首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: This study used an innovative GIS/remote sensing approach to study historical river channel changes in the Huron River, a wandering gravel‐bedded river in northern Ohio. Eight sets of historical aerial photographs (1958‐2003) span the construction of a low‐head dam (1969), removal of the spillway (1994), and removal of the dam itself (2002). Construction of the dam modified stream gradients >4 km upstream of the small impounded reservoir. This study tracked changes in the polygon size, shape, and centroid position of 12 sand‐gravel bars through a study reach 0.2‐4.1 km upstream of the dam. These bars were highly responsive, tending to migrate obliquely downstream and toward the outer bank at rates up to 9 m/year. Historical changes in the size and position of the bars can be interpreted as the downstream translation of one or more sediment waves. Prior to dam construction, a sediment wave moved downstream through the study reach. Following construction of the dam, this sediment wave became stationary and degraded in situ by dispersion. The growth of bars throughout the study reach during this time interval resulted in a progressive increase in channel sinuosity. Removal of the spillway rejuvenated downstream translation of a sediment wave through the study reach and was followed by a reduction in channel sinuosity. These results illustrate that important geomorphologic changes can occur upstream of low‐head dams. This may be a neglected area of research about the effects of dams and dam removals.  相似文献   

2.
Sedimentation is emerging as a key issue in sustainable reservoir management. One approach to controlling reservoir sedimentation is to trap sediment in hydraulic structures upstream of the reservoir. In the 1,163‐km2 catchment of the Dahan River (Taiwan) over 120 “sabo” dams were built to reduce sediment yield to Shihmen Reservoir. Built in 1963 for water supply, Shihmen has lost over 40% of its 290‐Mm3 storage capacity to sedimentation. Most of these upstream structures were small, but three had capacities >9 Mm3. Field measurements and historical data from the Water Resources Agency show most smaller dams had filled with sediment by 1976. The three largest were full or nearly so by 2007, when one (Barlin Dam) failed, releasing a pulse of 7.5 Mm3, most of its 10.4 Mm3 stored sediment downstream. The Central Range of Taiwan is rapidly eroding (denudation rates 3‐6 mm/yr), so geologically high loads make sediment problems manifest sooner. Even in other environments, however, eventually small dams built upstream of large reservoirs are likely to fill themselves, creating multiple small sediment‐filled reservoirs, some located in sites inaccessible to mechanical removal. Our analysis suggests sabo dams do not offer a long‐term basis for controlling reservoir sedimentation in such a high‐sediment yield environment. Sustainable solutions must somehow pass sediment downstream, as would be accomplished by a sediment bypass around Shihmen Reservoir, as now being studied.  相似文献   

3.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

4.
ABSTRACT: Carbon content was measured in sediments deposited in 58 small reservoirs across the United States. Reservoirs varied from 0.2 to 4000 km2 in surface area. The carbon content of sediment ranged from 0.3 to 5.6 percent, with a mean of 1.9 ± 1.1 percent. No significant differences between the soil and sediment carbon content were found using a paired t-test or ANOVA. The carbon content of sediments in reservoirs was similar to the carbon content of surface soils (0–10 cm) in the watershed, except in watersheds with shrub or steppe (desert) vegetation. Based on the sediment accumulation rates measured in each reservoir, the calculated organic carbon accumulation rates among reservoirs ranged from 26 to 3700 gC m-2yr-1, with a mean of 675 ± 739 gC m-2yr-1. The carbon content and accumulation rates were highest in sediments from grassland watersheds. High variability was found in carbon content, carbon accumulation, and sediment accumulation rates due to individual watershed and reservoir characteristics rather than to any broad physiographic patterns. The carbon accumulation rates in these reservoir sediments indicate that reservoir sediments could be a significant sink for organic carbon.  相似文献   

