验,系统地研究了不同条件下微藻去除NH4+-N的能力.结果表明,当以固定化斜生栅藻为原料、污水上升流速为6.8m/h、光周期为8:16h和光照强度为4800Lux时,NH4+-N去除效果最优(96.7%).在最优操作条件下,探究了COD为200mg/L时微藻去除NH4+-N的潜力,结果表明,当NH4+-N初始浓度不高于50mg/L时,NH4+-N去除率高于95%.本实验建立了一套半连续微藻流化床实验方法,该方法显著减弱了微藻在生物同化过程中对有机碳源的依赖性,为低COD条件下微藻生物脱氮工艺的设计提供了技术参考和理论基础.  相似文献   

11.
Modified clay (MC), an effective material used for the emergency elimination of algal blooms, can rapidly reduce the biomass of harmful algal blooms (HABs) via flocculation. After that, MC can still control bloom population through indirect effects such as oxidative stress, which was initially proposed to be related to programmed cell death (PCD) at molecular level. To further study the MC induced cell death in residual bloom organisms, especially identifying PCD process, we studied the physiological state of the residual Prorocentrum donghaiense. The experimental results showed that flocculation changed the physiological state of the residual cells, as evidenced by growth inhibition and increased reactive oxygen species production. Moreover, this research provides biochemical and ultrastructural evidence showing that MC induces PCD in P. donghaiense. Nuclear changes were observed, and increased caspase-like activity, externalization of phosphatidylserine and DNA fragmentation were detected in MC-treated groups and quantified. And the mitochondrial apoptosis pathway was activated in both MC-treated groups. Besides, the features of MC-induced PCD in a unicellular organism were summarized and its concentration dependent manner was proved. All our preliminary results elucidate the mechanism through which MC can further control HABs by inducing PCD and suggest a promising application of PCD in bloom control.  相似文献   

12.
光催化去除有害藻类的研究进展   总被引:1,自引:0,他引:1  
水体富营养化及有害藻类水华严重威胁着水体生态环境和人类健康,如何有效防治藻类水华成为研究者面临的重大环境问题之一。光催化技术具有效率高、成本低、环境友好等特点,有望成为未来高新技术的新希望。文章阐述了光催化技术的原理及该技术应用于去除水华藻类的优势。综述了近年来TiO2和改性TiO2等几类催化剂应用于光催化除藻的研究进展,并分析和总结了光催化除藻技术的影响因素和一般性规律,指出了光催化除藻存在的问题和发展前景,为光催化技术应用于防治有害藻类水华的研究与实践提供理论依据。  相似文献   

13.
铁改性热处理凹凸棒颗粒对水体磷的去除效果   总被引:1,自引:1,他引:0       下载免费PDF全文
耿健  杨盼  唐婉莹 《环境工程》2020,38(10):114-119
传统粉末态除磷材料颗粒过细,从而导致其难与水分离,这极大限制了其在实际工程中的应用。以热处理颗粒态凹凸棒黏土为载体(1~2 mm),采用氯化铁(FeCl3)活性负载的方法制备颗粒态吸附磷材料,并详细研究了吸附材料除磷的最佳改性条件、反应时间、影响因素及其效率。结果表明:2 mol/L氯化铁溶液改性的凹凸棒达到最佳改性条件,且磷的吸附能较好地被朗格缪尔方程模拟,其最大吸附量为4.27 mg/g,是原状黏土固磷容量的2倍左右。铁改性凹凸棒土除磷效率受pH值的影响较大,当水体pH值从4提高到11,去除率下降了10%左右。吸附动力学表明,铁改性凹凸棒土对磷的吸附符合拟二级动力学方程,24 h内可以去除84.46%的磷。0.2 mol/L的盐酸对铁改性凹凸棒的再生效果最优,再生后吸附剂对磷的吸附效率下降40%左右。以上研究结果表明,铁改性凹凸棒土可以作为低浓度水体磷去除材料,具有较大的应用前景。  相似文献   

14.
海水养殖区溶解有机氮对有害藻水华的作用   总被引:2,自引:2,他引:2  
近年来我国海水养殖业发展迅速,网箱养鱼的规模和密度越来越大,由于饵料的利用率比较低,再加上鱼类自身的代谢产物等种种原因,导致养殖水域的水环境受到了严重的影响,养殖水体中溶解性有机氮(DON)含量相当高.我们就近海鱼类网箱养殖,综述国内外关于养殖型赤潮的研究,论述其对水环境的影响以及不同氮营养盐与赤潮发生的关系,尤其是养殖区中溶解性有机氮对赤潮的发生具有重要作用,国际上关于DON在有害藻水华(HABs)中所起作用方面已做了大量的研究,但目前我国对溶解有机氮研究较少,对于赤潮形成机理方面在今后的研究中应注重DON的作用,从而完善赤潮形成机制,进一步作好赤潮的预防与防治.  相似文献   

