首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphogypsum (PG) is a waste product of the phosphoric acid production process and contains, generally, high activity concentrations of uranium series radionuclides. It is stored in piles formed over the last 40 years close to the town of Huelva (Southwest of Spain). The very broad expanse of the PG piles (about 1200 ha) produces a local, but unambiguous, radioactive impact to their surroundings. In 1992, the regional government of Andalusia restored an area of 400 ha by covering it with a 25-cm thick layer of natural soil and, currently, there is an additional zone of 400 ha in course of restoration (unrestored) and the same area of active PG stacks. Due to the high activity concentration of (226)Ra in active PG stacks (average 647 Bq kg(-1)), a significant exhalation of (222)Rn could be produced from the surface of the piles. Measurements have been made of (222)Rn exhalation from active PG stacks and from restored and unrestored zones. The (222)Rn exhalation from unrestored zones is half of that of the active PG stacks. Following restoration, the (222)Rn exhalation is approximately eight times lower than the active PG stacks. The activity concentrations of natural radionuclides ((226)Ra, (40)K, (232)Th) in the mentioned zones have been determined. This study was also conducted to determine the effect of (226)Ra activity concentration on the (222)Rn exhalation, and a good correlation was obtained between the (222)Rn exhalation and (226)Ra activity, porosity and density of soil.  相似文献   

2.
Based on an idealized model, both the annual and the seasonal radon ((222)Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil (226)Ra content and a global ecosystems database. Digital maps of the (222)Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average (222)Rn flux density from the soil surface across China was estimated to be 29.7+/-9.4 mBq m(-2)s(-1). Both regional and seasonal variations in the (222)Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil (226)Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China.  相似文献   

3.
Radon-222 emanation fractions were determined for barite scale deposits associated with petroleum production tubing and soil contaminated with naturally occurring radioactive material (NORM). Samples were analyzed for 226Ra concentration, the results of which were used to calculate the 222Rn emanation fraction for the sample. An important parameter determining the overall Rn activity flux from a solid medium, 222Rn emanation fraction represents the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. The primary objective of the study was to determine whether 222Rn emanation fractions from pipe scale and soil from petroleum production sites are similar to those of uranium mill tailings. Pipe scale samples were collected at four sites representing a wide geographical area, and consisted primarily of barite scale where Ra atoms have replaced a fraction of the Ba within the crystal lattice of the scale. Soil samples were collected at five sites, from areas exhibiting elevated surface gamma exposure rates indicating the presence of NORM. For comparison, 226Ra concentrations and 222Rn emanation fraction were also determined for uranium mill tailings samples provided from a site in Utah. Although 2226Ra concentrations from pipe scale samples were similar to those found in uranium mill tailings, 222Rn emanation fractions from scale were generally lower. Emanation fractions from each data set were statistically different from those of mill tailings (p < or = 0.01). The differences are probably due to physical differences between the two media and to the method by which the Ra is deposited in the material. Radon emanation from soils was extremely variable owing not only to differences in physical and chemical soil properties, but also to the means by which NORM has entered the soil. Although additional emanation measurements from other sites are needed, the data collected at these sites indicate that regulations intended to protect human health from 222Rn inhalation should consider the type and properties of the medium in which the NORM is contained, rather than relying strictly on concentrations of the parent 226Ra.  相似文献   

4.
It is known that in soils and sediments moisture adsorbed on particle surfaces and in the pore system significantly affects the behaviour of recoiling radon (222Rn) atoms after decay of parent 226Ra, leading to increased 222Rn emanation. As a first step in an effort to characterize the 222Rn source term in mineralised sediments in the present study, complementing previous studies in the area, granitic esker sand samples were collected in order to test how moisture content affects 222Rn emanation at different grain size fractions. Emanation fractions measured for natural samples were compared with theoretical calculations. Six different grain size fractions were studied at 0%, 5% and 10% moisture contents relative to the mass of solids. In a further study necessary complementary information on the chemical and structural distribution of 226Ra was gained by selective leaching experiments. The results showed that 226Ra concentration increases from 50 Bq/kg at grain size 1-2 mm to 200 Bq/kg at grain size <0.063 mm. Respectively, the emanation factor increased from 0.12 to 0.30 at 5% moisture content. Both emanation factor and radium concentration increased significantly when grain size was below 0.125-0.250 mm. Above this fraction, the emanation fraction was approximately constant, 0.13 at 5% moisture content. In most of the grain size fractions, emanation reaches its maximum at 5% moisture content, being twice as high as in a dry sample. For the small particles (<0.063 mm) the 226Ra distribution is rather complex and depends on the mineral composition compared to larger particles wherein emanation from the internal pore system and the adjacent matrix is dominating over the contribution from external surface.  相似文献   