5.
We investigate stream response to the La Valle Dam removal and channel reconstruction by estimating channel hydraulic parameter values and changes in sedimentation within the reservoir. The designed channel reconstruction after the dam removal included placement of a riffle structure at the former dam site. Stream surveys undertaken in 1984 by Federal Emergency Management Agency and in 2001 by Doyle et al. were supplemented with surveys in 2009 and 2011 to study the effects of the instream structure. We created a model in HEC‐RAS IV and surface maps in Surfer© using the 1984, 2009, and 2011 surveys. The HEC‐RAS IV model for 2009 channel conditions indicates that the riffle structure decreases upstream channel shear stress and velocity, causing renewed deposition of sediment within the former reservoir. We estimate by 2009, 61% of former reservoir sediments were removed during dam removal and channel reconstruction. Between 2009 and 2011 renewed sedimentation within the former reservoir represented approximately 7.85% of the original reservoir volume. The HEC‐RAS IV models show the largest impacts of the dam and riffle structure occur at flood magnitudes at or below bankfull. Thus, the riffle and the dam similarly alter channel hydraulics and sediment transport. As such, our models indicate that the La Valle Dam project was a dam replacement rather than a removal. Our results confirm that channel reconstruction method can alter channel hydraulics, geomorphology, and sediment mobility.  相似文献   

6.
ABSTRACT: The purpose of this study was to evaluate the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) watershed management system. BASINS data were used with the NPSM model to predict discharge and sediment concentrations at the outlet of a 103 km2 Ohio watershed. It was concluded that the NPSM model should always be calibrated but only a few of the parameters provided with BASINS needed to be calibrated. For a three‐year study period, there was a 2 percent underestimation of discharge using area weighted precipitation values and a 25 percent overestimation using the single station data in BASINS. A comparison of observed and predicted monthly discharge resulted in an r2 of 0.86 with area‐weighted precipitation and an r2 of 0.74 with the single station data. Calibrating the model to substantially improve sediment predictions was unsuccessful and we concluded that a calibration period of one year was too short. For the three‐year study period, the r2 for sediment was 0.36 with a slope of 0.37 and an intercept of 18.8 mg/l. The mean observed and predicted sediment concentrations were 27.1 mg/l and 22.6 mg/l, respectively.  相似文献   

7.
Abstract: We evaluate the effects of small dams (11 of 15 sites less than 4 m high) on downstream channels at 15 sites in Maryland and Pennsylvania by using a reach upstream of the reservoir at each site to represent the downstream reach before dam construction. A semi‐quantitative geomorphic characterization demonstrates that upstream reaches occupy similar geomorphic settings as downstream reaches. Survey data indicate that dams have had no measurable influence on the water surface slope, width, and the percentages of exposed bedrock or boulders on the streambed. The median grain diameter (D50) is increased slightly by dam construction, but D50 remains within the pebble size class. The percentage of sand and silt and clay on the bed averages about 35% before dam construction, but typically decreases to around 20% after dam construction. The presence of the dam has therefore only influenced the fraction of finer‐grained sediment on the bed, and has not caused other measurable changes in fluvial morphology. The absence of measurable geomorphic change from dam impacts is explicable given the extent of geologic control at these study sites. We speculate that potential changes that could have been induced by dam construction have been resisted by inerodible bedrock, relatively immobile boulders, well‐vegetated and cohesive banks, and low rates of bed material supply and transport. If the dams of our study are removed, we argue that long‐term changes (those that remain after a period of transient adjustment) will be limited to increases in the percentage of sand and silt and clay on the bed. Thus, dam removal in streams similar to those of our study area should not result in significant long‐term geomorphic changes.  相似文献   

8.
ABSTRACT: In Yegua Creek, a principal tributary of the Brazos River in Texas, surveys of a 19 km channel reach downstream of Somerville Dam show that channel capacity decreased by an average of 65 percent in a 34 year period following dam closure. The decrease corresponds with an approximately 85 percent reduction in annual flood peaks. Channel depth has changed the most, decreasing by an average of 61 percent. Channel width remained stable with an average decrease of only 9 percent, reflecting cohesive bank materials along with the growth of riparian vegetation resulting from increased low flows during dry summer months. Although large changes in stream channel geometry are not uncommon downstream of dams, such pronounced reductions in channel capacity could have long‐term implications for sediment delivery through the system.  相似文献   