15.
杨维东  刘玉荣  刘洁生  刘政 《环境科学》2008,29(8):2296-2301
摘要:探讨了托里桉(Eucalyptus torelliana)、尾叶桉(Eucalyptus urophylla)、窿缘桉(Eucalyptus exserta)等3种桉木粉对塔玛亚历山大藻(Alexandrium tamarense)生长的影响,并对其抑制赤潮藻类生长的化学基础进行了初步研究,以期为新除藻剂的筛选提供参考和依据。结果表明,不同桉木粉对塔玛亚历山大藻生长的抑制作用不同,托里桉木粉的抑藻作用明显强于尾叶桉和窿缘桉。灭菌与非灭菌托里桉木粉对塔玛亚历山大藻生长的抑制作用差别不大,提示细菌等微生物并非木粉抑藻的主要原因。不同溶剂粗提物对塔玛亚历山大藻生长的抑制作用不同,丙酮-水粗提物的抑藻活性明显强于乙酸乙酯、甲醇和水粗提物。进一步将丙酮-水粗提物分成A、B、C和D等4个组分,比较不同组分的抑藻活性。结果发现,丙酮-水粗提物中D组分的抑藻作用最强。该组分浓度为3 mg/L时,3 d时对塔玛亚历山大藻的去除率可达81.06 %。GC-MS分析表明,D组分中含有4-羟基-3,5,6-三甲基,1-4[(1z)-3-氧代-1-丁烯基]-2-环已烯酮和4,4,7a–三甲基,5,6,7,7a-四氢-2(4H)-苯并呋喃酮等酮类物质。这些结果表明,托里桉木粉可显著抑制赤潮藻的生长,其中存在的酮类化感物质可能是其抑制藻类生长的主要原因。  相似文献   

16.
收集了渤海海域自1952年有赤潮发生记录以来长达65a的相关资料,采用地理信息系统(GIS)技术研究了该海域赤潮发生的时空分布特征,并对其危害程度进行了评估.研究结果表明,渤海赤潮发生最频繁的区域为渤海湾北部、辽东湾西部和东部的海域;渤海共发生赤潮189次,其中影响面积超过1000km2的有21次;2000年以后,赤潮发生频率在明显增加;在6、7和8月份赤潮发生次数最多,分别占总次数的26%、22%和21%;由夜光藻、中肋骨条藻和原甲藻引发的赤潮次数分别为65、11和10次;发生在渤海湾西部、辽东湾西部以及黄河口海域的赤潮对海洋生态危害最大.首次以可视化的方法全方位展现和认识了渤海海域65a来赤潮发生的范围、分布与特点,实现了对该地区发生赤潮信息的整合与处理.这一方法对其他海域赤潮研究亦具有借鉴价值.  相似文献   

17.
有机氮对大亚湾亚历山大藻种群生长的促进作用   总被引:3,自引:0,他引:3       下载免费PDF全文
2008年1~12月对大亚湾澳头养殖海域溶解有机氮(DON)组成、含量与亚历山大藻种群动态进行了周年调查,同步监测了无机营养盐、水温、盐度等主要环境因子.结果显示,大亚湾澳头海域DON水平4~6月较高,最大值达21.27μmolN/L,其余月份较低,全年平均浓度为7.44μmolN/L.尿素是DON的重要组分,全年平均浓度为1.98μmolN/L,约占DON的20%~30%.可溶性游离氨基酸(DFAA)波动较大,介于1~5μmolN/L.4~6月亚历山大藻种群维持较高密度.4月21日澳头海域发生亚历山大藻水华,最高细胞密度达到3319cells/mL.DON和尿素浓度高峰与亚历山大藻密度高峰同步出现,水华消散后DON和尿素浓度分别大幅下降至高峰期的23.84%和62.86%.统计结果显示,表征有机污染程度的DON、尿素和CODMn与亚历山大藻种群密度具有显著正相关关系(p<0.05).DON含量的增加能够促进亚历山大藻的生长,并在温度、盐度等环境条件适宜的情况下可能成为赤潮暴发的重要诱因.  相似文献   

18.
采用亚铁改性沸石-过氧乙酸(FMZ/PAA)新型高级氧化体系降解水中双氯芬酸(DCF).考察了初始pH、药剂投加量、共存干扰离子(CO32-,NO3-,Cl-,SO42-,Fe3+,Cu2+,Ca2+,Mg2+)及天然有机物(NOM)对DCF去除效果的影响,通过自由基清除实验探讨了反应过程中的关键活性物种.结果表明,DCF在FMZ/PAA体系中的降解符合一级反应动力学方程,在常温常压、初始pH值为7.0、FMZ投加量为0.2g/L、PAA投加量为80 μmol/L的条件下,1 μmol/L的DCF在40min内得到完全去除.共存Cl-、CO32-和NOM由于自由基竞争反应明显抑制DCF的降解,而Cu2+则参与了PAA的活化,有助于DCF的去除.碳中心自由基是FMZ/PAA体系降解DCF反应中的主要活性物种.基于DCF降解过程中检出的3种产物,提出了其在FMZ/PAA体系中的3种转化途径,即C-N键断裂、脱羧反应和甲酰化反应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号