首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Results of groundwater and seawater analyses for radioactive ((3)H, (222)Rn, (223)Ra, (224)Ra, (226)Ra, and (228)Ra) and stable (D and (18)O) isotopes are presented together with in situ spatial mapping and time series (222)Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0cmd(-1) to 360cmd(-1); the unit represents cm(3)/cm(2)/day), as well as during a few hours (from 0cmd(-1) to 110cmd(-1)), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous (222)Rn measurements is 17+/-10cmd(-1). Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7x10(3)m(3)d(-1) per km of the coast. The isotopic composition (deltaD and delta(18)O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of (222)Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater in a complex coast with many small bays and islands was influenced by local currents and groundwater/seawater mixing. This has also been confirmed by a relatively short residence time of 1-2 weeks for water within 25km offshore, as obtained by short-lived radium isotopes. The irregular distribution of SGD seen at Ubatuba is a characteristic of fractured rock aquifers, fed by coastal groundwater and recirculated seawater with small admixtures of groundwater, which is of potential environmental concern and has implications on the management of freshwater resources in the region.  相似文献   

2.
222Rn, 226Ra, 228Ra and U were determined in a total of 552 groundwater samples collected throughout Fujian Province of China. The geometric mean concentrations of 222Rn, 226Ra, 228Ra and total U in the groundwater were 147.8 kBq m-3, 12.7 Bq m-3, 30.2 Bq m-3 and 0.54 microgram kg-1, respectively. High groundwater 222Rn was explained by the predominantly granitic rock aquifers in Fujian. A lifetime risk of 1.7 x 10(-3) was estimated for the ingestion of groundwater 222Rn. High ratios of 228Ra to 226Ra contents (geometric mean of 2.4) and their disproportion suggest that 228Ra should also be measured in the assessment of population doses from drinking water in the regions of high rock or soil 232Th. No significant correlation between the 222Rn concentrations in groundwater and air was found.  相似文献   

3.
A delayed coincidence counter (RaDeCC), developed to determine ultra-low levels of (223)Ra (half life = 11.1 days) and (224)Ra (half life = 3.6 days) in seawater, was adapted to measure (226)Ra (half life = 1622 years). After pre-concentration of Ra from seawater onto MnO(2)-coated fiber we show in this study that the (226)Ra activity can be determined using the RaDeCC's ability to record alpha decay of its daughters as total counts. For sufficient ingrowth of (222)Rn, the Mn-fiber is hermetically sealed in a column for a few days. Then, the ingrown (222)Rn is circulated through the RaDeCC air-loop system followed by shutting down of the pump and closure of the scintillation cell for equilibration. Counting may be completed within a few hours for seawater samples. Sample measurements with this method agreed well with data obtained using gamma-ray spectrometry. This proves that a set of Ra isotopes ((223)Ra, (224)Ra, and (226)Ra), commonly used for geophysical studies such as mixing rates of different water masses and submarine groundwater discharge, can be efficiently and rapidly measured using the RaDeCC.  相似文献   

4.
Results of groundwater and seawater analyses for radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, and 228Ra) and stable (D and 18O) isotopes are presented together with in situ spatial mapping and time series 222Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0 cm d−1 to 360 cm d−1; the unit represents cm3/cm2/day), as well as during a few hours (from 0 cm d−1 to 110 cm d−1), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous 222Rn measurements is 17 ± 10 cm d−1. Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7 × 103 m3 d−1 per km of the coast. The isotopic composition (δD and δ18O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of 222Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater in a complex coast with many small bays and islands was influenced by local currents and groundwater/seawater mixing. This has also been confirmed by a relatively short residence time of 1–2 weeks for water within 25 km offshore, as obtained by short-lived radium isotopes. The irregular distribution of SGD seen at Ubatuba is a characteristic of fractured rock aquifers, fed by coastal groundwater and recirculated seawater with small admixtures of groundwater, which is of potential environmental concern and has implications on the management of freshwater resources in the region.  相似文献   