9.
ABSTRACT: Long-term land use and reservoir sedimentation were quantified and linked in a small agricultural reservoir-watershed system without having historical data. Land use was determined from a time sequence of aerial photographs, and reservoir sedimentation was determined from cores with 137Cs dating techniques. They were linked by relating sediment deposition to potential sediment production which was determined by the Universal Soil Loss Equation and by SCS estimates for gullied land. Sediment cores were collected from Tecumseh Lake, a 55-ha reservoir with a 1,189-ha agricultural watershed, constructed in 1934 in central Oklahoma. Reservoir sediment deposition decreased from an average of 5,933 Mg/yr from 1934 to 1954, to 3,179 Mg/yr from 1954 to 1962, and finally to 1,017 Mg/yr from 1962 to 1987. Potential sediment production decreased from an average of 29,892 to 11,122 and then to 3,589 Mg/yr for the same time periods as above, respectively. Reductions in deposition and sediment production corresponded to reductions in cultivated and abandoned cropland which became perennial pasture. Together, cultivated and abandoned cropland accounted for 59 percent of the watershed in 1937, 24 percent in 1954, and 10 percent in 1962. Roadway erosion, stream bank erosion, stored stream channel sediment, and long-term precipitation were considered, but none seemed to play a significant role in changing sediment deposition rates. Instead, the dominant factor was the conversion of fields to perennial pastures. The effect of conservation measures on reservoir sedimentation can now be quantified for many reservoirs where historical data is not available.  相似文献   

10.
Ocoee Lake No. 3 is the first reservoir receiving suspended sediments contaminated with trace metals discharged by acid mine effluents from the Ducktown Mining District, Tennessee. Bottom sediments (0-5 cm) from the lake were sampled to assess the potential for future adverse environmental effects if no remediation controls or activities are implemented. The sediments were found to include a major component (173 +/- 19 g kg(-1)) that dissolved in 6 mol L(-1) HCl within 24 h. This acid-soluble and relatively labile fraction contained high concentrations of Fe (460 +/- 40 g kg(-1)), Al (99 +/- 11 g kg(-1)), Mn (10 +/- 8 g kg(-1)), Cu (2000 +/- 700 mg kg(-1)), Zn (1300 +/- 200 mg kg(-1)), and Pb (300 +/- 200 mg kg(-1)). When the pH of water in contact with the sediment was decreased experimentally from 6.4 to 2.6, the concentrations of dissolved trace metals increased by factors of 2200 for Pb, 160 for Cu, 21 for Zn, 9 for Cd, 8 for Ni, and 5 for Co. The order in which metals were released with decreasing pH was the reverse of that reported for pH-dependent sorption of these metals in upstream systems. Substantial release of trace metals from the sediment was observed even by a modest decrease of pH from 6.4 to 5.9. Therefore, the metal-rich sediment of the lake should be considered as potentially hazardous to bottom-dwelling aquatic species and other organisms in the local food chain. In addition, if the reservoir is dredged or if the dam is removed, the accumulated sediment may have to be treated for recovery of sorbed metals.  相似文献   

