首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract: We present a method to integrate a process‐based (PB) snowmelt model that requires only daily temperature and elevation information into the Soil and Water Assessment Tool (SWAT) model. The model predicts the spatiotemporal snowpack distribution without adding additional complexity, and in fact reduces the number of calibrated parameters. To demonstrate the utility of the PB model, we calibrate the PB and temperature‐index (TI) SWAT models to optimize agreement with stream discharge on a 46‐km2 watershed in northwestern Idaho, United States, for 10 individual years and use the calibrated parameters for the year with the best agreement to run the model for 15 remaining years. Stream discharge predictions by the PB and TI model were similar, although the PB model simulated snowmelt more accurately than the TI model for the remaining 15‐year period. Spatial snow distributions predicted by the PB model better matched observations from LandSat imagery and a SNOTEL station. Results for this watershed show that including PB snowmelt in watershed models is feasible, and calibration of TI‐based watershed models against discharge can incorrectly predict snow cover.  相似文献   

2.
ABSTRACT: The performance of two popular watershed scale simulation models — HSPF and SWAT — were evaluated for simulating the hydrology of the 5,568 km2 Iroquois River watershed in Illinois and Indiana. This large, tile drained agricultural watershed provides distinctly different conditions for model comparison in contrast to previous studies. Both models were calibrated for a nine‐year period (1987 through 1995) and verified using an independent 15‐year period (1972 through 1986) by comparing simulated and observed daily, monthly, and annual streamflow. The characteristics of simulated flows from both models are mostly similar to each other and to observed flows, particularly for the calibration results. SWAT predicts flows slightly better than HSPF for the verification period, with the primary advantage being better simulation of low flows. A noticeable difference in the models' hydrologic simulation relates to the estimation of potential evapotranspiration (PET). Comparatively low PET values provided as input to HSPF from the BASINS 3.0 database may be a factor in HSPF's overestimation of low flows. Another factor affecting baseflow simulation is the presence of tile drains in the watershed. HSPF parameters can be adjusted to indirectly account for the faster subsurface flow associated with tile drains, but there is no specific tile drainage component in HSPF as there is in SWAT. Continued comparative studies such as this, under a variety of hydrologic conditions and watershed scales, provide needed guidance to potential users in model selection and application.  相似文献   

3.
In this study, we characterize the greatest sediment loading events by their sediment delivery behavior; dominant climate, watershed, and antecedent conditions; and their seasonal distribution for rural and urban land uses. The study area is Paradise Creek Watershed, a mixed land use watershed in northern Idaho dominated by saturation excess processes in the upstream rural area and infiltration excess in the downstream urban area. We analyzed 12 years of continuous streamflow, precipitation, and watershed data at two monitoring stations. We identified 137 sediment loading events in the upstream rural section of the watershed and 191 events in the downstream urban section. During the majority of these events conditions were transport limited and the sediment flush occurred early in the event, generally in the first 20% of elapsed event time. Statistical analysis including two dozen explanatory variables showed peak discharge, event duration, and antecedent baseflow explained most of the variation in event sediment load at both stations and for the watershed as a whole (R2 = 0.73‐0.78). In the rural area, saturated soils combined with spring snowmelt in March led to the greatest loading events. The urban area load contribution peaked in January, which could be a re‐suspension of streambed sediments from the previous water year. Throughout the study period, one event contributed, on average, 33% of the annual sediment load but only accounted for 2% of the time in a year.  相似文献   