5.
A complex approach in characterisation of submarine groundwater discharge (SGD) off south-eastern Sicily comprising applications of radioactive and non-radioactive tracers, direct seepage measurements, geophysical surveys and a numerical modelling is presented. SGD fluxes in the Donnalucata boat basin were estimated by direct seepage measurements to be from 4 to 12Ls(-1), which are comparable with the total SGD flux in the basin of 17Ls(-1) obtained from radon measurements. The integrated SGD flux over the Donnalucata coast estimated on the basis of Ra isotopes was around 60m(3)s(-1) per km of the coast. Spatial variations of SGD were observed in the Donnalucata boat basin, the average (222)Rn activity concentration in seawater varied from approximately 0.1kBqm(-3) to 3.7kBqm(-3) showing an inverse relationship with salinity. The continuous monitoring carried out at the site closest to the coast has revealed an inverse relationship of (222)Rn activity concentration on the tide. The (222)Rn concentrations in seawater varied from 2.3kBqm(-3) during high tides to 4.8kBqm(-3) during low tides, thus confirming an influence of the tide on submarine groundwater discharge. Stable isotopes (delta(2)H and delta(18)O) showed that SGD samples consist up to 50% of groundwater. Geo-electrical measurements showed a spatial variability of the salt/fresh water interface and its complex transformation in the coastal zone. The presented results imply that in the studied Donnalucata site there are at least two different sources of SGD, one superficial, represented by mixed fresh water and seawater, and the second one which originates in a deeper limestone aquifer.  相似文献   

6.
The activity concentrations of 228Ra, 226Ra and 222Rn have been analysed in 452 drinking water supplies of S?o Paulo State. This study started in 1994 and covered 54% of the 574 existing counties. Concentrations up to 235 and 131 mBq l-1 were observed for 226Ra and 228Ra, respectively, whereas 222Rn concentrations reached 315 Bq l-1. Radiation doses up to 0.3, 0.6 and 3.2 mSv yr-1 were estimated for the critical organs, for the ingestion of 226Ra, 226Ra and 222Rn, respectively. The corresponding committed effective doses reached values of 6 x 10(-3), 2 x 10(-2) and 3 x 10(-1) mSv yr-1, for the same radionuclides. These results indicate that 222Rn makes the highest contribution to the total effective dose.  相似文献   

7.
Radon-222 emanation fractions were determined for barite scale deposits associated with petroleum production tubing and soil contaminated with naturally occurring radioactive material (NORM). Samples were analyzed for 226Ra concentration, the results of which were used to calculate the 222Rn emanation fraction for the sample. An important parameter determining the overall Rn activity flux from a solid medium, 222Rn emanation fraction represents the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. The primary objective of the study was to determine whether 222Rn emanation fractions from pipe scale and soil from petroleum production sites are similar to those of uranium mill tailings. Pipe scale samples were collected at four sites representing a wide geographical area, and consisted primarily of barite scale where Ra atoms have replaced a fraction of the Ba within the crystal lattice of the scale. Soil samples were collected at five sites, from areas exhibiting elevated surface gamma exposure rates indicating the presence of NORM. For comparison, 226Ra concentrations and 222Rn emanation fraction were also determined for uranium mill tailings samples provided from a site in Utah. Although 2226Ra concentrations from pipe scale samples were similar to those found in uranium mill tailings, 222Rn emanation fractions from scale were generally lower. Emanation fractions from each data set were statistically different from those of mill tailings (p < or = 0.01). The differences are probably due to physical differences between the two media and to the method by which the Ra is deposited in the material. Radon emanation from soils was extremely variable owing not only to differences in physical and chemical soil properties, but also to the means by which NORM has entered the soil. Although additional emanation measurements from other sites are needed, the data collected at these sites indicate that regulations intended to protect human health from 222Rn inhalation should consider the type and properties of the medium in which the NORM is contained, rather than relying strictly on concentrations of the parent 226Ra.  相似文献   