11.
In this study, we characterize the greatest sediment loading events by their sediment delivery behavior; dominant climate, watershed, and antecedent conditions; and their seasonal distribution for rural and urban land uses. The study area is Paradise Creek Watershed, a mixed land use watershed in northern Idaho dominated by saturation excess processes in the upstream rural area and infiltration excess in the downstream urban area. We analyzed 12 years of continuous streamflow, precipitation, and watershed data at two monitoring stations. We identified 137 sediment loading events in the upstream rural section of the watershed and 191 events in the downstream urban section. During the majority of these events conditions were transport limited and the sediment flush occurred early in the event, generally in the first 20% of elapsed event time. Statistical analysis including two dozen explanatory variables showed peak discharge, event duration, and antecedent baseflow explained most of the variation in event sediment load at both stations and for the watershed as a whole (R2 = 0.73‐0.78). In the rural area, saturated soils combined with spring snowmelt in March led to the greatest loading events. The urban area load contribution peaked in January, which could be a re‐suspension of streambed sediments from the previous water year. Throughout the study period, one event contributed, on average, 33% of the annual sediment load but only accounted for 2% of the time in a year.  相似文献   

12.
Future climate change is a source of growing concerns for the supply of energy and resources, and it may have significant impacts on industry and the economy. Major effects are likely to arise from changes to the freshwater resources system, due to the connection of energy generation to these water systems. Using future climate data downscaled by a stochastic weather generator, this study investigates the potential impacts of climate change on long‐term reservoir operations at the Chungju multipurpose dam in South Korea, specifically considering the reliability of the supply of water and hydropower. A reservoir model, Hydrologic Engineering Center‐Reservoir System Simulation (HEC‐ResSim), was used to simulate the ability of the dam to supply water and hydropower under different conditions. The hydrologic model Soil and Water Assessment Tool was used to determine the HEC‐ResSim boundary conditions, including daily dam inflow from the 6,642 km2 watershed into the 2.75 Gm3 capacity reservoir. Projections of the future climate indicate that temperature and precipitation during 2070‐2099 (2080s) show an increase of +4.1°C and 19.4%, respectively, based on the baseline (1990‐2009). The results from the models suggest that, in the 2080s, the average annual water supply and hydropower production would change by +19.8 to +56.5% and by +33.9 to 92.3%, respectively. Model simulations suggest that under the new climatic conditions, the reliability of water and hydropower supply would be generally improved, as a consequence of increased dam inflow.  相似文献   

13.
The release of trace metals (Mn, Ni, Co, Cu, Zn, Pb, and Cd) and inorganic compounds (As) from initially anoxic Trepangier Bayou sediments, Louisiana and the sources of the released metals were investigated. After 1 to 2 d aeration, significant amounts of trace metals (Mn, Zn, Cd, Ni, and Co) were released to the aqueous phase with increased acidity, primarily due to the oxidation of acid-volatile sulfide and ferrous iron and iron sulfide minerals. The addition of a bacterial inhibitor, NaN,, to the Trepangier sediment during resuspension inhibited metal release, suggesting that microbial catalysis can regulate metal mobilization during sediment resuspension. In a well buffered system, oxidation of iron sulfides alone did not appear to induce trace metal release. Moreover, when Trepangier sediment was resuspended in anoxic conditions at neutral pH, <1% of the trace metal content was released, whereas a significant release of metal was observed under acidic anoxic conditions. Although oxidation of iron sulfide minerals is an essential prerequisite for the release of Zn, Co, Cd, and Ni, carbonates and oxides also play a role. The trace metals and inorganic compounds investigated could be classified into three groups according to their release characteristics: (i) Mn, Zn, Cd, Ni, and Co; (ii) Fe, Pb, and As; and (iii) Cu. The groupings appeared to depend on the sources of compounds and their relative affinity, after oxidation, to iron oxyhydroxides or organic matter.  相似文献   

14.
ABSTRACT: There is a pressing need for tools to predict the rates, magnitudes, and mechanisms by which sediment is removed from a reservoir following dam removal, as well as for tools to predict where this sediment will be deposited downstream and how it will impact downstream channel morphology. In the absence of adequate empirical data, a good initial approach is to examine the impacts of dam removal within the context of the geomorphic analogies of channel evolution models and sediment waves. Channel changes at two dam breaching sites in Wisconsin involved a succession of channel forms and processes consistent with an existing channel evolution model. Sediment transported downstream after removal of other dams suggests that reservoir sediment may be translated downstream either as a distinct wave or gradually eroded away. More extensive data collection on existing dam removals is warranted before undertaking the removal of a large number of dams. However, if removal is to proceed based on current knowledge, then geomorphic analogies can be used as the foundation for sediment management and stabilization schemes.  相似文献   