4.
This study is to evaluate the future potential impact of climate change on the water quality of Chungju Lake using the Water Quality Analysis Simulation Program (WASP). The lake has a storage capacity of 2.75 Gm3, maximum water surface of 65.7 km2, and forest‐dominant watershed of 6,642 km2. The impact on the lake from the watershed was evaluated by the Soil and Water Assessment Tool (SWAT). The WASP and SWAT were calibrated and validated using the monthly water temperatures from 1998 to 2003, lake water quality data (dissolved oxygen, total nitrogen [T‐N], total phosphorus [T‐P], and chlorophyll‐a [chl‐a]) and daily dam inflow, and monthly stream water quality (sediment, T‐N, and T‐P) data. For the future climate change scenario, the MIROC3.2 HiRes A1B was downscaled for 2020s, 2050s, and 2080s using the Change Factor statistical method. The 2080s temperature and precipitation showed an increase of +4.8°C and +34.4%, respectively, based on a 2000 baseline. For the 2080s watershed T‐N and T‐P loads of up to +87.3 and +19.6%, the 2080s lake T‐N and T‐P concentrations were projected to be 4.00 and 0.030 mg/l from 2.60 and 0.016 mg/l in 2000, respectively. The 2080s chl‐a concentration in the epilimnion and the maximum were 13.97 and 52.45 μg/l compared to 8.64 and 33.48 μg/l in 2000, respectively. The results show that the Chungju Lake will change from its mesotrophic state of 2000 to a eutrophic state by T‐P in the 2020s and by chl‐a in the 2080s. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

5.
Abstract: A study was conducted between September 2003 and September 2006 to obtain baseline sediment inventories and monitor sediment transport and storage along a 3.7 km length of the channel of Valley Creek within Valley Forge National Historical Park, Pennsylvania. Valley Creek is a tributary of the Schuylkill River and drains an urbanizing 60.6 km2 watershed that currently has 18% impervious land cover. Numerous field methods were employed to measure the suspended sediment yield, longitudinal profile, cross‐sections, banklines, and particle size distribution of the streambed. Suspended sediment yield for the watershed was measured at a USGS gage located just upstream of the park boundary between July 2004 and July 2005, the period corresponding to field surveys of bank erosion and channel change. The estimated suspended sediment yield of 95.7 t/km2/year is representative of a year with unusually high discharge, including a storm event that produced a peak of 78 m3/s, the second highest discharge on record for the USGS gage. Based on the median annual streamflow for the 24 years of record at the USGS gage from 1983 to 2006, the median annual sediment yield is estimated to be closer to 34 t/km2/year, considerably lower than median and mean values for other sites within the region. The mass of silt, clay, and fine sand derived from bank erosion along the 3.7 km study reach during the field survey period accounts for an estimated 2,340 t, equivalent to about 43% of the suspended sediment load. The mass of fine sediment stored in the bed along the study reach was estimated at 1,500 t, with about 330 t of net erosion during the study period. Although bank erosion appears to be a potentially dominant source of sediment by comparison with annual suspended sediment load, bed sediment storage and potential for remobilization is of the same order of magnitude as the mass of sediment derived from bank erosion.  相似文献   

6.
ABSTRACT: To investigate the impacts of urbanization and climatic fluctuations on stream flow magnitude and variability in a Mediterranean climate, the HEC‐HMS rainfall/runoff model is used to simulate stream flow for a 14‐year period (October 1, 1988, to September 30, 2002) in the Atascadero Creek watershed located along the southern coast of California for 1929, 1998, and 2050 (estimated) land use conditions (8, 38 and 52 percent urban, respectively). The 14‐year period experienced a range of climatic conditions caused mainly by El Nino‐Southern Oscillation variations. A geographic information system is used to delineate the watershed and parameterize the model, which is calibrated using data from two stream flow and eight rainfall gauges. Urbanization is shown to increase peak discharges and runoff volume while decreasing stream flow variability. In all cases, the annual and 14‐year distributions of stream flow are shown to be highly skewed, with the annual maximum 24 hours of discharge accounting for 22 to 52 percent of the annual runoff and the maximum ten days of discharge from an average El Nino year producing 10 to 15 percent of the total 14‐year discharge. For the entire period of urbanization (1929 to 2050), the average increase in annual maximum discharges and runoff was 45 m3/s (300 percent) and 15 cm (350 percent), respectively. Additionally, the projected increase in urbanization from 1998 to 2050 is half the increase from 1929 to 1998; however, increases in runoff (22 m3/s and 7 cm) are similar for both scenarios because of the region's spatial development pattern.  相似文献   