5.
222Rn, 226Ra, 228Ra and U were determined in a total of 552 groundwater samples collected throughout Fujian Province of China. The geometric mean concentrations of 222Rn, 226Ra, 228Ra and total U in the groundwater were 147.8 kBq m-3, 12.7 Bq m-3, 30.2 Bq m-3 and 0.54 microgram kg-1, respectively. High groundwater 222Rn was explained by the predominantly granitic rock aquifers in Fujian. A lifetime risk of 1.7 x 10(-3) was estimated for the ingestion of groundwater 222Rn. High ratios of 228Ra to 226Ra contents (geometric mean of 2.4) and their disproportion suggest that 228Ra should also be measured in the assessment of population doses from drinking water in the regions of high rock or soil 232Th. No significant correlation between the 222Rn concentrations in groundwater and air was found.  相似文献   

6.
Phosphogypsum (PG) has been traditionally applied as Ca-amendment in saline marsh soils in SW Spain, where available PG has 710 ± 40 Bq kg−1 of 226Ra. This work assesses the potential radiological risk for farmers through 222Rn exhalation from PG-amended soils and by inhalation of PG-dust during its application. A three-year field experiment was conducted in a commercial farm involving two treatments: control and 25 t PG ha−1 with three replicates (each 0.5 ha plots). The 222Rn exhalation rate was positively correlated with potential evapotranspiration, which explained 67% of the variability. Statistically significant differences between the control and PG treatments were not found for 222Rn exhalation rates, and mean values were within the lowest quartile of the typical range for 222Rn exhalation from soils. Airborne dust samples were collected during the application of PG and sugar-beet sludge amendments. The highest PG-attributable 226Ra concentration in the dust samples was 3.3 × 102 μBq m−3, implying negligible dose increment for exposed workers.  相似文献   

7.
The ambient dose equivalent rate is caused by ionizing radiation of radionuclides in the atmosphere and on the ground surface as well as by cosmic radiation. Seasonal and diurnal variations of the ambient dose equivalent rate (ADER) in the ground level air are influenced by the concentration of 222Rn daughters. The 222Rn concentration in the ground level atmosphere, in turn, depends on the rate of the 222Rn exhalation from soil and turbulent air mixing. Its diurnal and seasonal variations depend on meteorological conditions. The aim of this study is to estimate the influence of variations of the rate of the 222Rn exhalation from soil and its concentrations in the ground level air on variations of ADER in the ground level air, as well as the dependence of these parameters on meteorological conditions. The 222Rn diffusion coefficient and its exhalation rate in undisturbed loamy soil have been determined. The 222Rn concentration in the soil air and its concentration in the ground level air correlate inversely (correlation coefficient is r = -0.62). The main factors determining the 222Rn exhalation from soil are: the soil temperature (r = 0.64), the difference in temperature of soil and air (r = 0.57), and the precipitation amount (r = 0.50). The intensity of gamma radiation in the ground level air is mostly related to the 222Rn concentration in the air (r = 0.62), while the effect of the exhalation rate from soil is relatively low (r = 0.36). It has been shown that ADER due to 222Rn progeny causes only 7-16% of the total ADER and influences its variation. The comparison of variations of ADER due to 222Rn progeny and the total ADER during several years shows that these parameters correlate positively.  相似文献   

8.
The activity concentrations of 228Ra, 226Ra and 222Rn have been analysed in 452 drinking water supplies of S?o Paulo State. This study started in 1994 and covered 54% of the 574 existing counties. Concentrations up to 235 and 131 mBq l-1 were observed for 226Ra and 228Ra, respectively, whereas 222Rn concentrations reached 315 Bq l-1. Radiation doses up to 0.3, 0.6 and 3.2 mSv yr-1 were estimated for the critical organs, for the ingestion of 226Ra, 226Ra and 222Rn, respectively. The corresponding committed effective doses reached values of 6 x 10(-3), 2 x 10(-2) and 3 x 10(-1) mSv yr-1, for the same radionuclides. These results indicate that 222Rn makes the highest contribution to the total effective dose.  相似文献   