15.
ABSTRACT: Resolution of the input GIS data used to parameterize distributed‐parameter hydrologic/water quality models may affect uncertainty in model outputs and impact the subsequent application of model results in watershed management. In this study we evaluated the impact of varying spatial resolutions of DEM, land use, and soil data (30 × 30 m, 100 × 100 m, 150 × 150 m, 200 × 200 m, 300 × 300 m, 500 × 500 m, and 1,000 × 1,000 m) on the uncertainty of SWAT predicted flow, sediment, NO3‐N, and TP transport. Inputs included measured hydrologic, meteorological, and watershed characteristics as well as water quality data from the Moores Creek watershed in Washington County, Arkansas. The SWAT model output was most affected by input DEM data resolution. A coarser DEM data resolution resulted in decreased representation of watershed area and slope and increased slope length. Distribution of pasture, forest, and urban areas within the watershed was significantly affected at coarser resolution of land use and resulted in significant uncertainty in predicted sediment, NO3‐N, and TP output. Soils data resolution had no significant effect on flow and NO3‐N predictions; however, sediment was overpredicted by 26 percent, and TP was underpredicted by 26 percent at 1,000 m resolution. This may be due to change in relative distribution of various hydrologic soils groups (HSGs) in the watershed. Minimum resolution for input GIS data to achieve less than 10 percent model output error depended upon the output variable of interest. For flow, sediment, NO3‐N, and TP predictions, minimum DEM data resolution should range from 30 to 300 m, whereas minimum land use and soils data resolution should range from 300 to 500 m.  相似文献   

16.
One uncertainty associated with large dam removal is the level of downstream sediment deposition and associated short‐term biological effects, particularly on salmonid spawning habitat. Recent studies report downstream sediment deposition following dam removal is influenced by proximity to the source and river transport capacity. The impacts of dam removal sediment releases are difficult to generalize due to the relatively small number of dam removals completed, the variation in release strategies, and the physical nature of systems. Changes to sediment deposition and associated streambed composition in the Elwha River, Washington State, were monitored prior to (2010‐2011) and during (2012‐2014) the simultaneous removal of two large dams (32 and 64 m). Changes in the surface layer substrate composition during dam removal varied by year and channel type. Riffles in floodplain channels downstream of the dams fined and remained sand dominated throughout the study period, and exceeded levels known to be detrimental to incubating salmonids. Mainstem riffles tended to fine to gravel, but appear to be trending toward cobble after the majority of the sediment was released and transported through system. Thus, salmonid spawning habitats in the mainstem appear to have been minimally impacted while those in floodplain channels appear to have been severely impacted during dam removal.  相似文献   

17.
This is a study of the scientific component of an effort to restore an urban river by removing a low-head dam. The Secor Dam is owned by a local government entity near Toledo, Ohio. The proposed removal of the last structure impeding flow on the Ottawa River has broad appeal, but the owner is concerned about liability issues, particularly potential changes to the flood regime, the presence of contaminated sediments behind the dam, and possible downstream transport of reservoir sediments. Assessing sediment contamination involved sediment sampling and analysis of trace metals and organic contaminants. Forecasting sediment transport involved field methods to determine the volume and textural properties of reservoir and upstream sediment and calculations to determine the fate of reservoir sediments. Forecasting changes in the flood regime involved HEC-RAS hydrological models to determine before and after dam removal flood scenarios using LiDAR data imported into an ArcGIS database. The resulting assessment found potential sediment contamination to be minor, and modeling showed that the removal of the dam would have minimal impacts on sediment transport and flood hazards. Based on the assessment, the removal of the dam has been approved by its owners.  相似文献   