7.
Abstract: The hydrological simulation program – FORTRAN (HSPF) is a comprehensive watershed model that employs depth‐area‐volume‐flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross‐sections and reservoirs. An accurate FTABLE determination for a stream cross‐section site requires an accurate determination of mean flow depth, mean flow width, roughness coefficient, longitudinal bed slope, and length of stream reach. A method that uses regional regression equations to estimate mean flow depth, mean flow width, and roughness coefficient is presented herein. FTABLES generated by the proposed method (Alternative Method) and FTABLES generated by Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) were compared. As a result, the Alternative Method was judged to be an enhancement over the BASINS method. First, the Alternative Method employs a spatially variable roughness coefficient, whereas BASINS employs an arbitrarily selected spatially uniform roughness coefficient. Second, the Alternative Method uses mean flow width and mean flow depth estimated from regional regression equations whereas BASINS uses mean flow width and depth extracted from the National Hydrography Dataset (NHD). Third, the Alternative Method offers an option to use separate roughness coefficients for the in‐channel and floodplain sections of compound channels. Fourth, the Alternative Method has higher resolution in the sense that area, volume, and flow data are calculated at smaller depth intervals than the BASINS method. To test whether the Alternative Method enhances channel hydraulic representation over the BASINS method, comparisons of observed and simulated streamflow, flow velocity, and suspended sediment were made for four test watersheds. These comparisons revealed that the method used to estimate the FTABLE has little influence on hydrologic calibration, but greatly influences hydraulic and suspended sediment calibration. The hydrologic calibration results showed that observed versus simulated daily streamflow comparisons had Nash‐Sutcliffe efficiencies ranging from 0.50 to 0.61 and monthly comparisons had efficiencies ranging from 0.61 to 0.84. Comparisons of observed and simulated suspended sediments concentrations had model efficiencies ranging from 0.48 to 0.56 for the daily, and 0.28 to 0.70 for the monthly comparisons. The overall results of the hydrological, hydraulic, and suspended sediment concentration comparisons show that the Alternative Method yielded a relatively more accurate FTABLE than the BASINS method. This study concludes that hydraulic calibration enhances suspended sediment simulation performance, but even greater improvement in suspended sediment calibration can be achieved when hydrological simulation performance is improved. Any improvements in hydrological simulation performance are subject to improvements in the temporal and spatial representation of the precipitation data.  相似文献   

8.
Abstract: Despite widespread interest, few sediment budgets are available to document patterns of erosion and sedimentation in developing watersheds. We assess the sediment budget for the Good Hope Tributary, a small watershed (4.05 km2) in Montgomery County, Maryland, from 1951‐1996. Lacking monitoring data spanning the period of interest, we rely on a variety of indirect and stratigraphic methods. Using regression equations relating sediment yield to construction, we estimated an upland sediment production of 5,700 m3 between 1951 and 1996. Regression equations indicate that channel cross‐sectional area is correlated with the extent of development; these relationships, when combined with historical land use data, suggest that upland sediment yield was augmented by 6,400 m3 produced by enlargement of first‐order and second‐order stream channels. We used dendrochronology to estimate that 4,000 m3 of sediment was stored on the floodplain from 1951‐1996. The sediment yield from the watershed, obtained by summing upstream contributions, totals 8,100 m3 of sediment, or 135 tons/km2/year. These results indicate that upland erosion, channel enlargement, and floodplain storage are all significant components of the sediment budget of our study area, and all three are approximately equal in magnitude. Erosion of “legacy” floodplain sediments originally deposited during poor agricultural practices of the 19th and early 20th Centuries has likely contributed between 0 and 20% of the total sediment yield, indicating that these remobilized deposits are not a dominant component of the sediment yield of our study area.  相似文献   