9.
Radon mass exhalation rate of soil samples was measured using an exhalation chamber of 10 dm(3) volume and a Lucas cell. The results show that mass of sample, grain size and water content influence the radon mass exhalation rate. For soil of (226)Ra activity concentration about 2500 Bq kg(-1) and samples within the range from 0.20 kg to 0.50 kg, the radon mass exhalation rate values are higher than those for samples of other masses. The observed radon exhalation rate is an inverse function of the average grain size. At the water content about 6% by weight, the radon mass exhalation rate reaches maximum, then it decreases with both increasing and decreasing of the water content in the sample.  相似文献   

10.
Soil samples were collected around a coal-fired power plant from 81 different locations. Brown coal, unusually rich in uranium, is burnt in this plant that lies inside the confines of a small industrial town and has been operational since 1943. Activity concentrations of the radionuclides 238U, 226Ra, 232Th, 137Cs and 40K were determined in the samples. Considerably elevated concentrations of 238U and 226Ra have been found in most samples collected within the inhabited area. Concentrations of 235U and 226Ra in soil decreased regularly with increasing depth at many locations, which can be explained by fly-ash fallout. Concentrations of 235U and 226Ra in the top (0-5 cm depth) layer of soil in public areas inside the town are 4.7 times higher, on average, than those in the uncontaminated deeper layers, which means there is about 108 Bq kg(-1) surplus activity concentration above the geological background. A high emanation rate of 222Rn from the contaminated soil layers and significant disequilibrium between 238U and 226Ra activities in some kinds of samples have been found.  相似文献   

11.
Submarine groundwater discharge (SGD), which includes fresh groundwater and recycled seawater, has been recognized as a widespread phenomenon that can provide important chemical elements to the ocean. Several studies have demonstrated that SGD may approach or even exceed freshwater sources in supplying nutrients to coastal zones. This work reports preliminary results of a study carried out in a series of small embayments of Ubatuba, S?o Paulo State, Brazil, covering latitudes between 23 degrees 26'S and 23 degrees 46'S and longitudes between 45 degrees 02'W and 45 degrees 11'W. The main aims of this research were to set up an analytical method to assess 222Rn and 226Ra activities in seawater samples and to apply the excess 222Rn inventories obtained to estimate SGD. Measurements made during the summer of 2001 included 222Rn and 226Ra in seawater, 226Ra in sediment, seawater and sediment physical properties, nutrients and seepage rates. A continuous 222Rn monitor was also used to determine in situ collection of data to study short-term changes at one location. All methods indicated significant inflow of subsurface fluids at rates in excess of several cm per day.  相似文献   

12.
The natural radioactivity of 226Ra and 228Ra in scale samples taken from pipes used in several local water wells was investigated. The results showed 226Ra activities to be varying from 1284 to 3613 Bq/kg whereas, the 228Ra concentrations did not show any significant variation, all being low, below 30 Bq/kg. The 222Rn exhalations from these scale samples were also measured and compared with the 226Ra contents. The average ratio of 222Rn/226Ra was 31%. Chemical analyses showed that the main constituent of the scale samples was iron. The radiation dose rates from the pipes and scale were up to 100nSv/h. Although not a major hazard this could present a long-term risk if the scale materials were handled indiscriminately.  相似文献   

13.
There is a continual supply of new experimental data that are relevant to the assessment of the potential impacts of nuclear fuel waste disposal. In the biosphere, the traditional assessment models are data intensive, and values are needed for several thousand parameters. This is augmented further when measures of central tendency, statistical dispersion, correlations and truncations are required for each parameter to allow probabilistic risk assessment. Recent reviews proposed values for 10-15 key element-specific parameters relevant to (36)Cl, (129)I, (222)Rn, (226)Ra, (237)Np and (238)U, and some highlights from this data update are summarized here. Several parameters for Np are revised downward by more than 10-fold, as is the fish/water concentration ratio for U. Soil solid/liquid partition coefficients, Kd, are revised downward by 10-770-fold for Ra. Specific parameters are discussed in detail, including degassing of I from soil; sorption of Cl in soil; categorization of plant/soil concentration ratios for U, Ra and Np; Rn transfer from soil to indoor air; Rn degassing from surface water; and the Ca dependence of Ra transfers.  相似文献   

