首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Desorption of cadmium from goethite: effects of pH, temperature and aging   总被引:1,自引:0,他引:1  
Mustafa G  Kookana RS  Singh B 《Chemosphere》2006,64(5):856-865
Cadmium is perhaps environmentally the most significant heavy metal in soils. Bioavailability, remobilization and fate of Cd entering in soils are usually controlled by adsorption-desorption reactions on Fe oxides. Adsorption of Cd on soil colloids including Fe oxides has been extensively studied but Cd desorption from such soil minerals has received relatively little attention. Some factors that affect Cd adsorption on goethite include pH, temperature, aging, type of index cations, Cd concentrations, solution ionic strength and presence of organic and inorganic ions. This research was conducted to study the influence of pH, temperature and aging on Cd desorption from goethite. Batch experiments were conducted to evaluate Cd desorption from goethite with 0.01 M Ca(NO3)2. In these experiments Cd desorption was observed at 20, 40 and 70 degrees C in combination with aging for 16 h, 30, 90 and 180 d from goethite that adsorbed Cd from solutions containing initial Cd concentrations of 20, 80 and 180 microM. Following the adsorption step Cd desorption was measured by 15 successive desorptions after aging at various temperatures. At the lowest amount of initially adsorbed Cd and equilibrium pH 5.5, cumulative Cd desorption decreased from 71% to 17% with aging from 16 h to 180 d and the corresponding decrease at equilibrium pH 6.0 was from 32% to 3%. There was a substantial decrease in Cd desorption with increasing equilibration temperature. For example, in goethite with the lowest amount of initial adsorption at equilibrium pH 5.5, cumulative Cd desorption decreased from 71% to 31% with increase in temperature from 20 to 70 degrees C, even after 16 h. Dissolution of Cd adsorbed goethite in 1M HCl, after 15 successive desorptions with 0.01 M Ca(NO3)2, indicated that approximately 60% of the Cd was surface adsorbed. Overall, dissolution kinetics data revealed that 23% to 88% Cd could not be desorbed, which could possibly be diffused into the cracks and got entrapped in goethite crystals. At elevated temperature increased equilibrium solution pH favoured the formation of CaCO3 and CdCO3 which reasonably decreased Cd desorption. Cadmium speciation showed the formation of calcite and otavite minerals at 40 and 70 degrees C due to increase in pH (>9.5) during aging. X-ray diffraction analysis (XRD) of these samples also revealed the formation of CaCO3 at elevated temperatures with aging. While mechanisms such as Cd diffusion and/or entrapment into fissures and cracks in goethite structure with increase in temperature and aging are possible.  相似文献   

2.
Adsorption and desorption of cadmium by goethite pretreated with phosphate   总被引:8,自引:0,他引:8  
Wang K  Xing B 《Chemosphere》2002,48(7):665-670
The adsorption of Cd by oxides or soils have been extensively studied, however, the desorption has received relatively limited attention, especially in the presence of phosphate. In this study, a batch equilibration method was used to investigate Cd sorption and desorption by goethite pretreated with phosphate. Phosphate not only enhanced Cd adsorption, but also accelerated the adsorption process. Compared with Cd adsorption by goethite alone, phosphate substantially moved the adsorption curves (edges) to lower pH range, indicative of enhancement of Cd sorption. The Cd adsorption by the pretreated goethite reached apparent equilibrium within 24 h at 20 degrees C, while such equilibrium was not observed after 4 weeks in the absence of phosphate. Cadmium was more readily released from phosphate-treated goethite. It is believed that phosphate blocked the pores on goethite surface, which lead to the fast adsorption kinetics and high extraction percentage. These results provided strong support for the diffusion of Cd into goethite particles.  相似文献   