9.
The Pacific Northwest is expected to witness changes in temperature and precipitation due to climate change. In this study, we enhance the Snake River Planning Model (SRPM) by modeling the feedback loop between incidental recharge and surface water supply resulting from surface water and groundwater extraction for irrigation and provide a case study involving climate change impacts and management scenarios. The new System Dynamics‐Snake River Planning Model (SD‐SRPM) is calibrated to flow at Box Canyon Springs located along a major outlet of the East Snake Plain Aquifer. A calibration of the model to flow at Box Canyon Springs, based on historic diversions (1950‐1995) resulted in an r2 value of 0.74 and a validation (1996‐2005) r2 value of 0.60. After adding irrigation entities to the model an r2 value of 0.91, 0.88, and 0.87 were maintained for modeled vs. observed (1991‐2005) end‐of‐month reservoir content in Jackson Lake, Palisades, and American Falls, the three largest irrigation reservoirs in the system. The scenarios that compared the impacts of climate change were based on ensemble mean precipitation change scenarios and estimated changes to crop evapotranspiration (ET). Increased ET, despite increased precipitation, generally increased surface water shortages and discharge of springs. This study highlights the need to develop and implement models that integrate the human‐natural system to understand the impacts of climate change.  相似文献   

10.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   

11.
Abstract: The potential of remotely sensed time series of biophysical states of landscape to characterize soil moisture condition antecedent to radar estimates of precipitation is assessed in a statistical prediction model of streamflow in a 1,420 km2 watershed in south‐central Texas, Moderate Resolution Imaging Spectroradiometer (MODIS) time series biophysical products offer significant opportunities to characterize and quantify hydrologic state variables such as land surface temperature (LST) and vegetation state and status. Together with Next Generation Weather Radar (NEXRAD) precipitation estimates for the period 2002 through 2005, 16 raw and deseasoned time series of LST (day and night), vegetation indices, infrared reflectances, and water stress indices were linearly regressed against observed watershed streamflow on an eight‐day aggregated time period. Time offsets of 0 (synchronous with streamflow event), 8, and 16 days (leading streamflow event) were assessed for each of the 16 parameters to evaluate antecedent effects. The model results indicated a reasonable correlation (r2 = 0.67) when precipitation, daytime LST advanced 16 days, and a deseasoned moisture stress index were regressed against log‐transformed streamflow. The estimation model was applied to a validation period from January 2006 through March 2007, a period of 12 months of regional drought and base‐flow conditions followed by three months of above normal rainfall and a flood event. The model resulted in a Nash‐Sutcliffe estimation efficiency (E) of 0.45 for flow series (in log‐space) for the full 15‐month period, ?0.03 for the 2006 drought condition period, and 0.87 for the 2007 wet condition period. The overall model had a relative volume error of ?32%. The contribution of parameter uncertainties to model discrepancy was evaluated.  相似文献   

12.
An erosion and sediment transport component incorporated in the HYdrology Simulation using Time‐ARea method (HYSTAR) upland watershed model provides grid‐based prediction of erosion, transport and deposition of sediment in a dynamic, continuous, and fully distributed framework. The model represents the spatiotemporally varied flow in sediment transport simulation by coupling the time‐area routing method and sediment transport capacity approach within a grid‐based spatial data model. This avoids the common, and simplistic, approach of using the Universal Soil Loss Equation (USLE) to estimate erosion rates with a delivery ratio to relate gross soil erosion to sediment yield of a watershed, while enabling us to simulate two‐dimensional sediment transport processes without the complexity of numerical solution of the partial differential governing equations. In using the time‐area method for routing sediment, the model offers a novel alternative to watershed‐scale sediment transport simulation that provides detailed spatial representation. In predicting four‐year sediment hydrographs of a watershed in Virginia, the model provided good performance with R2 of 0.82 and 0.78 and relative error of ?35% and 11% using the Yalin and Yang's sediment transport capacity equations, respectively. Prediction of spatiotemporal variation in sediment transport processes was evaluated using maps of sediment transport rates, concentrations, and erosion and deposition mass, which compare well with expected behavior of flow hydraulics and sediment transport processes.  相似文献   