14.
Using gamma-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides (226)Ra, (222)Rn, (214)Bi, (228)Ac, (212)Pb, (212)Bi and (40)K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. gamma-spectroscopy measurements in sand gave Ra concentration ranging from 4.2+/-0.4 to 60.8+/-2.2 Bq kg(-1) and Ra concentration equivalents from 8.8+/-1.0 to 74.3+/-9.2 Bq kg(-1). The highest Ra concentration was in gray and white cement having the values 73.2+/-3.0 and 76.3+/-3.0 Bq kg(-1), respectively. Gravel results showed Ra concentration between 20.2+/-1.0 and 31.7+/-1.4 Bq kg(-1) with an average of 27.5+/-1.3 Bq kg(-1). Radon concentration in paint was determined by CR-39 detector. In sand, the average (222)Rn concentration ranged between 291+/-69 and 1774+/-339 Bq m(-3) among the sandbanks with a total average value of 704+/-139 Bq m(-3). For gravel, the range was found to be from 52+/-9 to 3077+/-370 Bq m(-3) with an average value of 608+/-85 Bq m(-3). Aerial and mass exhalation rates of (222)Rn were also calculated and found to be between 44+/-7 and 2226+/-267 mBq m(-2)h(-1), and between 0.40+/-0.07 and 20.0+/-0.3 mBq kg(-1)h(-1), respectively.  相似文献   

15.
Natural radionuclides in bottled water in Austria   总被引:2,自引:0,他引:2  
Concentration levels of 226Ra, 222Rn and 210Pb were analyzed in domestic bottled waters commercially available in Austria. Concentrations up to 0.23 Bq/l, with a geometric mean of 0.041 Bq/l were found for 226Ra. Concentrations for 222Rn ranged from <0.12-18 Bq/l, the geometric mean being 0.54 Bq/l. Lead-210 was analyzed in selected samples, the concentrations ranging from <2 to 34 mBq/l, with a geometric mean of 4.7 mBq/l. Ingestion doses resulting from consumption of these waters were calculated for the geometric mean and the maximum concentrations of the three radionuclides. The effective dose equivalents for different age groups of the population due to the intake of 226Ra range from 0.001 to 0.22 mSv/y and of 210Pb from 0.0003 to 0.05 mSv/y. Ingestion doses from 222Rn are low compared to those from 226Ra and 210Pb, ranging from 0.0001 to 0.011 mSv/y for adults and children, respectively. The doses are compared to the total ingestion dose from dietary intake of natural radionuclides on an annual basis.  相似文献   

16.
Phosphogypsum board is a popular construction material used for housing panels in Korea. Phosphogypsum often contains (226)Ra which decays into (222)Rn through an alpha transformation. (222)Rn emanated from the (226)Ra-bearing phosphogypsum board has drawn the public concern due to its potential radiological impacts to indoor occupants. The emanation rate of (222)Rn from the board is estimated in this paper. A mathematical model of the emanation rate of (222)Rn from the board is presented and validated through a series of experiments. The back diffusion effect due to accumulation of (222)Rn-laden air was incorporated in the model and found to have a strong impact on the (222)Rn emanation characteristics.  相似文献   

17.
We propose a new methodology for predicting areas with a strong potential for radon (222Rn) exhalation at the soil surface. This methodology is based on the Rn exhalation rate quantification, starting from a precise characterisation of the main local geological and pedological parameters that control the radon source and its transport to the soil/atmosphere interface. It combines a cross mapping analysis of these parameters into a geographic information system with a model of the Rn vertical transport by diffusion in the soil. The rock and soil chemical and physical properties define the entry parameters of this code (named TRACHGEO) which calculates the radon flux density at the surface. This methodology is validated from in situ measurements of radon levels at the soil/atmosphere interface and in dwellings. We apply this approach to an area located in western France and characterised by a basement displaying a heterogeneous radon source potential, as previously demonstrated by lelsch et al. (J. Environ. Radioactivity 53(1) (2001) 75). The new results obtained show that spatial heterogeneity of pedological characteristics in addition to basement geochemistry--must be taken into account to improve the mapping resolution. The TRACHGEO forecasts explain the Rn exhalation variability on a larger scale and in general correlate well with in situ observations. Moreover, the radon-prone sectors identified by this approach generally correspond to the location of the dwellings showing the highest radon concentrations.  相似文献   