8.
More than 220 groundwater samples were analyzed for 228Ra, 226Ra, 222Rn, 210Pb, U(nat), Th(nat), pH, conductivity, fluoride and some additional elements determined by ICP-MS. Since samples from several Brazilian states were taken, involving areas with quite different geologies, no general trend was observed relating the chemical composition and the natural radionuclide content. On the other hand, 210Pb strongly depends on the water content of its progenitor, 222Rn. The values obtained during the present work were compared with those reported by Hainberger et al. [Hainberger, P.L., de Oliveira Paiva, I.R., Salles Andrade, H.A., Zundel, G., Cullen, T.L., 1974. Radioactivity in Brazilian mineral waters. Radiation Data and Reports, 483-488.], when more than 270 groundwater samples were analyzed, mainly, for 226Ra. Based on the results of both works, it was possible to build a database including the results of both works, generating a set with the radium content of circa 350 groundwater sources. It was demonstrated that 228Ra, 226Ra, 222Rn, 210Pb and U(nat) content in Brazilian groundwater follows a lognormal distribution and the obtained geometric mean were 0.045, 0.014, 57.7, 0.040 BqL(-1) and 1.2 microgL(-1), respectively.  相似文献   

9.
The natural radioactivity of 226Ra and 228Ra in scale samples taken from pipes used in several local water wells was investigated. The results showed 226Ra activities to be varying from 1284 to 3613 Bq/kg whereas, the 228Ra concentrations did not show any significant variation, all being low, below 30 Bq/kg. The 222Rn exhalations from these scale samples were also measured and compared with the 226Ra contents. The average ratio of 222Rn/226Ra was 31%. Chemical analyses showed that the main constituent of the scale samples was iron. The radiation dose rates from the pipes and scale were up to 100nSv/h. Although not a major hazard this could present a long-term risk if the scale materials were handled indiscriminately.  相似文献   

10.
Radon-222 exhalation from the ground surface depends upon a number of variables such as the 226Ra activity concentration and its distribution in soil grains; soil grain size; soil porosity, temperature and moisture; atmospheric pressure, rainfall and temperature. In this study, 222Rn exhalation flux density measurements within and around the Ranger uranium mine in northern Australia were performed to investigate the effect of these variables within a tropical region. Measurements were taken at the waste rock dumps, ore stockpiles, mine pits, and at sites where effluent water with elevated 226Ra concentration has been spray irrigated over land, as well as at sites outside the mine. The sites selected represented a variety of geomorphic regions ranging from uranium-bearing rocks to ambient soils. Generally, wet season rains reduced 222Rn exhalation but at a few sites the onset of rains caused a step rise in exhalation flux densities. The results show that parameters such as 226Ra activity concentration, soil grain size and soil porosity have a marked effect on 222Rn flux densities. For similar geomorphic sites, 226Ra activity concentration is a dominant factor, but soil grain size and porosity also influence 222Rn exhalation. Surfaces with vegetation showed higher exhalation flux densities than their barren counterparts, perhaps because the associated root structure increases soil porosity and moisture retention. Repeated measurements over one year at eight sites enabled an analysis of precipitation and soil moisture effects on 222Rn exhalation. Soil moisture depth profiles varied both between seasons and at different times during the wet season, indicating that factors such as duration, intensity and time between precipitation events can influence 222Rn flux densities considerably.  相似文献   

11.
Radon-222 was measured in groundwater sources of Extremadura (Spain), analyzing 350 samples from private and public springs, wells, and spas by liquid scintillation counting (LSC) and gamma spectrometry. The (222)Rn activity concentrations ranged from 0.24 to 1168BqL(-1). The statistical analysis showed a log-normal distribution with a mean of (111+/-7)BqL(-1) and a median of (36+/-3)BqL(-1). A hydrogeological study revealed correlations between the activity concentration and the aquifer material's characteristics. A map of (222)Rn in groundwater was elaborated and compared with the natural gamma radiation map for this region. About 35% of the samples showed (222)Rn activity concentrations above the Euratom recommended limit of 100BqL(-1). Three uranium series radionuclides ((238)U, (234)U, and (226)Ra) were also assayed by alpha-particle spectrometry, estimating the annual effective dose due to the presence of these natural radionuclides in drinking water.  相似文献   