13.
In this study, two different versions of the Soil and Water Assessment Tool (SWAT) model were used to simulate the hydrology and biogeochemical response of the Cannonsville Reservoir watershed, in New York. The first version distributes overland flow in ways that are consistent with variable source area (VSA) hydrology driven by saturation excess runoff, whereas the second version is the standard version of SWAT. These two models were each calibrated for streamflow (Flow), particulate phosphorus (PP), total dissolved phosphorus (TDP), and sediment (Sed) against measured data from the 1,200 km2 Cannonsville watershed. The standard version of the model yielded an r2 between the measured and simulated data of 0.85, 0.73, 0.70, and 0.72 for Flow, Sed, TDP, and PP, respectively. The VSA version yielded an r2 of 0.84, 0.69, 0.72, and 0.53 for Flow, Sed, TDP, and PP, respectively. The two models were then used to determine the maximum upper bound on the reduction in phosphorus loading by removing all of the corn in the watershed. The average reductions between the two models were 65 and 37% for PP and TDP, respectively. The VSA version was also used to estimate the effect of moving corn land in the watershed from the wettest, most runoff prone areas to the driest, least runoff prone areas, which cannot be done directly with the standard SWAT model.  相似文献   

14.
Sage Creek in south‐central Wyoming is listed as impaired by the U.S. Environmental Protection Agency (USEPA) due to its sediment contribution to the North Platte River. Despite the magnitude of sediment impacts on streams, little research has been conducted to characterize patterns of sediment transport or to model suspended sediment concentration in many arid western U.S. streams. This study examined the relationship between stream discharge and suspended sediment concentration near the Sage Creek and North Platte River confluence from 1998 through 2003. The objectives were to determine patterns of stream discharge and suspended sediment concentration, produce a sediment prediction model, and compare sediment concentrations for the six‐year period. Stream discharge and suspended sediment transport responded rapidly to convective storms and spring runoff events. During the study period, events exceeding 0.23 m3/s accounted for 92 percent of the sediment load, which is believed to originate from erodible headwater uplands. Further analysis of these data indicates that time series modeling is superior to simple linear regression in predicting sediment concentration. Significant increases in suspended sediment concentration occurred in all years except 2003. This analysis suggests that a six‐year monitoring record was insufficient to factor out impacts from climate, geology, and historical sediment storage.  相似文献   

15.
Abstract: This paper investigates application of the Army Corps of Engineers’ Hydrologic Engineering Center Hydrologic Modeling System (HEC‐HMS) to a burned watershed in San Bernardino County, California. We evaluate the HEC‐HMS’ ability to simulate discharge in prefire and postfire conditions in a semi arid watershed and the necessary parameterizations for modeling hydrologic response during the immediate, and subsequent recovery, period after a wildfire. The model is applied to City Creek watershed, which was 90% burned during the Old Fire of October 2003. An optimal spatial resolution for the HEC‐HMS model was chosen based on an initial sensitivity analysis of subbasin configurations and related model performance. Five prefire storms were calibrated for the selected model resolution, defining a set of parameters that reasonably simulate prefire conditions. Six postfire storms, two from each of the following rainy (winter) seasons were then selected to simulate postfire response and evaluate relative changes in parameter values and model behavior. There were clear trends in the postfire parameters [initial abstractions (Ia), curve number (CN), and lag time] that reveal significant (and expected) changes in watershed behavior. CN returns to prefire (baseline) values by the end of Year 2, while Ia approaches baseline by the end of the third rainy season. However, lag time remains significantly lower than prefire values throughout the three‐year study period. Our results indicate that recovery of soil conditions and related runoff response is not entirely evidenced by the end of the study period (three rainy seasons postfire). Understanding the evolution of the land surface and related hydrologic properties during the highly dynamic postfire period, and accounting for these changes in model parameterizations, will allow for more accurate and reliable discharge simulations in both the immediate, and subsequent, rainy seasons following fire.  相似文献   