18.
Results of groundwater and seawater analyses for radioactive ((3)H, (222)Rn, (223)Ra, (224)Ra, (226)Ra, and (228)Ra) and stable (D and (18)O) isotopes are presented together with in situ spatial mapping and time series (222)Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0cmd(-1) to 360cmd(-1); the unit represents cm(3)/cm(2)/day), as well as during a few hours (from 0cmd(-1) to 110cmd(-1)), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous (222)Rn measurements is 17+/-10cmd(-1). Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7x10(3)m(3)d(-1) per km of the coast. The isotopic composition (deltaD and delta(18)O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of (222)Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater in a complex coast with many small bays and islands was influenced by local currents and groundwater/seawater mixing. This has also been confirmed by a relatively short residence time of 1-2 weeks for water within 25km offshore, as obtained by short-lived radium isotopes. The irregular distribution of SGD seen at Ubatuba is a characteristic of fractured rock aquifers, fed by coastal groundwater and recirculated seawater with small admixtures of groundwater, which is of potential environmental concern and has implications on the management of freshwater resources in the region.  相似文献   

19.
When used with an atmospheric transport model, the 222Rn flux distribution estimated in our previous study using soil transport theory caused underestimation of atmospheric 222Rn concentrations as compared with measurements in East Asia. In this study, we applied a Bayesian synthesis inverse method to produce revised estimates of the annual 222Rn flux density in Asia by using atmospheric 222Rn concentrations measured at seven sites in East Asia. The Bayesian synthesis inverse method requires a prior estimate of the flux distribution and its uncertainties. The atmospheric transport model MM5/HIRAT and our previous estimate of the 222Rn flux distribution as the prior value were used to generate new flux estimates for the eastern half of the Eurasian continent dividing into 10 regions.The 222Rn flux densities estimated using the Bayesian inversion technique were generally higher than the prior flux densities. The area-weighted average 222Rn flux density for Asia was estimated to be 33.0 mBq m−2 s−1, which is substantially higher than the prior value (16.7 mBq m−2 s−1). The estimated 222Rn flux densities decrease with increasing latitude as follows: Southeast Asia (36.7 mBq m−2 s−1); East Asia (28.6 mBq m−2 s−1) including China, Korean Peninsula and Japan; and Siberia (14.1 mBq m−2 s−1). Increase of the newly estimated fluxes in Southeast Asia, China, Japan, and the southern part of Eastern Siberia from the prior ones contributed most significantly to improved agreement of the model-calculated concentrations with the atmospheric measurements. The sensitivity analysis of prior flux errors and effects of locally exhaled 222Rn showed that the estimated fluxes in Northern and Central China, Korea, Japan, and the southern part of Eastern Siberia were robust, but that in Central Asia had a large uncertainty.  相似文献   

20.
A delayed coincidence counter (RaDeCC), developed to determine ultra-low levels of (223)Ra (half life = 11.1 days) and (224)Ra (half life = 3.6 days) in seawater, was adapted to measure (226)Ra (half life = 1622 years). After pre-concentration of Ra from seawater onto MnO(2)-coated fiber we show in this study that the (226)Ra activity can be determined using the RaDeCC's ability to record alpha decay of its daughters as total counts. For sufficient ingrowth of (222)Rn, the Mn-fiber is hermetically sealed in a column for a few days. Then, the ingrown (222)Rn is circulated through the RaDeCC air-loop system followed by shutting down of the pump and closure of the scintillation cell for equilibration. Counting may be completed within a few hours for seawater samples. Sample measurements with this method agreed well with data obtained using gamma-ray spectrometry. This proves that a set of Ra isotopes ((223)Ra, (224)Ra, and (226)Ra), commonly used for geophysical studies such as mixing rates of different water masses and submarine groundwater discharge, can be efficiently and rapidly measured using the RaDeCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号