3.
Adsorption of cadmium (Cd) and phosphate by oxides or soils has been extensively studied, but the adsorption/desorption kinetics and mutual effects of these two species in co-existing systems has received little attention. In this study, a batch equilibration method was used to investigate the effect of phosphate and its application time on Cd adsorption and desorption on goethite. The influence of Cd and its application time on phosphate sorption and desorption kinetics was also determined. For Cd adsorption, phosphate was introduced into the system by two sequences: pre-treating goethite at 40 (degrees)C for 1 week, and applying with Cd simultaneously. Similarly, for phosphate sorption, Cd was applied by pre-treating goethite at 40 (degrees)C for 1 week or simultaneous addition with phosphate. Results demonstrated that phosphate added to goethite enhanced Cd adsorption, and facilitated Cd release as compared to untreated goethite. Cadmium had slightly higher adsorption, but a significantly faster desorption rate from the goethite simultaneously treated with phosphate and Cd, as compared to phosphate-pretreated goethite. Cadmium and its application time had little impact on phosphate sorption by goethite. However, phosphate desorption kinetics was affected by Cd application time. When the sorption time was short (15 min), phosphate desorption was faster from the goethite that was simultaneously treated with phosphate and Cd, as compared to Cd pretreated or untreated goethite. In contrast, a longer sorption time (4 weeks) resulted in a higher desorption rate of phosphate from Cd pretreated goethite than simultaneously phosphate-Cd treated goethite. This study provided useful information on adsorption/desorption kinetics in complicated Cd-phosphate-goethite systems.  相似文献   

4.
改性多壁碳纳米管对水中Cd2+的去除   总被引:1,自引:0,他引:1  
为了增加多壁碳纳米管(multiwall carbon nanotubers,MWNTs)对水中Cd2+的吸附量,使用混酸对多壁碳纳米管进行氧化处理,采用红外光谱进行结果表征,并探讨了吸附时间、pH值和MWNTs的使用量、Cd2+的浓度及干扰离子对镉离子吸附的影响。结果表明,吸附时间为1.5 h、pH为5.3、吸附效果最佳,随MWNTs量的增加Cd2+去除量增加,共存的阳离子会降低对Cd2+的吸附效果,对Cd2+的吸附符合Longmuir吸附定律。研究同时表明,pH小于2时Cd2+能容易从碳纳米管上解吸。初步探讨了Cd2+吸附机制。  相似文献   

5.
Qin F  Shan XQ  Wei B 《Chemosphere》2004,57(4):253-263
Effects of low-molecular-weight organic acids (LMWOAs) and residence time on desorption of Cu, Cd, and Pb from two typical Chinese soils were studied. Citric, malic, and acetic acids were chosen as representatives of LMWOAs commonly present in soils. CaCl(2) and NaNO(3) were used in desorption as they were main soil background electrolytes for comparison. Desorption of Cu, Cd, and Pb from both soils followed the descending order: citric acid>malic acid>acetic acid>CaCl(2)>NaNO(3), which was consistent with the order of stability of Cu-, Cd-, and Pb-LMWOAs complexes from large to small and ion exchange ability of Ca(2+) and Na(+). Desorption of metals by inorganic salts decreased with increasing desorption solution pH. Whereas desorption of metals by LMWOAs showed different trend in response to pH change due to their different complexing abilities. Malic and acetic acids released less metals at low pH 3.1 compared with citric acid at pH 7, indicating that pH was not the dominant factor governing the release of metals. In addition, all LMWOAs desorbed more metals than inorganic salts, CaCl(2) and NaNO(3). Therefore, organic ligands played a dominant role in desorption of heavy metals. More metals were released from Jiangxi soil than from Heilongjiang soil due to lower soil pH, CEC, organic matter content and manganese oxide of Jiangxi soil. Generally, desorption of metals decreased with increasing residence time of metals in soils.  相似文献   

6.
Liang J  Xu R  Jiang X  Wang Y  Zhao A  Tan W 《Chemosphere》2007,67(10):1949-1955
The effect of arsenate on Cd(II) adsorption in two variable charge soils and the desorption of Cd(II) pre-adsorbed in the presence of arsenate were studied. The batch type experiments showed, the presence of arsenate led to increase in Cd(II) adsorption and the desorption of pre-adsorbed Cd(II). Further it was observed that the extent of adsorption and desorption of Cd(II) was greatly influenced by the initial concentrations of arsenate and Cd(II), the solution pH, and the nature of the soils. In general the increase in arsenate concentration and pH favored the uptake of Cd(II). Moreover, the arsenate concentration influenced more in Hyper-Rhodic Ferralsol than Rhodic Ferralsol at least for the Cd(II) adsorption/desorption. This may be due to the content of Fe/Al oxides in these soils. The larger the content of Fe/Al oxides, the more the adsorption of arsenate by the soil, hence greater the uptake of Cd(II). It can be assumed that the enhanced Cd(II) adsorption was mainly due to the increase in net negative surface charge of the soil induced by the adsorption of arsenate, because the presence of arsenate led to the decrease in zeta potential of these soil suspensions. The increase of electrostatically adsorbed Cd(II) was responsible for the increase in the desorption of Cd(II) pre-adsorbed in the presence of arsenate.  相似文献   