16.
17.
Suspended solids or sediments can be pollutants in rivers, but they are also an important component of lotic food webs. Suspended sediment data for rivers were obtained from a United States–wide water quality database for 622 stations. Data for particulate nitrogen, suspended carbon, discharge, watershed area, land use, and population were also used. Stations were classified by United States Environmental Protection Agency ecoregions to assess relationships between terrestrial habitats and the quality and quantity of total suspended solids (TSS). Results indicate that nephelometric determinations of mean turbidity can be used to estimate mean suspended sediment values to within an order of magnitude (r2 = 0.89). Water quality is often considered impaired above 80 mg TSS L–1, and 35% of the stations examined during this study had mean values exceeding this level. Forested systems had substantially lower TSS and somewhat higher carbon-to-nitrogen ratios of suspended materials. The correlation between TSS and discharge was moderately well described by an exponential relationship, with the power of the exponent indicating potential acute sediment events in rivers. Mean sediment values and power of the exponent varied significantly with ecoregion, but TSS values were also influenced by land use practices and geomorphological characteristics. Results confirm that, based on current water quality standards, excessive suspended solids impair numerous rivers in the United States.  相似文献   

18.
Fluvial sediment is a ubiquitous pollutant that negatively affects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate long-term TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that efforts to reduce sediment load from the watershed appear to be working.  相似文献   

19.
The goal of this study was to develop a methodology for generating storm hydrographs at a watershed scale based on daily runoff estimates from a field scale model. The methodology was evaluated on a small agricultural watershed using the ADAPT field scale process model. A comparison of observed and predicted peak flows for 11 of the largest events that occurred in a three year period gave r2 values of 0.84, 0.82, and 0.81 when the watershed was subdivided into 1, 5, and 10 sub watersheds. However, all other statistical measures improved when the watershed was subdivided into at least five sub watersheds. Guidelines need to be developed on the use of the procedure but it first needs to be evaluated on several watersheds that exhibit a range in sizes, land uses, slopes, and soil properties.  相似文献   

20.
Abstract: Alluvial fans in southern California are continuously being developed for residential, industrial, commercial, and agricultural purposes. Development and alteration of alluvial fans often require consideration of mud and debris flows from burned mountain watersheds. Accurate prediction of sediment (hyper‐concentrated sediment or debris) yield is essential for the design, operation, and maintenance of debris basins to safeguard properly the general population. This paper presents results based on a statistical model and Artificial Neural Network (ANN) models. The models predict sediment yield caused by storms following wildfire events in burned mountainous watersheds. Both sediment yield prediction models have been developed for use in relatively small watersheds (50‐800 ha) in the greater Los Angeles area. The statistical model was developed using multiple regression analysis on sediment yield data collected from 1938 to 1983. Following the multiple regression analysis, a method for multi‐sequence sediment yield prediction under burned watershed conditions was developed. The statistical model was then calibrated based on 17 years of sediment yield, fire, and precipitation data collected between 1984 and 2000. The present study also evaluated ANN models created to predict the sediment yields. The training of the ANN models utilized single storm event data generated for the 17‐year period between 1984 and 2000 as the training input data. Training patterns and neural network architectures were varied to further study the ANN performance. Results from these models were compared with the available field data obtained from several debris basins within Los Angeles County. Both predictive models were then applied for hind‐casting the sediment prediction of several post 2000 events. Both the statistical and ANN models yield remarkably consistent results when compared with the measured field data. The results show that these models are very useful tools for predicting sediment yield sequences. The results can be used for scheduling cleanout operation of debris basins. It can be of great help in the planning of emergency response for burned areas to minimize the damage to properties and lives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号