12.
Phosphogypsum (PG) is a waste product of the phosphoric acid production process and contains, generally, high activity concentrations of uranium series radionuclides. It is stored in piles formed over the last 40 years close to the town of Huelva (Southwest of Spain). The very broad expanse of the PG piles (about 1200 ha) produces a local, but unambiguous, radioactive impact to their surroundings. In 1992, the regional government of Andalusia restored an area of 400 ha by covering it with a 25-cm thick layer of natural soil and, currently, there is an additional zone of 400 ha in course of restoration (unrestored) and the same area of active PG stacks. Due to the high activity concentration of (226)Ra in active PG stacks (average 647 Bq kg(-1)), a significant exhalation of (222)Rn could be produced from the surface of the piles. Measurements have been made of (222)Rn exhalation from active PG stacks and from restored and unrestored zones. The (222)Rn exhalation from unrestored zones is half of that of the active PG stacks. Following restoration, the (222)Rn exhalation is approximately eight times lower than the active PG stacks. The activity concentrations of natural radionuclides ((226)Ra, (40)K, (232)Th) in the mentioned zones have been determined. This study was also conducted to determine the effect of (226)Ra activity concentration on the (222)Rn exhalation, and a good correlation was obtained between the (222)Rn exhalation and (226)Ra activity, porosity and density of soil.  相似文献   

13.
Vertical profiles of radioactive radon gas ((222)Rn) and dissolved gaseous mercury (DGM) in seawater in the Mediterranean Basin have been measured. They were found in the range 1.7-19.3 Bq m(-3) and 22-200 ng m(-3), respectively, at the bottom and 2.0-20.0 Bq m(-3) and 6-80 ng m(-3), respectively, at the surface. Preliminary results indicate a positive correlation between concentrations of both gases at some locations, but not at others. Further analyses will be performed, after (226)Ra contents in sediment and water have been determined, taking into account environmental parameters such as air and water temperatures, barometric pressure and water flow, in order to better interpret these profiles.  相似文献   

14.
Phosphogypsum board is a popular construction material used for housing panels in Korea. Phosphogypsum often contains (226)Ra which decays into (222)Rn through an alpha transformation. (222)Rn emanated from the (226)Ra-bearing phosphogypsum board has drawn the public concern due to its potential radiological impacts to indoor occupants. The emanation rate of (222)Rn from the board is estimated in this paper. A mathematical model of the emanation rate of (222)Rn from the board is presented and validated through a series of experiments. The back diffusion effect due to accumulation of (222)Rn-laden air was incorporated in the model and found to have a strong impact on the (222)Rn emanation characteristics.  相似文献   

15.
Natural radionuclides in bottled water in Austria   总被引:2,自引:0,他引:2  
Concentration levels of 226Ra, 222Rn and 210Pb were analyzed in domestic bottled waters commercially available in Austria. Concentrations up to 0.23 Bq/l, with a geometric mean of 0.041 Bq/l were found for 226Ra. Concentrations for 222Rn ranged from <0.12-18 Bq/l, the geometric mean being 0.54 Bq/l. Lead-210 was analyzed in selected samples, the concentrations ranging from <2 to 34 mBq/l, with a geometric mean of 4.7 mBq/l. Ingestion doses resulting from consumption of these waters were calculated for the geometric mean and the maximum concentrations of the three radionuclides. The effective dose equivalents for different age groups of the population due to the intake of 226Ra range from 0.001 to 0.22 mSv/y and of 210Pb from 0.0003 to 0.05 mSv/y. Ingestion doses from 222Rn are low compared to those from 226Ra and 210Pb, ranging from 0.0001 to 0.011 mSv/y for adults and children, respectively. The doses are compared to the total ingestion dose from dietary intake of natural radionuclides on an annual basis.  相似文献   

16.
Submarine groundwater discharge (SGD) into the coastal zone has received increased attention in the last few years as it is now recognized that this process represents an important pathway for material transport. Assessing these material fluxes is difficult, as there is no simple means to gauge the water flux. To meet this challenge, we have explored the use of a continuous radon monitor to measure radon concentrations in coastal zone waters over time periods from hours to days. Changes in the radon inventories over time can be converted to fluxes after one makes allowances for tidal effects, losses to the atmosphere, and mixing with offshore waters. If one assumes that advective flow of radon-enriched groundwater (pore waters) represent the main input of 222Rn in the coastal zone, the calculated radon fluxes may be converted to water fluxes by dividing by the estimated or measured 222Rn pore water activity. We have also used short-lived radium isotopes (223Ra and 224Ra) to assess mixing between near-shore and offshore waters in the manner pioneered by. During an experiment in the coastal Gulf of Mexico, we showed that the mixing loss derived from the 223Ra gradient agreed very favorably to the estimated range based on the calculated radon fluxes. This allowed an independent constraint on the mixing loss of radon-an important parameter in the mass balance approach. Groundwater discharge was also estimated independently by the radium isotopic approach and was within a factor of two of that determined by the continuous radon measurements and an automated seepage meter deployed at the same site.  相似文献   