7.
To test the feasibility of the reuse of iron-rich sludge (IRS) produced from a coal mine drainage treatment plant for removing As(III) and As(V) from aqueous solutions, we investigated various parameters, such as contact time, pH, initial As concentration, and competing ions, based on the IRS characterization. The IRS consisted of goethite and calcite, and had large surface area and small particles. According to energy dispersive X-ray spectroscopy mapping results, As was mainly removed by adsorption onto iron oxides. The adsorption kinetic studies showed that nearly 70 % adsorption of As was achieved within 1 h, and the pseudo-second-order model well explained As sorption on the IRS. The adsorption isotherm results agreed with the Freundlich isotherm model, and the maximum adsorption capacities for As(III) and As(V) were 66.9 and 21.5 mg/g, respectively, at 293 K. In addition, the adsorption showed the endothermic character. At high pH or in the presence of phosphate, the adsorption of As was decreased. When the desorption experiment was conducted to reuse the IRS, 85 % As was desorbed with 1.0 N NaOH. In the column experiment, adsorbed As in real acid mine drainage was 43 % of the maximum adsorbed amount of As in the batch test. These results suggested that the IRS is an effective adsorbent for As and can be effectively applied for the removal of As in water and wastewater.  相似文献   

8.
为了增加多壁碳纳米管(multiwall carbon nanotubers,MWNTs)对水中Cd2+的吸附量,使用混酸对多壁碳纳米管进行氧化处理,采用红外光谱进行结果表征,并探讨了吸附时间、pH值和MWNTs的使用量、Cd2+的浓度及干扰离子对镉离子吸附的影响。结果表明,吸附时间为1.5 h、pH为5.3、吸附效果最佳,随MWNTs量的增加Cd2+去除量增加,共存的阳离子会降低对Cd2+的吸附效果,对Cd2+的吸附符合Longmuir吸附定律。研究同时表明,pH小于2时Cd2+能容易从碳纳米管上解吸。初步探讨了Cd2+吸附机制。  相似文献   

9.
Sturm A  Radau TS  Hahn T  Schulz R 《Chemosphere》2007,69(4):605-612
Cadmium (Cd) adsorption on 14 non-calcareous New Jersey soils was investigated with a batch method. Both adsorption edge and isotherm experiments were conducted covering a wide range of soil composition, e.g. soil organic carbon (SOC) concentration ranging from 0.18% to 7.15%, and varying Cd concentrations and solution pH. The SOC and solution pH were the most important parameters controlling Cd partition equilibrium between soils and solutions in our experimental conditions. The Windermere humic aqueous model (WHAM) was used to calculate Cd adsorption on soils. The effect of solution chemistry (various pH and Cd concentrations) on Cd adsorption can be well accounted for by WHAM. For different soil compositions, SOC concentration is the most important parameter for Cd binding. Only a fraction of SOC, the so-called active organic carbon (AOC), is responsible for Cd binding. We found a linear relationship between SOC and AOC based on the adsorption edge data. The linear relationship was validated by the independent data sets: adsorption isotherm data, which presumably can be used to predict Cd partition equilibrium across a wide range of soil compositions. The modeling approach presented in this study helps to quantitatively predict Cd behavior in the environment.  相似文献   

10.
When low-cost adsorbents are being used to remove contaminant ions (e.g. arsenate, vanadate, and molybdate) from wastewater, competitive adsorption/desorption are central processes determining their removal efficiency. Competitive adsorption of As, V, and Mo was investigated using equimolar oxyanion concentrations in single, binary, and tertiary combinations in adsorption isotherm and pH envelope studies while desorption of previously adsorbed oxyanions was examined in solutions containing single and binary oxyanion combinations. The low-cost adsorbent materials used were alum water treatment sludge (amorphous hydroxy-Al) and bauxite ore (crystalline Al oxides). Adsorption isotherm and pH envelope studies showed that Mo had only a small effect in decreasing adsorption of As and V but V and As had substantial and similar effects in reducing adsorption of the other. As had a greater effect than V in reducing adsorption of Mo and it was concluded that the affinity of oxyanions for the surfaces of water treatment sludge and bauxite followed the order As > V >> Mo. In 0.3 M NaCl electrolyte, desorption of previously adsorbed oxyanions amounted to 0.3–3.4% for V and As, and 11–20% for Mo. As had approximately four times greater effect than Mo in increasing desorption of V while V had about three times the effect of Mo in increasing desorption of As. Thus, the order of oxyanions in inducing desorption of the other oxyanions (i.e. As on V and As) was the same as that for adsorption selectivity: As > V >> Mo. Water treatment sludge was a more effective adsorbent than bauxite because it had a greater adsorption capacity for all three anions and, in addition, they were held more strongly so desorption in the background electrolyte was proportionately less. It was concluded that at similar molar concentrations, arsenate would tend to reduce adsorption of vanadate as well as displace vanadate already held on adsorbent surfaces while both anions will compete effectively with molybdate. The limiting factor for simultaneous removal of As, V, and Mo from multielement solutions by adsorption will therefore be the removal of Mo.  相似文献   