18.
An erosion and sediment transport component incorporated in the HYdrology Simulation using Time‐ARea method (HYSTAR) upland watershed model provides grid‐based prediction of erosion, transport and deposition of sediment in a dynamic, continuous, and fully distributed framework. The model represents the spatiotemporally varied flow in sediment transport simulation by coupling the time‐area routing method and sediment transport capacity approach within a grid‐based spatial data model. This avoids the common, and simplistic, approach of using the Universal Soil Loss Equation (USLE) to estimate erosion rates with a delivery ratio to relate gross soil erosion to sediment yield of a watershed, while enabling us to simulate two‐dimensional sediment transport processes without the complexity of numerical solution of the partial differential governing equations. In using the time‐area method for routing sediment, the model offers a novel alternative to watershed‐scale sediment transport simulation that provides detailed spatial representation. In predicting four‐year sediment hydrographs of a watershed in Virginia, the model provided good performance with R2 of 0.82 and 0.78 and relative error of ?35% and 11% using the Yalin and Yang's sediment transport capacity equations, respectively. Prediction of spatiotemporal variation in sediment transport processes was evaluated using maps of sediment transport rates, concentrations, and erosion and deposition mass, which compare well with expected behavior of flow hydraulics and sediment transport processes.  相似文献   

19.
ABSTRACT: This study estimates subsurface return flow and effective ground water recharge in terraced fields in northern Taiwan. Specifically, a three dimensional model, FEMWATER, was applied to simulate percolation and lateral seepage in the terraced fields under various conditions. In the terraced paddy fields, percolation mainly moves vertically downward in the central area, while lateral seepage is mainly focused around the bund. Although the simulated lateral seepage rate through the bund exceeded the percolation rate in the central area of the paddy field, annual subsurface return flow at Pei‐Chi and Shin‐Men was 0.17 × 106 m3 and 0.37 × 106 m3, representing only 0.17 percent and 0.21 percent of the total irrigation water required for rice growth at Pei‐Chi and Shin‐Men, respectively. For upland fields, the effective ground water recharge rate during the second crop period (July to November) exceeded that during the first crop period (January to May) because of the wet season in the second crop period. Terraced paddy fields have the most efficient ground water recharge, with 21.2 to 23.4 percent of irrigation water recharging to ground water, whereas upland fields with a plow layer have the least efficient ground water recharge, with only 4.8 to 6.6 percent of irrigation water recharging to ground water. The simulation results clearly revealed that a substantial amount of irrigation water recharges to ground water in the terraced paddy, while only a small amount of subsurface return flow seeps from the upstream to the downstream terraced paddy. The amounts of subsurface flow and ground water recharge determined in the study are useful for the irrigation water planning and management and provide a scientific basis to reevaluate water resources management in the terrace region under irrigated rice.  相似文献   

20.
The Ganges River dolphin (Platanista gangetica Roxburgh) of Subansiri River may be in great danger of extinction due to the construction of the 2,000-MW Lower Subansiri Hydroelectric Project, which started in 2006. A recent survey indicates that there are now 29 Ganges dolphins, up from 21 in 2006. It is feared that drastic changes would occur in the downstream hydrology and ecology of the Subansiri River after the installation of the project, scheduled for 2012. The water discharge during a major part of the day in dry months would come down to a meager 6 cumecs from the present average of 450 cumecs (1 cumec is shorthand for cubic meter per second; also cms, or m3/s (m3s–1). Riverine mega fauna like the dolphin would be worst hit by this extremely low discharge. Dumping of an extra amount of sediment from different construction phases has already increased sediment load in the Subansiri downstream and degraded some earlier pockets of dolphin up to 20 km below the dam site. There is reason to believe that high sediment influx might have silted up some of the deeper pools downstream, a preferred habitat of dolphins, forcing them to congregate close to the confluence of the Subansiri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号