17.
The radon isotope 222Rn and salinity in coastal surface water were mapped on regional scales, to improve the understanding of coastal processes and their spatial variability. Radon was measured with a surface-towed, continuously recording multi-detector setup on a moving vessel. Numerous processes and locations of land-ocean interaction along the Central Great Barrier Reef coastline were identified and interpreted based on the data collected. These included riverine fluxes, terrestrially-derived fresh submarine groundwater discharge (SGD) and the tidal pumping of seawater through mangrove forests. Based on variations in the relationship of the tracers radon and salinity, some aspects of regional freshwater inputs to the coastal zone and to estuaries could be assessed. Concurrent mapping of radon and salinity allowed an efficient qualitative assessment of land-ocean interaction on various spatial and temporal scales, indicating that such surveys on coastal scales can be a useful tool to obtain an overview of SGD locations and processes.  相似文献   

18.
Based on an idealized model, both the annual and the seasonal radon ((222)Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil (226)Ra content and a global ecosystems database. Digital maps of the (222)Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average (222)Rn flux density from the soil surface across China was estimated to be 29.7+/-9.4 mBq m(-2)s(-1). Both regional and seasonal variations in the (222)Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil (226)Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China.  相似文献   

19.
Phosphogypsum (PG) has been traditionally applied as Ca-amendment in saline marsh soils in SW Spain, where available PG has 710 ± 40 Bq kg−1 of 226Ra. This work assesses the potential radiological risk for farmers through 222Rn exhalation from PG-amended soils and by inhalation of PG-dust during its application. A three-year field experiment was conducted in a commercial farm involving two treatments: control and 25 t PG ha−1 with three replicates (each 0.5 ha plots). The 222Rn exhalation rate was positively correlated with potential evapotranspiration, which explained 67% of the variability. Statistically significant differences between the control and PG treatments were not found for 222Rn exhalation rates, and mean values were within the lowest quartile of the typical range for 222Rn exhalation from soils. Airborne dust samples were collected during the application of PG and sugar-beet sludge amendments. The highest PG-attributable 226Ra concentration in the dust samples was 3.3 × 102 μBq m−3, implying negligible dose increment for exposed workers.  相似文献   

20.
It is known that in soils and sediments moisture adsorbed on particle surfaces and in the pore system significantly affects the behaviour of recoiling radon (222Rn) atoms after decay of parent 226Ra, leading to increased 222Rn emanation. As a first step in an effort to characterize the 222Rn source term in mineralised sediments in the present study, complementing previous studies in the area, granitic esker sand samples were collected in order to test how moisture content affects 222Rn emanation at different grain size fractions. Emanation fractions measured for natural samples were compared with theoretical calculations. Six different grain size fractions were studied at 0%, 5% and 10% moisture contents relative to the mass of solids. In a further study necessary complementary information on the chemical and structural distribution of 226Ra was gained by selective leaching experiments. The results showed that 226Ra concentration increases from 50 Bq/kg at grain size 1-2 mm to 200 Bq/kg at grain size <0.063 mm. Respectively, the emanation factor increased from 0.12 to 0.30 at 5% moisture content. Both emanation factor and radium concentration increased significantly when grain size was below 0.125-0.250 mm. Above this fraction, the emanation fraction was approximately constant, 0.13 at 5% moisture content. In most of the grain size fractions, emanation reaches its maximum at 5% moisture content, being twice as high as in a dry sample. For the small particles (<0.063 mm) the 226Ra distribution is rather complex and depends on the mineral composition compared to larger particles wherein emanation from the internal pore system and the adjacent matrix is dominating over the contribution from external surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号