11.
Adsorption isotherms for Pb onto six soil components (quartz, feldspar, kaolinite, montmorillonite, goethite and humic acid) were studied. The influence of pH, EDTA and citric acid on the adsorption of Pb onto montmorillonite, goethite and humic acid were considered. Results indicate that the experimental data fit the Langmuir Adsorption Isotherm. The adsorption capacity for Pb at pH 6 was found to be in the order: humic acid (22.7 mg g(-1)) > goethite (11.04 mg g(-1)) > montmorillonite (10.4 mg g(-1)) > kaolinite (0.91 mg g(-1)) > feldspar (0.503 mg g(-1)) > quartz (0.148 mg g(-1)). Generally, the amount of Pb adsorbed onto montmorillonite, goethite and humic acid decreased with increasing concentrations of EDTA and citric acid and with increases in alkality. However, there were two exceptions: (1) addition of citric acid increased the amount of Pb adsorbed onto humic acid; and (2) the amount of Pb adsorbed onto goethite decreased with increasing pH in the presence of EDTA. Some mechanisms involved in the adsorption reactions are discussed.  相似文献   

12.
Dahiya S  Shanwal AV  Hegde AG 《Chemosphere》2005,60(9):1253-1261
Zinc adsorption was studied in the soils of three nuclear power plant sites of India. 65Zn was used as a radiotracer to study the sorption characteristics of Zn(II). The sorption of zinc was determined at 25 and 45 degrees C at pH 7.8+/-0.2 in the solution of 0.01 M Ca(NO3)2 as supporting electrolyte. The sorption data was tested both in Freundlich and Langmuir isotherms and could be described satisfactorily. The effect of organic matter and other physico-chemical properties on the uptake of zinc was also studied in all the soil samples. The results showed that the cation exchange capacity, organic matter, pH and clay content were the main contributors to zinc sorption in these soils. The adsorption maximum was found to be higher in the soil on Kakarpara Atomic Power Plant sites soils having high organic matter and clay content. The zinc supply parameters of the soils are also discussed. In the desorption studies, the sequential extraction of the adsorbed zinc from soils showed that the diethylene triamine penta acetic acid extracted maximum amount of adsorbed zinc than CaCl2 and Mg(NO3)2. The zinc sorption on the soil and amount of zinc retention after extractants desorption shows a positively correlation with vermiculite and smectite mineral content present in the clay fraction of the soil. The amount desorbed by strong base (NaOH) and demineralised water was almost negligible from soils of all the sites, whereas the desorption by strong acid (HNO3) was 75-96% of the adsorbed zinc.  相似文献   

13.

Copper ions were first adsorbed by zeolite 4A synthesized from bauxite tailings, the desorption of Cu(II) using Na2EDTA solutions was performed, and the recycling of zeolite 4A in adsorption and desorption was systematically investigated. It was observed that the Cu(II) removal efficiency was directly dependent on the initial pH value. The maximum removal efficiency of Cu(II) was 96.2% with zeolite 4A when the initial pH value was 5.0. Cu(II) was completely absorbed in the first 30 min. It was also observed that the desorption efficiency and zeolite recovery were highly dependent on the initial pH and concentration of Na2EDTA in the solution. The desorption efficiency and percent of zeolite recovered were 73.6 and 85.9%, respectively, when the Na2EDTA solution concentration was 0.05 mol L?1 and the pH value was 8. The recovered zeolites were pure single phase and highly crystalline. After 3 cycles, the removal efficiency of Cu(II) was as high as 78.9%, and the zeolite recovery was 46.9%, indicating that the recovered zeolites have good adsorption capacity and can repeatedly absorb Cu(II).

  相似文献   

14.
The migration behavior of the actinyl ions U(VI)O22+, Np(V)O2+ and Pu(V,VI)O2(+,2+) in the geosphere is to a large extend controlled by sorption reactions (inner- or outer-sphere adsorption, ion-exchange, coprecipitation/structural incorporation) with minerals. Here NpO2+ adsorption onto calcite is studied in batch type experiments over a wide range of pH (6.0–9.4) and concentration (0.4 μM–40 μM) conditions. pH is adjusted by variation of CO2 partial pressure. Adsorption is found to be pH dependent with maximal adsorption at pH 8.3 decreasing with increasing and decreasing pH. pH dependence of adsorption decreases with increasing Np(V) concentration. EXAFS data of neptunyl adsorbed to calcite and neptunyl in the supernatant shows differences in the Np(V)-O-yl distance, 1.85 ± 0.01 Å for the adsorbed and 1.82 ± 0.01 Å for the solution species. The equatorial environment of the neptunyl in solution shows about 5 oxygen neighbours at 2.45 ± 0.02 Å. For adsorbed neptunyl there are also about 5 oxygen neighbours at 2.46 ± 0.01 Å. An additional feature in the adsorbed species' R-space spectrum can be related to carbonate neighbours, 3 to 6 carbon backscatterers (C-eq) at 3.05 ± 0.03 Å and 3 to 6 oxygen backscatterers (O-eq2) at 3.31 ± 0.02 Å. The differences in the Np(V)-O-yl distance and the C-eq and O-eq2 backscatterers which are only present for the adsorbed species indicate inner-sphere bonding of the adsorbed neptunyl species to the calcite surface. Experiments on adsorption kinetics indicate that after a fast surface adsorption process a continuous slow uptake occurs which may be explained by incorporation via surface dissolution and reprecipitation processes. This is also indicated by the part irreversibility of the adsorption as shown by increased KD values after desorption compared to adsorption.  相似文献   

15.
张广金  信欣  毛言  刘韵  陈梅 《环境工程学报》2012,6(5):1595-1598
将一株产絮酵母菌(编号B-02号)发酵后的废菌体制成生物吸附剂,研究该生物吸附剂对废水中Cd2+的生物吸附特性。结果表明:(1)pH值对Cd2+会产生较大的影响,偏酸性(pH=4~6)条件利于吸附;该吸附剂对Cd2+吸附速率较快,8~10 min就可达到吸附平衡;(2)吸附剂的吸附动力学符合二级动力学模型,吸附Cd2+的实验数据对Langmuir等温式的拟合情况良好,吸附剂吸附Cd2+的最大吸附量为70.752 mg/g。用0.5 mol/L HNO3对吸附Cd2+的酵母菌进行解吸,解吸率可达89.7%。  相似文献   

16.
Batch studies were carried out to investigate the adsorption of zinc(II) from fresh waters on an iron(III) hydroxide surface maintained at the pH of zero point of charge of hydroxide (ZPC, 6.85) and also on both the acidic (5.5) and alkaline (8.2) sides of pH of ZPC, at 15 and 35 degrees C. Zinc(II) adsorption on iron(III) hydroxide increased with an increase in pH. The rise in temperature from 15 to 35 degrees C increased zinc(II) adsorption at pH 5.5 and 6.85, but decreased it at alkaline pH (8.2). In none of the cases did adsorption attain a maximum adsorption density. The results indicate the presence of heterogeneous sites of varying affinity on the adsorbent. Zinc(II) adsorption followed Langmuir behaviour only at small adsorption densities (less than 10(-2.95) M Zn/kg at pH 5.5) and at higher adsorption densities, the availability of strongest binding sites decreased. Nonspecifically adsorbed zinc(II) (reversible to Ba(II)) decreased with the increase in pH and temperature. Sequential desorption experiments also revealed that desorption of adsorbed zinc(II) decreased with an increase in pH.  相似文献   

17.
4A沸石对复合污染水体中Pb2+、Cu2+和Cd2+的去除   总被引:2,自引:2,他引:0  
采用静态吸附法以4A沸石为吸附剂研究其对复合污染水体中Pb2+、Cu2+和Cd2+的竞争吸附特性,并探讨了影响吸附的环境因素。实验表明,在室温条件下,溶液pH5~6,4A沸石15 mg对10 mL复合污染溶液(Pb2+、Cu2+和Cd2+浓度分别为100 mg/L)吸附20 min时,对溶液中3种重金属的吸附去除率均可达99.8%以上。反应过程中4A沸石对3种重金属的吸附速率大小为Pb2+>Cu2+>Cd2+。复合污染水体中4A沸石对Pb2+、Cu2+和Cd2+的吸附符合Langmuir和Fre-undlich等温吸附方程,相关系数分别为0.9981、0.9901、0.9916和0.9638、0.9194、0.9689。经计算,4A沸石对Pb2+、Cu2+和Cd2+的饱和吸附量分别为129.9 mg/g、107.5 mg/g和99.0 mg/g。4A沸石吸附重金属离子达到吸附平衡的时间较短,对溶液pH值的适应性较好。吸附后的4A沸石可以再生利用,对铅离子洗脱重复利用性较铜离子和镉离子强。  相似文献   

18.
Jing YD  He ZL  Yang XE 《Chemosphere》2007,69(10):1662-1669
The effects of pH, organic acids, and competitive cations on Hg(2+) desorption were studied. Three representative soils for rice production in China, locally referred to as a yellowish red soil (YRS), purplish clayey soil (PCS), and silty loam soil (SLS) and classified as Gleyi-Stagnic Anthrosols in FAO/UNESCO nomenclature, were, respectively, collected from Jiaxin County, Deqing County, and Xiasha District of Hangzhou City, Zhejiang Province. Most of the added Hg(2+) was adsorbed at low initial concentrations (<2 mg l(-1)). Desorption of the adsorbed Hg(2+) in 0.01M KCl (simulating soil solution) was minimal, but was significantly enhanced by the change of pH, and the presence of organic acids or competitive cations. The desorption of Hg(2+) in the soils decreased with pH from 3.0 to 5.0, leveled off at pH 5.0-8.0, but increased with pH from 7.0 to 9.0. The presence of organic ligands enhanced Hg(2+) desorption in the soils except for YRS, in which the addition of tartaric, malic, or oxalic acid reduced Hg(2+) desorption at low concentrations (<10(-4)M), but Hg(2+) desorption generally increased with organic acid concentration. Citric acid was most effective in increasing Hg(2+) desorption, followed by tartaric acid and malic acid; and oxalic acid was the least effective. Desorption of adsorbed Hg(2+) increased with increasing concentrations of added Cu(2+) or Zn(2+). Applied Cu(2+) increased Hg(2+) desorption more than Zn(2+) at the same loading rate. CAPSULE: The effects of organic acids and competitive cations on Hg desorption in soil-water system are related to their concentrations, basic chemical properties, and soil properties.  相似文献   

19.
A study was made of the adsorption-desorption of atrazine in aqueous medium in five soils with organic matter (OM) contents in the range 1.4-10.3% and also of the desorption of the herbicide in aqueous solutions of the anionic surfactant sodium dodecyl sulphate (SDS) at critical micelle concentrations (cmc) of 0.75, 1.50, 5 and 10. The adsorption and desorption isotherms in water together with the desorption isotherms in SDS solutions with concentrations of 0.75 and 1.50 cmc fit the Freundlich adsorption equation. All the desorption isotherms displayed hysteresis. The increase or reduction in hysteresis of the desorption isotherms in SDS solutions with respect to those of desorption in water depend on the SDS concentration and on the OM content of the soils. Below the cmc, SDS only increases the desorption of atrazine in the soil with the highest OM content (10.3%). However, above the cmc (5 and 10 cmc) the desorption of atrazine increases in all soils, the efficiency of desorption increasing with the OM content of the soils.  相似文献   

20.
浮游球衣菌对Pb2+、Cu2+、Zn2+、Cd2+的吸附性能研究   总被引:8,自引:0,他引:8  
研究了浮游球衣菌(Sphaerotilus natans)在不同吸附条件下对溶液中Pb^2+、Cu^2+、Zn^2+、Cd^2+的吸附规律。结果表明,Sphaerotilus natans对这4种重金属离子均有一定的吸附作用,并在20min内达到吸附平衡,pH对吸附过程影响较大,pH为5.5时Sphaerotilus natans对这4种金属离子的吸附效果最好,Sphaerotilus natans对它们的吸附选择性为Pb^2+〉Cu^2+〉Zn^2+〉Cd^2+,Pb^2+、Cu^2+能部分置换出已被菌体吸附的Zn^2+、Cd^2+。HCI和EDTA溶液可有效地将金属离子从菌体上解吸下来,解吸后的菌体可重复使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号